Subretinal Implantation of Human Primary RPE Cells Cultured on Nanofibrous Membranes in Minipigs

. 2022 Mar 14 ; 10 (3) : . [epub] 20220314

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35327471
Odkazy

PubMed 35327471
PubMed Central PMC8945676
DOI 10.3390/biomedicines10030669
PII: biomedicines10030669
Knihovny.cz E-zdroje

PURPOSE: The development of primary human retinal pigmented epithelium (hRPE) for clinical transplantation purposes on biodegradable scaffolds is indispensable. We hereby report the results of the subretinal implantation of hRPE cells on nanofibrous membranes in minipigs. METHODS: The hRPEs were collected from human cadaver donor eyes and cultivated on ultrathin nanofibrous carriers prepared via the electrospinning of poly(L-lactide-co-DL-lactide) (PDLLA). "Libechov" minipigs (12-36 months old) were used in the study, supported by preoperative tacrolimus immunosuppressive therapy. The subretinal implantation of the hRPE-nanofibrous carrier was conducted using general anesthesia via a custom-made injector during standard three-port 23-gauge vitrectomy, followed by silicone oil endotamponade. The observational period lasted 1, 2, 6 and 8 weeks, and included in vivo optical coherence tomography (OCT) of the retina, as well as post mortem immunohistochemistry using the following antibodies: HNAA and STEM121 (human cell markers); Bestrophin and CRALBP (hRPE cell markers); peanut agglutining (PNA) (cone photoreceptor marker); PKCα (rod bipolar marker); Vimentin, GFAP (macroglial markers); and Iba1 (microglial marker). RESULTS: The hRPEs assumed cobblestone morphology, persistent pigmentation and measurable trans-epithelial electrical resistance on the nanofibrous PDLLA carrier. The surgical delivery of the implants in the subretinal space of the immunosuppressed minipigs was successfully achieved and monitored by fundus imaging and OCT. The implanted hRPEs were positive for HNAA and STEM121 and were located between the minipig's neuroretina and RPE layers at week 2 post-implantation, which was gradually attenuated until week 8. The neuroretina over the implants showed rosette or hypertrophic reaction at week 6. The implanted cells expressed the typical RPE marker bestrophin throughout the whole observation period, and a gradual diminishing of the CRALBP expression in the area of implantation at week 8 post-implantation was observed. The transplanted hRPEs appeared not to form a confluent layer and were less capable of keeping the inner and outer retinal segments intact. The cone photoreceptors adjacent to the implant scaffold were unchanged initially, but underwent a gradual change in structure after hRPE implantation; the retina above and below the implant appeared relatively healthy. The glial reaction of the transplanted and host retina showed Vimentin and GFAP positivity from week 1 onward. Microglial activation appeared in the retinal area of the transplant early after the surgery, which seemed to move into the transplant area over time. CONCLUSIONS: The differentiated hRPEs can serve as an alternative cell source for RPE replacement in animal studies. These cells can be cultivated on nanofibrous PDLLA and implanted subretinally into minipigs using standard 23-gauge vitrectomy and implantation injector. The hRPE-laden scaffolds demonstrated relatively good incorporation into the host retina over an eight-week observation period, with some indication of a gliotic scar formation, and a likely neuroinflammatory response in the transplanted area despite the use of immunosuppression.

Zobrazit více v PubMed

Jager R.D., Mieler W.F., Miller J.W. Age-related macular degeneration. N. Engl. J. Med. 2008;358:2606–2617. doi: 10.1056/NEJMra0801537. PubMed DOI

Cachafeiro M., Bemelmans A.P., Samardzija M., Afanasieva T., Pournaras J.-A., Grimm C., Kostic C., Philippe S., Wenzel A., Arsenijevic Y. Hyperactivation of retina by light in mice leads to photoreceptor cell death mediated by VEGF and retinal pigment epithelium permeability. Cell Death Dis. 2013;4:e781. doi: 10.1038/cddis.2013.303. PubMed DOI PMC

