Progress in Stem Cells-Based Replacement Therapy for Retinal Pigment Epithelium: In Vitro Differentiation to In Vivo Delivery
Language English Country England, Great Britain Media print
Document type Review, Journal Article, Research Support, Non-U.S. Gov't
Grant support
18-04393S
Marie Curie - United Kingdom
PubMed
37459045
PubMed Central
PMC10427969
DOI
10.1093/stcltm/szad039
PII: 7225333
Knihovny.cz E-resources
- Keywords
- cell delivery, differentiation, embryonic stem cells, induced pluripotent stem cells, retinal pigment epithelium,
- MeSH
- Cell Differentiation MeSH
- Humans MeSH
- Macular Degeneration * therapy metabolism MeSH
- Pluripotent Stem Cells * MeSH
- Retina MeSH
- Retinal Pigment Epithelium metabolism MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Review MeSH
Retinal pigment epithelium (RPE) is a critical cell monolayer forming the blood-retina-barrier (BRB) and a permeable bridge between the choriocapillaris and the retina. RPE is also crucial in maintaining photoreceptor function and for completing the visual cycle. Loss of the RPE is associated with the development of degenerative diseases like age-related macular degeneration (AMD). To treat diseases like AMD, pluripotent stem cell-derived RPE (pRPE) has been recently explored extensively as a regenerative module. pRPE like other ectodermal tissues requires specific lineage differentiation and long-term in vitro culturing for maturation. Therefore, understanding the differentiation process of RPE could be useful for stem cell-based RPE derivation. Developing pRPE-based transplants and delivering them into the subretinal space is another aspect that has garnered interest in the last decade. In this review, we discuss the basic strategies currently employed for stem cell-based RPE derivation, their delivery, and recent clinical studies related to pRPE transplantation in patients. We have also discussed a few limitations with in vitro RPE culture and potential solutions to overcome such problems which can be helpful in developing functional RPE tissue.
Department of Medical Biochemistry Institute of Clinical Medicine University of Oslo Oslo Norway
Department of Ophthalmology Oslo University Hospital Oslo Norway
See more in PubMed
Jager RD, Mieler WF, Miller JW.. Age-related macular degeneration. N Engl J Med. 2008;358(24):2606-2617. 10.1056/NEJMra0801537 PubMed DOI
Heesterbeek TJ, Lorés-Motta L, Hoyng CB, Lechanteur YTE, den Hollander AI.. Risk factors for progression of age-related macular degeneration. Ophthalmic Physiol Opt. 2020;40(2):140-170. 10.1111/opo.12675 PubMed DOI PMC
Yang S, Zhou J, Li D.. Functions and diseases of the retinal pigment epithelium. Front Pharmacol. 2021;12(Jul):1-7. 10.3389/fphar.2021.727870 PubMed DOI PMC
Pugazhendhi A, Hubbell M, Jairam P, Ambati B.. Neovascular macular degeneration: a review of etiology, risk factors, and recent advances in research and therapy. Int J Mol Sci. 2021;22(3):1170-1195. 10.3390/ijms22031170 PubMed DOI PMC
Holz FG, Schmitz-Valckenberg S, Fleckenstein M.. Recent developments in the treatment of age-related macular degeneration. J Clin Invest. 2014;124(4):1430-1438. 10.1172/jci71029 PubMed DOI PMC
Sharma R, Bose D, Maminishkis A, Bharti K.. Retinal pigment epithelium replacement therapy for age-related macular degeneration: are we there yet? Annu Rev Pharmacol Toxicol. 2020;60(1):553-572. 10.1146/annurev-pharmtox-010919-023245 PubMed DOI PMC
