Subretinal Implantation of Human Primary RPE Cells Cultured on Nanofibrous Membranes in Minipigs
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
35327471
PubMed Central
PMC8945676
DOI
10.3390/biomedicines10030669
PII: biomedicines10030669
Knihovny.cz E-zdroje
- Klíčová slova
- human primary RPE, minipigs, nanofibrous PDLLA membranes, subretinal implantation,
- Publikační typ
- časopisecké články MeSH
PURPOSE: The development of primary human retinal pigmented epithelium (hRPE) for clinical transplantation purposes on biodegradable scaffolds is indispensable. We hereby report the results of the subretinal implantation of hRPE cells on nanofibrous membranes in minipigs. METHODS: The hRPEs were collected from human cadaver donor eyes and cultivated on ultrathin nanofibrous carriers prepared via the electrospinning of poly(L-lactide-co-DL-lactide) (PDLLA). "Libechov" minipigs (12-36 months old) were used in the study, supported by preoperative tacrolimus immunosuppressive therapy. The subretinal implantation of the hRPE-nanofibrous carrier was conducted using general anesthesia via a custom-made injector during standard three-port 23-gauge vitrectomy, followed by silicone oil endotamponade. The observational period lasted 1, 2, 6 and 8 weeks, and included in vivo optical coherence tomography (OCT) of the retina, as well as post mortem immunohistochemistry using the following antibodies: HNAA and STEM121 (human cell markers); Bestrophin and CRALBP (hRPE cell markers); peanut agglutining (PNA) (cone photoreceptor marker); PKCα (rod bipolar marker); Vimentin, GFAP (macroglial markers); and Iba1 (microglial marker). RESULTS: The hRPEs assumed cobblestone morphology, persistent pigmentation and measurable trans-epithelial electrical resistance on the nanofibrous PDLLA carrier. The surgical delivery of the implants in the subretinal space of the immunosuppressed minipigs was successfully achieved and monitored by fundus imaging and OCT. The implanted hRPEs were positive for HNAA and STEM121 and were located between the minipig's neuroretina and RPE layers at week 2 post-implantation, which was gradually attenuated until week 8. The neuroretina over the implants showed rosette or hypertrophic reaction at week 6. The implanted cells expressed the typical RPE marker bestrophin throughout the whole observation period, and a gradual diminishing of the CRALBP expression in the area of implantation at week 8 post-implantation was observed. The transplanted hRPEs appeared not to form a confluent layer and were less capable of keeping the inner and outer retinal segments intact. The cone photoreceptors adjacent to the implant scaffold were unchanged initially, but underwent a gradual change in structure after hRPE implantation; the retina above and below the implant appeared relatively healthy. The glial reaction of the transplanted and host retina showed Vimentin and GFAP positivity from week 1 onward. Microglial activation appeared in the retinal area of the transplant early after the surgery, which seemed to move into the transplant area over time. CONCLUSIONS: The differentiated hRPEs can serve as an alternative cell source for RPE replacement in animal studies. These cells can be cultivated on nanofibrous PDLLA and implanted subretinally into minipigs using standard 23-gauge vitrectomy and implantation injector. The hRPE-laden scaffolds demonstrated relatively good incorporation into the host retina over an eight-week observation period, with some indication of a gliotic scar formation, and a likely neuroinflammatory response in the transplanted area despite the use of immunosuppression.