Szatmari-Toth M., Kristof E., Vereb Z., Akhtar S., Facsko A., Fesus L., Kauppinen A., Kaarniranta K., Petrovski G. Clearance of autophagy-associated dying retinal pigment epithelial cells—A possible source for inflammation in age-related macular degeneration. Cell Death Dis. 2016;7:e2367. doi: 10.1038/cddis.2016.133. PubMed DOI PMC

Rivas D.E., Borot A., Cardenas D.E., Marcus G., Gu X., Herrmann D., Xu J., Tan J., Kormin D., Ma G., et al. Next Generation Driver for Attosecond and Laser-plasma Physics. Sci. Rep. 2017;7:5224. doi: 10.1038/s41598-017-05082-w. PubMed DOI PMC

Nagymihaly R.N.Y., Ardan T., Motlik J., Eidet J.R., Moe M.C., Bergersen L.H., Lytvynchuk L., Petrovski G. Tissue Barriers in Disease, Injury and Regeneration. Elsevier; Amsterdam, The Netherlands: 2021. The retinal pigment epithelium: At the forefront of the blood-retinal barrier in physiology and disease; pp. 115–146.

Fuhrmann S., Zou C., Levine E.M. Retinal pigment epithelium development, plasticity, and tissue homeostasis. Exp. Eye Res. 2014;123:141–150. doi: 10.1016/j.exer.2013.09.003. PubMed DOI PMC

Sharma R., Bose D., Maminishkis A., Bharti K. Retinal Pigment Epithelium Replacement Therapy for Age-Related Macular Degeneration: Are We There Yet? Annu. Rev. Pharmacol. Toxicol. 2020;60:553–572. doi: 10.1146/annurev-pharmtox-010919-023245. PubMed DOI PMC

Holz F.G., Schmitz-Valckenberg S., Fleckenstein M. Recent developments in the treatment of age-related macular degeneration. J. Clin. Investig. 2014;124:1430–1438. doi: 10.1172/JCI71029. PubMed DOI PMC

Ammar M.J., Hsu J., Chiang A., Ho A.C., Regillo C.D. Age-related macular degeneration therapy: A review. Curr. Opin. Ophthalmol. 2020;31:215–221. doi: 10.1097/ICU.0000000000000657. PubMed DOI

Baradaran-Rafii A., Sarvari M., Alavi-Moghadam S., Payab M., Goodarzi P., Aghayan H.R., Larijani B., Rezaei-Tavirani M., Biglar M., Arjmand B. Cell-based approaches towards treating age-related macular degeneration. Cell Tissue Bank. 2020;21:339–347. doi: 10.1007/s10561-020-09826-3. PubMed DOI

Fernández-Robredo P., Sancho A., Johnen S., Recalde S., Gama N., Thumann G., Groll J., García-Layana A. Current treatment limitations in age-related macular degeneration and future approaches based on cell therapy and tissue engineering. J. Ophthalmol. 2014;2014:510285. doi: 10.1155/2014/510285. PubMed DOI PMC

Forest D.L., Johnson L.V., Clegg D.O. Cellular models and therapies for age-related macular degeneration. Dis. Models Mech. 2015;8:421–427. doi: 10.1242/dmm.017236. PubMed DOI PMC

Zarbin M., Sugino I., Townes-Anderson E. Concise Review: Update on Retinal Pigment Epithelium Transplantation for Age-Related Macular Degeneration. Stem Cells Transl. Med. 2019;8:466–477. doi: 10.1002/sctm.18-0282. PubMed DOI PMC

Sharma R., Khristov V., Rising A., Jha B.S., Dejene R., Hotaling N., Li Y., Stoddard J., Stankewicz C., Wan Q., et al. Clinical-grade stem cell-derived retinal pigment epithelium patch rescues retinal degeneration in rodents and pigs. Sci. Transl. Med. 2019;11:eaat5580. doi: 10.1126/scitranslmed.aat5580. PubMed DOI PMC

Choudhary P., Booth H., Gutteridge A., Surmacz B., Louca I., Steer J., Kerby J., Whiting P.J. Directing Differentiation of Pluripotent Stem Cells Toward Retinal Pigment Epithelium Lineage. Stem Cells Transl. Med. 2017;6:490–501. doi: 10.5966/sctm.2016-0088. PubMed DOI PMC