van Meurs JC, ter Averst E, Hofland LJ, et al. . Autologous peripheral retinal pigment epithelium translocation in patients with subfoveal neovascular membranes. Br J Ophthalmol. 2004;88(December 23):110 LP-110113. 10.1136/bjo.88.1.110 PubMed DOI PMC
Binder S, Krebs I, Hilgers R-D, et al. . Outcome of transplantation of autologous retinal pigment epithelium in age-related macular degeneration: a prospective trial. Invest Ophthalmol Vis Sci. 2004;45(11):4151-4160. 10.1167/iovs.04-0118 PubMed DOI
Knoernschild T, Grasbon T, Wilsch C, Kampik A, Lütjen-Drecoll E.. RPE cell transplants to non-immune-privileged sites of the eye transform into fibroblast-like cells. Curr Eye Res. 2003;27(1):25-34. 10.1076/ceyr.27.2.25.15453 PubMed DOI
O'Neill HC, Limnios IJ, Barnett NL.. Advancing a stem cell therapy for age-related macular degeneration. Curr Stem Cell Res Ther. 2020;15(2):89-97. 10.2174/1574888X15666191218094020 PubMed DOI
Jin Z-B, Gao M-L, Deng W-L, et al. . Stemming retinal regeneration with pluripotent stem cells. Prog Retin Eye Res. 2019;69(March 2019):38-56. 10.1016/j.preteyeres.2018.11.003 PubMed DOI
Bilic J, Belmonte JCI.. Concise review: induced pluripotent stem cells versus embryonic stem cells: close enough or yet too far apart? Stem Cells. 2012;30(1):33-41. 10.1002/stem.700 PubMed DOI
Cabral de Guimaraes TA, Daich Varela M, Georgiou M, Michaelides M.. Treatments for dry age-related macular degeneration: therapeutic avenues, clinical trials and future directions. Br J Ophthalmol. 2021;106(March 19):bjophthalmol-2020-318452. 10.1136/bjophthalmol-2020-318452 PubMed DOI PMC
Zarbin M, Sugino I, Townes-Anderson E.. Concise review: update on retinal pigment epithelium transplantation for age-related macular degeneration. Stem Cells Transl. Med. 2019;8(5):466-477. 10.1002/sctm.18-0282 PubMed DOI PMC
Joussen AM, Joeres S, Fawzy N, et al. . Autologous translocation of the choroid and retinal pigment epithelium in patients with geographic atrophy. Ophthalmology. 2007;114(3):551-560. 10.1016/j.ophtha.2006.08.016 PubMed DOI
da Cruz L, Fynes K, Georgiadis O, et al. . Phase 1 clinical study of an embryonic stem cell–derived retinal pigment epithelium patch in age-related macular degeneration. Nat Biotechnol. 2018;36(4):328-337. 10.1038/nbt.4114 PubMed DOI
Takagi S, Mandai M, Gocho K, et al. . Evaluation of transplanted autologous induced pluripotent stem cell-derived retinal pigment epithelium in exudative age-related macular degeneration. Ophthalmol Retin. 2019;3(10):850-859. 10.1016/j.oret.2019.04.021 PubMed DOI
Sharma R, Khristov V, Rising A, et al. . Clinical-grade stem cell–derived retinal pigment epithelium patch rescues retinal degeneration in rodents and pigs. Sci Transl Med. 2019;11(475):eaat5580. 10.1126/scitranslmed.aat5580 PubMed DOI PMC
Lidgerwood GE, Lim SY, Crombie DE, et al. . Defined medium conditions for the induction and expansion of human pluripotent stem cell-derived retinal pigment epithelium. Stem Cell Rev. Rep. 2016;12(April 2016):179-188. 10.1007/s12015-015-9636-2 PubMed DOI
Buchholz DE, Pennington BO, Croze RH, et al. . Rapid and efficient directed differentiation of human pluripotent stem cells into retinal pigmented epithelium. Stem Cells Transl Med. 2013;2(5):384-393. 10.5966/sctm.2012-0163 PubMed DOI PMC
Ferguson LR, Balaiya S, Mynampati BK, Sambhav K, Chalam KV.. Deprivation of bFGF promotes spontaneous differentiation of human embryonic stem cells into retinal pigment epithelial cells. J Stem Cells. 2015;10(3):159-170. PubMed
Zahabi A, Shahbazi E, Ahmadieh H, et al. . A new efficient protocol for directed differentiation of retinal pigmented epithelial cells from normal and retinal disease induced pluripotent stem cells. Stem Cells Dev. 2011;21(12):2262-2272. 10.1089/scd.2011.0599 PubMed DOI