Department of Cell Biology Faculty of Science Charles University 11000 Prague Czech Republic
Institute for Clinical and Experimental Medicine 14021 Prague Czech Republic
Karl Landsteiner Institute for Retinal Research and Imaging 1030 Vienna Austria
Moorfields Eye Hospital Abu Dhabi 62807 United Arab Emirates
Zobrazit více v PubMed
Jager R.D., Mieler W.F., Miller J.W. Age-related macular degeneration. N. Engl. J. Med. 2008;358:2606–2617. doi: 10.1056/NEJMra0801537. PubMed DOI
Cachafeiro M., Bemelmans A.P., Samardzija M., Afanasieva T., Pournaras J.-A., Grimm C., Kostic C., Philippe S., Wenzel A., Arsenijevic Y. Hyperactivation of retina by light in mice leads to photoreceptor cell death mediated by VEGF and retinal pigment epithelium permeability. Cell Death Dis. 2013;4:e781. doi: 10.1038/cddis.2013.303. PubMed DOI PMC
Szatmari-Toth M., Kristof E., Vereb Z., Akhtar S., Facsko A., Fesus L., Kauppinen A., Kaarniranta K., Petrovski G. Clearance of autophagy-associated dying retinal pigment epithelial cells—A possible source for inflammation in age-related macular degeneration. Cell Death Dis. 2016;7:e2367. doi: 10.1038/cddis.2016.133. PubMed DOI PMC
Rivas D.E., Borot A., Cardenas D.E., Marcus G., Gu X., Herrmann D., Xu J., Tan J., Kormin D., Ma G., et al. Next Generation Driver for Attosecond and Laser-plasma Physics. Sci. Rep. 2017;7:5224. doi: 10.1038/s41598-017-05082-w. PubMed DOI PMC
Nagymihaly R.N.Y., Ardan T., Motlik J., Eidet J.R., Moe M.C., Bergersen L.H., Lytvynchuk L., Petrovski G. Tissue Barriers in Disease, Injury and Regeneration. Elsevier; Amsterdam, The Netherlands: 2021. The retinal pigment epithelium: At the forefront of the blood-retinal barrier in physiology and disease; pp. 115–146.
Fuhrmann S., Zou C., Levine E.M. Retinal pigment epithelium development, plasticity, and tissue homeostasis. Exp. Eye Res. 2014;123:141–150. doi: 10.1016/j.exer.2013.09.003. PubMed DOI PMC
Sharma R., Bose D., Maminishkis A., Bharti K. Retinal Pigment Epithelium Replacement Therapy for Age-Related Macular Degeneration: Are We There Yet? Annu. Rev. Pharmacol. Toxicol. 2020;60:553–572. doi: 10.1146/annurev-pharmtox-010919-023245. PubMed DOI PMC
Holz F.G., Schmitz-Valckenberg S., Fleckenstein M. Recent developments in the treatment of age-related macular degeneration. J. Clin. Investig. 2014;124:1430–1438. doi: 10.1172/JCI71029. PubMed DOI PMC
Ammar M.J., Hsu J., Chiang A., Ho A.C., Regillo C.D. Age-related macular degeneration therapy: A review. Curr. Opin. Ophthalmol. 2020;31:215–221. doi: 10.1097/ICU.0000000000000657. PubMed DOI
Baradaran-Rafii A., Sarvari M., Alavi-Moghadam S., Payab M., Goodarzi P., Aghayan H.R., Larijani B., Rezaei-Tavirani M., Biglar M., Arjmand B. Cell-based approaches towards treating age-related macular degeneration. Cell Tissue Bank. 2020;21:339–347. doi: 10.1007/s10561-020-09826-3. PubMed DOI
Fernández-Robredo P., Sancho A., Johnen S., Recalde S., Gama N., Thumann G., Groll J., García-Layana A. Current treatment limitations in age-related macular degeneration and future approaches based on cell therapy and tissue engineering. J. Ophthalmol. 2014;2014:510285. doi: 10.1155/2014/510285. PubMed DOI PMC
Forest D.L., Johnson L.V., Clegg D.O. Cellular models and therapies for age-related macular degeneration. Dis. Models Mech. 2015;8:421–427. doi: 10.1242/dmm.017236. PubMed DOI PMC