Kuroda T., Ando S., Takeno Y., Kishino A., Kimura T. Robust induction of retinal pigment epithelium cells from human induced pluripotent stem cells by inhibiting FGF/MAPK signaling. Stem Cell Res. 2019;39:101514. doi: 10.1016/j.scr.2019.101514. PubMed DOI

Popelka Š., Studenovská H., Abelová L., Ardan T., Studený P., Straňák Z., Klíma J., Dvořánková B., Kotek J., Hodan J., et al. A frame-supported ultrathin electrospun polymer membrane for transplantation of retinal pigment epithelial cells. Biomed. Mater. 2015;10:045022. doi: 10.1088/1748-6041/10/4/045022. PubMed DOI

Eichhorn S.J., Sampson W.W. Statistical geometry of pores and statistics of porous nanofibrous assemblies. J. R. Soc. Interface. 2005;2:309–318. doi: 10.1098/rsif.2005.0039. PubMed DOI PMC

Vodicka P., Smetana K., Jr., Dvorankova B., Emerick T., Xu Y.Z., Ourednik J., Ourednik V., MotlÍk J.A. The miniature pig as an animal model in biomedical research. Ann. N. Y. Acad. Sci. 2005;1049:161–171. doi: 10.1196/annals.1334.015. PubMed DOI

Sevc J., Goldberg D., van Gorp S., Leerink M., Juhas S., Juhasova J., Marsala S., Hruska-Plochan M., Hefferan M.P., Motlik J., et al. Effective long-term immunosuppression in rats by subcutaneously implanted sustained-release tacrolimus pellet: Effect on spinally grafted human neural precursor survival. Exp. Neurol. 2013;248:85–99. doi: 10.1016/j.expneurol.2013.05.017. PubMed DOI

Jin Z.B., Gao M.L., Deng W.L., Wu K.C., Sugita S., Mandai M., Takahashi M. Stemming retinal regeneration with pluripotent stem cells. Prog. Retin. Eye Res. 2019;69:38–56. doi: 10.1016/j.preteyeres.2018.11.003. PubMed DOI

O’Neill H.C., Limnios I.J., Barnett N.L. Advancing a Stem Cell Therapy for Age-Related Macular Degeneration. Curr. Stem Cell Res. Ther. 2020;15:89–97. doi: 10.2174/1574888X15666191218094020. PubMed DOI

Bilic J., Izpisua Belmonte J.C. Concise review: Induced pluripotent stem cells versus embryonic stem cells: Close enough or yet too far apart? Stem Cells. 2012;30:33–41. doi: 10.1002/stem.700. PubMed DOI

Cabral de Guimaraes T.A., Daich Varela M., Georgiou M., Michaelides M. Treatments for dry age-related macular degeneration: Therapeutic avenues, clinical trials and future directions. Br. J. Ophthalmol. 2021;106:297–304. doi: 10.1136/bjophthalmol-2020-318452. PubMed DOI PMC

Joussen A.M., Joeres S., Fawzy N., Heussen F.M., Llacer H., van Meurs J.C., Kirchhof B. Autologous translocation of the choroid and retinal pigment epithelium in patients with geographic atrophy. Ophthalmology. 2007;114:551–560. doi: 10.1016/j.ophtha.2006.08.016. PubMed DOI

Da Cruz L., Fynes K., Georgiadis O., Kerby J., Luo Y.H., Ahmado A., Vernon A., Daniels J.T., Nommiste B., Hasan S.M., et al. Phase 1 clinical study of an embryonic stem cell-derived retinal pigment epithelium patch in age-related macular degeneration. Nat. Biotechnol. 2018;36:328–337. doi: 10.1038/nbt.4114. PubMed DOI

Bharti K. Induced to cure: Engineering iPS cell derived RPE scaffolds to treat degenerative eye diseases. Acta Ophthalmol. 2015;93 doi: 10.1111/j.1755-3768.2015.0109. DOI