Choudhary P, Booth H, Gutteridge A, et al. . Directing differentiation of pluripotent stem cells toward retinal pigment epithelium lineage. Stem Cells Transl Med. 2017;6(2):490-501. 10.5966/sctm.2016-0088 PubMed DOI PMC
Fuhrmann S, Zou C, Levine EM.. Retinal pigment epithelium development, plasticity, and tissue homeostasis. Exp Eye Res. 2014;123(June ):141-150. 10.1016/j.exer.2013.09.003 PubMed DOI PMC
Surmacz B, Fox H, Gutteridge A, Lubitz S, Whiting P.. Directing differentiation of human embryonic stem cells toward anterior neural ectoderm using small molecules. Stem Cells. 2012;30(9):1875-1884. 10.1002/stem.1166 PubMed DOI
Oh Y, Jang J.. Directed differentiation of pluripotent stem cells by transcription factors. Mol Cells. 2019;42(3):200-209. 10.14348/molcells.2019.2439 PubMed DOI PMC
Kuroda T, Ando S, Takeno Y, Kishino A, Kimura T.. Robust induction of retinal pigment epithelium cells from human induced pluripotent stem cells by inhibiting FGF/MAPK signaling. Stem Cell Res. 2019;39(August):101514. 10.1016/j.scr.2019.101514 PubMed DOI
Pera MF, Andrade J, Houssami S, et al. . Regulation of human embryonic stem cell differentiation by BMP-2 and its antagonist noggin. J Cell Sci. 2004;117(7):1269-1280. 10.1242/jcs.00970 PubMed DOI
Smith JR, Vallier L, Lupo G, et al. . Inhibition of Activin/Nodal signaling promotes specification of human embryonic stem cells into neuroectoderm. Dev Biol. 2008;313(1):107-117. 10.1016/j.ydbio.2007.10.003 PubMed DOI
Klimanskaya I, Hipp J, Rezai KA, et al. . Derivation and comparative assessment of retinal pigment epithelium from human embryonic stem cells using transcriptomics. Cloning Stem Cells. 2004;6(3):217-245. 10.1089/clo.2004.6.217 PubMed DOI
Bielen H, Houart C.. Signaling protects telencephalic fate by repressing eye identity and its Cxcr4-dependent morphogenesis. Dev Cell. 2012;23(4):812-822. 10.1016/j.devcel.2012.09.006 PubMed DOI PMC
Liu W, Lagutin O, Swindell E, Jamrich M, Oliver G.. Neuroretina specification in mouse embryos requires Six3-mediated suppression of Wnt8b in the anterior neural plate. J Clin Invest. 2010;120(10):3568-3577. 10.1172/JCI43219 PubMed DOI PMC
Fuhrmann S, Levine EM, Reh TA.. Extraocular mesenchyme patterns the optic vesicle during early eye development in the embryonic chick. Development. 2000;127(21):4599-4609. 10.1242/dev.127.21.4599 PubMed DOI
Idelson M, Alper R, Obolensky A, et al. . Directed differentiation of human embryonic stem cells into functional retinal pigment epithelium cells. Cell Stem Cell. 2009;5(4):396-408. 10.1016/j.stem.2009.07.002 PubMed DOI
Carr A-J, Vugler AA, Hikita ST, et al. . Protective effects of human iPS-derived retinal pigment epithelium cell transplantation in the retinal dystrophic rat. PLoS One. 2009;4(12):e8152. 10.1371/journal.pone.0008152 PubMed DOI PMC
Osakada F, Jin Z-B, Hirami Y, et al. . In vitro differentiation of retinal cells from human pluripotent stem cells by small-molecule induction. J Cell Sci. 2009;122(Pt 17):3169-3179. 10.1242/jcs.050393 PubMed DOI
Maruotti J, Sripathi SR, Bharti K, et al. . Small-molecule–directed, efficient generation of retinal pigment epithelium from human pluripotent stem cells. Proc Natl Acad Sci 2015;112(35):10950 LP-10910955. 10.1073/pnas.1422818112 PubMed DOI PMC
Wu W, Zeng Y, Li Z, et al. . Features specific to retinal pigment epithelium cells derived from three-dimensional human embryonic stem cell cultures — a new donor for cell therapy. Oncotarget. 2016;Vol 7(No 16):22819--22833. https://doi.org/https://www.oncotarget.com/article/8185/text/ PubMed PMC