Zarbin M., Sugino I., Townes-Anderson E. Concise Review: Update on Retinal Pigment Epithelium Transplantation for Age-Related Macular Degeneration. Stem Cells Transl. Med. 2019;8:466–477. doi: 10.1002/sctm.18-0282. PubMed DOI PMC
Sharma R., Khristov V., Rising A., Jha B.S., Dejene R., Hotaling N., Li Y., Stoddard J., Stankewicz C., Wan Q., et al. Clinical-grade stem cell-derived retinal pigment epithelium patch rescues retinal degeneration in rodents and pigs. Sci. Transl. Med. 2019;11:eaat5580. doi: 10.1126/scitranslmed.aat5580. PubMed DOI PMC
Choudhary P., Booth H., Gutteridge A., Surmacz B., Louca I., Steer J., Kerby J., Whiting P.J. Directing Differentiation of Pluripotent Stem Cells Toward Retinal Pigment Epithelium Lineage. Stem Cells Transl. Med. 2017;6:490–501. doi: 10.5966/sctm.2016-0088. PubMed DOI PMC
Kuroda T., Ando S., Takeno Y., Kishino A., Kimura T. Robust induction of retinal pigment epithelium cells from human induced pluripotent stem cells by inhibiting FGF/MAPK signaling. Stem Cell Res. 2019;39:101514. doi: 10.1016/j.scr.2019.101514. PubMed DOI
Popelka Š., Studenovská H., Abelová L., Ardan T., Studený P., Straňák Z., Klíma J., Dvořánková B., Kotek J., Hodan J., et al. A frame-supported ultrathin electrospun polymer membrane for transplantation of retinal pigment epithelial cells. Biomed. Mater. 2015;10:045022. doi: 10.1088/1748-6041/10/4/045022. PubMed DOI
Eichhorn S.J., Sampson W.W. Statistical geometry of pores and statistics of porous nanofibrous assemblies. J. R. Soc. Interface. 2005;2:309–318. doi: 10.1098/rsif.2005.0039. PubMed DOI PMC
Vodicka P., Smetana K., Jr., Dvorankova B., Emerick T., Xu Y.Z., Ourednik J., Ourednik V., MotlÍk J.A. The miniature pig as an animal model in biomedical research. Ann. N. Y. Acad. Sci. 2005;1049:161–171. doi: 10.1196/annals.1334.015. PubMed DOI
Sevc J., Goldberg D., van Gorp S., Leerink M., Juhas S., Juhasova J., Marsala S., Hruska-Plochan M., Hefferan M.P., Motlik J., et al. Effective long-term immunosuppression in rats by subcutaneously implanted sustained-release tacrolimus pellet: Effect on spinally grafted human neural precursor survival. Exp. Neurol. 2013;248:85–99. doi: 10.1016/j.expneurol.2013.05.017. PubMed DOI
Jin Z.B., Gao M.L., Deng W.L., Wu K.C., Sugita S., Mandai M., Takahashi M. Stemming retinal regeneration with pluripotent stem cells. Prog. Retin. Eye Res. 2019;69:38–56. doi: 10.1016/j.preteyeres.2018.11.003. PubMed DOI
O’Neill H.C., Limnios I.J., Barnett N.L. Advancing a Stem Cell Therapy for Age-Related Macular Degeneration. Curr. Stem Cell Res. Ther. 2020;15:89–97. doi: 10.2174/1574888X15666191218094020. PubMed DOI
Bilic J., Izpisua Belmonte J.C. Concise review: Induced pluripotent stem cells versus embryonic stem cells: Close enough or yet too far apart? Stem Cells. 2012;30:33–41. doi: 10.1002/stem.700. PubMed DOI
Cabral de Guimaraes T.A., Daich Varela M., Georgiou M., Michaelides M. Treatments for dry age-related macular degeneration: Therapeutic avenues, clinical trials and future directions. Br. J. Ophthalmol. 2021;106:297–304. doi: 10.1136/bjophthalmol-2020-318452. PubMed DOI PMC
Joussen A.M., Joeres S., Fawzy N., Heussen F.M., Llacer H., van Meurs J.C., Kirchhof B. Autologous translocation of the choroid and retinal pigment epithelium in patients with geographic atrophy. Ophthalmology. 2007;114:551–560. doi: 10.1016/j.ophtha.2006.08.016. PubMed DOI