Lee D.Y., Lorach H., Huie P., Palanker D. Implantation of Modular Photovoltaic Subretinal Prosthesis. Ophthalmic Surg. Lasers Imaging Retin. 2016;47:171–174. doi: 10.3928/23258160-20160126-11. PubMed DOI PMC

Hayes M.J., Burgoyne T., Wavre-Shapton S.T., Tolmachova T., Seabra M.C., Futter C.E. Remodeling of the Basal Labyrinth of Retinal Pigment Epithelial Cells With Osmotic Challenge, Age, and Disease. Investig. Ophthalmol. Vis. Sci. 2019;60:2515–2524. doi: 10.1167/iovs.19-26784. PubMed DOI PMC

Del Cerro M., Humayun M.S., Sadda S.R., Cao J., Hayashi N., Green W.R., Del Cerro C., De Juan E. Histologic correlation of human neural retinal transplantation. Investig. Ophthalmol. Vis. Sci. 2000;41:3142–3148. PubMed

Liu Z., Yu N., Holz F.G., Yang F., Stanzel B.V. Enhancement of retinal pigment epithelial culture characteristics and subretinal space tolerance of scaffolds with 200 nm fiber topography. Biomaterials. 2014;35:2837–2850. doi: 10.1016/j.biomaterials.2013.12.069. PubMed DOI

Johnson L.V., Forest D.L., Banna C.D., Radeke C.M., Maloney M.A., Hu J., Spencer C.N., Walker A.M., Tsie M.S., Bok D., et al. Cell culture model that mimics drusen formation and triggers complement activation associated with age-related macular degeneration. Proc. Natl. Acad. Sci. USA. 2011;108:18277–18282. doi: 10.1073/pnas.1109703108. PubMed DOI PMC

Zhang X.C., Wyss U.P., Pichora D., Goosen M.F.A. An Investigation of Poly(Lactic Acid) Degradation. J. Bioact. Compat. Polym. 1994;9:80–100. doi: 10.1177/088391159400900105. DOI

Landes C.A., Ballon A., Roth C. Maxillary and mandibular osteosyntheses with PLGA and P(L/DL)LA implants: A 5-year inpatient biocompatibility and degradation experience. Plast. Reconstr. Surg. 2006;117:2347–2360. doi: 10.1097/01.prs.0000218787.49887.73. PubMed DOI

Lehtonen T.J., Tuominen J.U., Hiekkanen E. Resorbable composites with bioresorbable glass fibers for load-bearing applications. In vitro degradation and degradation mechanism. Acta Biomater. 2013;9:4868–4877. doi: 10.1016/j.actbio.2012.08.052. PubMed DOI

Weir N.A., Buchanan F.J., Orr J.F., Dickson G.R. Degradation of poly-L-lactide. Part 1: In vitro and in vivo physiological temperature degradation. Proc. Inst. Mech. Eng. H. 2004;218:307–319. doi: 10.1243/0954411041932782. PubMed DOI

Stanzel B.V., Liu Z., Somboonthanakij S., Wongsawad W., Brinken R., Eter N., Corneo B., Holz F.G., Temple S., Stern J.H., et al. Human RPE stem cells grown into polarized RPE monolayers on a polyester matrix are maintained after grafting into rabbit subretinal space. Stem Cell Rep. 2014;2:64–77. doi: 10.1016/j.stemcr.2013.11.005. PubMed DOI PMC

Fronk A.H., Vargis E. Methods for culturing retinal pigment epithelial cells: A review of current protocols and future recommendations. J. Tissue Eng. 2016;7:2041731416650838. doi: 10.1177/2041731416650838. PubMed DOI PMC

Rizzolo L.J. Barrier properties of cultured retinal pigment epithelium. Exp. Eye Res. 2014;126:16–26. doi: 10.1016/j.exer.2013.12.018. PubMed DOI

Chao J.R., Lamba D.A., Klesert T.R., La Torre A., Hoshino A., Taylor R.J., Jayabalu A., Engel A.L., Khuu T., Wang R., et al. Transplantation of Human Embryonic Stem Cell-Derived Retinal Cells into the Subretinal Space of a Non-Human Primate. Transl. Vis. Sci. Technol. 2017;6:4. doi: 10.1167/tvst.6.3.4. PubMed DOI PMC