Da Cruz L., Fynes K., Georgiadis O., Kerby J., Luo Y.H., Ahmado A., Vernon A., Daniels J.T., Nommiste B., Hasan S.M., et al. Phase 1 clinical study of an embryonic stem cell-derived retinal pigment epithelium patch in age-related macular degeneration. Nat. Biotechnol. 2018;36:328–337. doi: 10.1038/nbt.4114. PubMed DOI
Bharti K. Induced to cure: Engineering iPS cell derived RPE scaffolds to treat degenerative eye diseases. Acta Ophthalmol. 2015;93 doi: 10.1111/j.1755-3768.2015.0109. DOI
Lee D.Y., Lorach H., Huie P., Palanker D. Implantation of Modular Photovoltaic Subretinal Prosthesis. Ophthalmic Surg. Lasers Imaging Retin. 2016;47:171–174. doi: 10.3928/23258160-20160126-11. PubMed DOI PMC
Hayes M.J., Burgoyne T., Wavre-Shapton S.T., Tolmachova T., Seabra M.C., Futter C.E. Remodeling of the Basal Labyrinth of Retinal Pigment Epithelial Cells With Osmotic Challenge, Age, and Disease. Investig. Ophthalmol. Vis. Sci. 2019;60:2515–2524. doi: 10.1167/iovs.19-26784. PubMed DOI PMC
Del Cerro M., Humayun M.S., Sadda S.R., Cao J., Hayashi N., Green W.R., Del Cerro C., De Juan E. Histologic correlation of human neural retinal transplantation. Investig. Ophthalmol. Vis. Sci. 2000;41:3142–3148. PubMed
Liu Z., Yu N., Holz F.G., Yang F., Stanzel B.V. Enhancement of retinal pigment epithelial culture characteristics and subretinal space tolerance of scaffolds with 200 nm fiber topography. Biomaterials. 2014;35:2837–2850. doi: 10.1016/j.biomaterials.2013.12.069. PubMed DOI
Johnson L.V., Forest D.L., Banna C.D., Radeke C.M., Maloney M.A., Hu J., Spencer C.N., Walker A.M., Tsie M.S., Bok D., et al. Cell culture model that mimics drusen formation and triggers complement activation associated with age-related macular degeneration. Proc. Natl. Acad. Sci. USA. 2011;108:18277–18282. doi: 10.1073/pnas.1109703108. PubMed DOI PMC
Zhang X.C., Wyss U.P., Pichora D., Goosen M.F.A. An Investigation of Poly(Lactic Acid) Degradation. J. Bioact. Compat. Polym. 1994;9:80–100. doi: 10.1177/088391159400900105. DOI
Landes C.A., Ballon A., Roth C. Maxillary and mandibular osteosyntheses with PLGA and P(L/DL)LA implants: A 5-year inpatient biocompatibility and degradation experience. Plast. Reconstr. Surg. 2006;117:2347–2360. doi: 10.1097/01.prs.0000218787.49887.73. PubMed DOI
Lehtonen T.J., Tuominen J.U., Hiekkanen E. Resorbable composites with bioresorbable glass fibers for load-bearing applications. In vitro degradation and degradation mechanism. Acta Biomater. 2013;9:4868–4877. doi: 10.1016/j.actbio.2012.08.052. PubMed DOI
Weir N.A., Buchanan F.J., Orr J.F., Dickson G.R. Degradation of poly-L-lactide. Part 1: In vitro and in vivo physiological temperature degradation. Proc. Inst. Mech. Eng. H. 2004;218:307–319. doi: 10.1243/0954411041932782. PubMed DOI
Stanzel B.V., Liu Z., Somboonthanakij S., Wongsawad W., Brinken R., Eter N., Corneo B., Holz F.G., Temple S., Stern J.H., et al. Human RPE stem cells grown into polarized RPE monolayers on a polyester matrix are maintained after grafting into rabbit subretinal space. Stem Cell Rep. 2014;2:64–77. doi: 10.1016/j.stemcr.2013.11.005. PubMed DOI PMC
Fronk A.H., Vargis E. Methods for culturing retinal pigment epithelial cells: A review of current protocols and future recommendations. J. Tissue Eng. 2016;7:2041731416650838. doi: 10.1177/2041731416650838. PubMed DOI PMC
Rizzolo L.J. Barrier properties of cultured retinal pigment epithelium. Exp. Eye Res. 2014;126:16–26. doi: 10.1016/j.exer.2013.12.018. PubMed DOI
Chao J.R., Lamba D.A., Klesert T.R., La Torre A., Hoshino A., Taylor R.J., Jayabalu A., Engel A.L., Khuu T., Wang R., et al. Transplantation of Human Embryonic Stem Cell-Derived Retinal Cells into the Subretinal Space of a Non-Human Primate. Transl. Vis. Sci. Technol. 2017;6:4. doi: 10.1167/tvst.6.3.4. PubMed DOI PMC
Limnios I.J., Chau Y.Q., Skabo S.J., Surrao D.C., O’Neill H.C. Efficient differentiation of human embryonic stem cells to retinal pigment epithelium under defined conditions. Stem Cell Res. Ther. 2021;12:248. doi: 10.1186/s13287-021-02316-7. PubMed DOI PMC
Plaza Reyes A., Petrus-Reurer S., Padrell Sánchez S., Kumar P., Douagi I., Bartuma H., Aronsson M., Westman S., Lardner E., André H., et al. Identification of cell surface markers and establishment of monolayer differentiation to retinal pigment epithelial cells. Nat. Commun. 2020;11:1609. doi: 10.1038/s41467-020-15326-5. PubMed DOI PMC
Qiu G., Seiler M.J., Thomas B.B., Wu K., Radosevich M., Sadda S.R. Revisiting nestin expression in retinal progenitor cells in vitro and after transplantation in vivo. Exp. Eye Res. 2007;84:1047–1059. doi: 10.1016/j.exer.2007.01.014. PubMed DOI
Liu Z., Li Y., Cui Y., Roberts C., Lu M., Wilhelmsson U., Pekny M., Chopp M. Beneficial effects of gfap/vimentin reactive astrocytes for axonal remodeling and motor behavioral recovery in mice after stroke. Glia. 2014;62:2022–2033. doi: 10.1002/glia.22723. PubMed DOI PMC
Qu L., Gao L., Xu H., Duan P., Zeng Y., Liu Y., Yin Z.Q. Combined transplantation of human mesenchymal stem cells and human retinal progenitor cells into the subretinal space of RCS rats. Sci. Rep. 2017;7:199. doi: 10.1038/s41598-017-00241-5. PubMed DOI PMC
Al-Nawaiseh S., Thieltges F., Liu Z., Strack C., Brinken R., Braun N., Wolschendorf M., Maminishkis A., Eter N., Stanzel B.V. A Step by Step Protocol for Subretinal Surgery in Rabbits. J. Vis. Exp. JoVE. 2016;115:e53927. doi: 10.3791/53927. PubMed DOI PMC
Gandhi J.K., Mano F., Iezzi R., LoBue S.A., Jr., Holman B.H., Fautsch M.P., Olsen T.W., Pulido J.S., Marmorstein A.D. Fibrin hydrogels are safe, degradable scaffolds for sub-retinal implantation. PLoS ONE. 2020;15:e0227641. doi: 10.1371/journal.pone.0227641. PubMed DOI PMC
Gandhi J.K., Manzar Z., Bachman L.A., Andrews-Pfannkoch C., Knudsen T., Hill M., Schmidt H., Iezzi R., Pulido J.S., Marmorstein A.D. Fibrin hydrogels as a xenofree and rapidly degradable support for transplantation of retinal pigment epithelium monolayers. Acta Biomater. 2018;67:134–146. doi: 10.1016/j.actbio.2017.11.058. PubMed DOI
Liu Z., Parikh B.H., Tan Q.S.W., Wong D.S.L., Ong K.H., Yu W., Seah I., Holder G.E., Hunziker W., Tan G.S., et al. Surgical Transplantation of Human RPE Stem Cell-Derived RPE Monolayers into Non-Human Primates with Immunosuppression. Stem Cell Rep. 2021;16:237–251. doi: 10.1016/j.stemcr.2020.12.007. PubMed DOI PMC
Fernandes R.A.B., Stefanini F.R., Falabella P., Koss M.J., Wells T., Diniz B., Ribeiro R., Schor P., Maia M., Penha F.M., et al. Development of a new tissue injector for subretinal transplantation of human embryonic stem cell derived retinal pigmented epithelium. Int. J. Retin. Vitr. 2017;3:41. doi: 10.1186/s40942-017-0095-6. PubMed DOI PMC
Rauer O., Ghosh F. Survival of full-thickness retinal xenotransplants without immunosuppression. Graefes Arch. Clin. Exp. Ophthalmol. 2001;239:145–151. doi: 10.1007/s004170000236. PubMed DOI