Limnios I.J., Chau Y.Q., Skabo S.J., Surrao D.C., O’Neill H.C. Efficient differentiation of human embryonic stem cells to retinal pigment epithelium under defined conditions. Stem Cell Res. Ther. 2021;12:248. doi: 10.1186/s13287-021-02316-7. PubMed DOI PMC

Plaza Reyes A., Petrus-Reurer S., Padrell Sánchez S., Kumar P., Douagi I., Bartuma H., Aronsson M., Westman S., Lardner E., André H., et al. Identification of cell surface markers and establishment of monolayer differentiation to retinal pigment epithelial cells. Nat. Commun. 2020;11:1609. doi: 10.1038/s41467-020-15326-5. PubMed DOI PMC

Qiu G., Seiler M.J., Thomas B.B., Wu K., Radosevich M., Sadda S.R. Revisiting nestin expression in retinal progenitor cells in vitro and after transplantation in vivo. Exp. Eye Res. 2007;84:1047–1059. doi: 10.1016/j.exer.2007.01.014. PubMed DOI

Liu Z., Li Y., Cui Y., Roberts C., Lu M., Wilhelmsson U., Pekny M., Chopp M. Beneficial effects of gfap/vimentin reactive astrocytes for axonal remodeling and motor behavioral recovery in mice after stroke. Glia. 2014;62:2022–2033. doi: 10.1002/glia.22723. PubMed DOI PMC

Qu L., Gao L., Xu H., Duan P., Zeng Y., Liu Y., Yin Z.Q. Combined transplantation of human mesenchymal stem cells and human retinal progenitor cells into the subretinal space of RCS rats. Sci. Rep. 2017;7:199. doi: 10.1038/s41598-017-00241-5. PubMed DOI PMC

Al-Nawaiseh S., Thieltges F., Liu Z., Strack C., Brinken R., Braun N., Wolschendorf M., Maminishkis A., Eter N., Stanzel B.V. A Step by Step Protocol for Subretinal Surgery in Rabbits. J. Vis. Exp. JoVE. 2016;115:e53927. doi: 10.3791/53927. PubMed DOI PMC

Gandhi J.K., Mano F., Iezzi R., LoBue S.A., Jr., Holman B.H., Fautsch M.P., Olsen T.W., Pulido J.S., Marmorstein A.D. Fibrin hydrogels are safe, degradable scaffolds for sub-retinal implantation. PLoS ONE. 2020;15:e0227641. doi: 10.1371/journal.pone.0227641. PubMed DOI PMC

Gandhi J.K., Manzar Z., Bachman L.A., Andrews-Pfannkoch C., Knudsen T., Hill M., Schmidt H., Iezzi R., Pulido J.S., Marmorstein A.D. Fibrin hydrogels as a xenofree and rapidly degradable support for transplantation of retinal pigment epithelium monolayers. Acta Biomater. 2018;67:134–146. doi: 10.1016/j.actbio.2017.11.058. PubMed DOI

Liu Z., Parikh B.H., Tan Q.S.W., Wong D.S.L., Ong K.H., Yu W., Seah I., Holder G.E., Hunziker W., Tan G.S., et al. Surgical Transplantation of Human RPE Stem Cell-Derived RPE Monolayers into Non-Human Primates with Immunosuppression. Stem Cell Rep. 2021;16:237–251. doi: 10.1016/j.stemcr.2020.12.007. PubMed DOI PMC

Fernandes R.A.B., Stefanini F.R., Falabella P., Koss M.J., Wells T., Diniz B., Ribeiro R., Schor P., Maia M., Penha F.M., et al. Development of a new tissue injector for subretinal transplantation of human embryonic stem cell derived retinal pigmented epithelium. Int. J. Retin. Vitr. 2017;3:41. doi: 10.1186/s40942-017-0095-6. PubMed DOI PMC

Rauer O., Ghosh F. Survival of full-thickness retinal xenotransplants without immunosuppression. Graefes Arch. Clin. Exp. Ophthalmol. 2001;239:145–151. doi: 10.1007/s004170000236. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...