Kawasaki H, Suemori H, Mizuseki K, et al. . Generation of dopaminergic neurons and pigmented epithelia from primate ES cells by stromal cell-derived inducing activity. Proc Natl Acad Sci. 2002;99(3):1580 LP-1581585. 10.1073/pnas.032662199 PubMed DOI PMC
Hirano M, Yamamoto A, Yoshimura N, et al. . Generation of structures formed by lens and retinal cells differentiating from embryonic stem cells. Dev Dyn. 2003;228(4):664-671. 10.1002/dvdy.10425 PubMed DOI
Aoki H, Hara A, Nakagawa S, et al. . Embryonic stem cells that differentiate into RPE cell precursors in vitro develop into RPE cell monolayers in vivo. Exp Eye Res. 2006;82(2):265-274. 10.1016/j.exer.2005.06.021 PubMed DOI
Bloise E, Ciarmela P, Dela Cruz C, et al. . Activin A in mammalian physiology. Physiol Rev. 2018;99(1):739-780. 10.1152/physrev.00002.2018 PubMed DOI
Fuhrmann S. Chapter three—eye morphogenesis and patterning of the optic vesicle, in: Cagan, R.L., Reh D.B. (Eds.), Invertebrate and Vertebrate in Eye Development, Academic Press, 2010: pp. 61–84. 10.1016/B978-0-12-385044-7.00003-5. PubMed DOI PMC
Watanabe K, Kamiya D, Nishiyama A, et al. . Directed differentiation of telencephalic precursors from embryonic stem cells. Nat Neurosci. 2005;8(3):288-296. 10.1038/nn1402 PubMed DOI
Sakuma R, Ohnishi Y, Meno C, et al. . Inhibition of nodal signalling by Lefty mediated through interaction with common receptors and efficient diffusion. Genes Cells. 2002;7(4):401-412. 10.1046/j.1365-2443.2002.00528.x PubMed DOI
Geng Z, Walsh PJ, Truong V, et al. . Generation of retinal pigmented epithelium from iPSCs derived from the conjunctiva of donors with and without age related macular degeneration. PLoS One. 2017;12(3):e0173575. 10.1371/journal.pone.0173575 PubMed DOI PMC
D’Antonio-Chronowska A, D’Antonio M, Frazer KA.. In vitro differentiation of human iPSC-derived retinal pigment epithelium cells (iPSC-RPE). Bio-Protocol. 2019;9(24):e3469. 10.21769/BioProtoc.3469 PubMed DOI PMC
Ding S, Schultz PG.. A role for chemistry in stem cell biology. Nat Biotechnol. 2004;22(7):833-840. 10.1038/nbt987 PubMed DOI
Li L, Turner JE.. Inherited retinal dystrophy in the RCS rat: prevention of photoreceptor degeneration by pigment epithelial cell transplantation. Exp Eye Res. 1988;47(6):911-917. 10.1016/0014-4835(88)90073-5 PubMed DOI
Dowling JE, Sidman RL.. inherited retinal dystrophy in the rat. J Cell Biol. 1962;14(1):73-109. 10.1083/jcb.14.1.73 PubMed DOI PMC
D’Cruz PM, Yasumura D, Weir J, et al. . Mutation of the receptor tyrosine kinase gene Mertk in the retinal dystrophic RCS rat. Hum Mol Genet. 2000;9(4):645-651. 10.1093/hmg/9.4.645 PubMed DOI
Gouras P, Flood MT, Kjeldbye H, Bilek MK, Eggers H.. Transplantation of cultured human retinal epithelium to Bruch’s membrane of the owl monkey’s eye. Curr Eye Res. 1985;4(3):253-265. 10.3109/02713688509000857 PubMed DOI
Alexander P, Thomson HAJ, Luff AJ, Lotery AJ.. Retinal pigment epithelium transplantation: concepts, challenges, and future prospects. Eye. 2015;29(8):992-1002. 10.1038/eye.2015.89 PubMed DOI PMC
Davis RJ, Alam NM, Zhao C, et al. . The developmental stage of adult human stem cell-derived retinal pigment epithelium cells influences transplant efficacy for vision rescue. Stem Cell Rep. 2017;9(1):42-49. 10.1016/j.stemcr.2017.05.016 PubMed DOI PMC
Carido M, Zhu Y, Postel K, et al. . Characterization of a mouse model with complete RPE loss and its use for RPE cell transplantation. Invest Ophthalmol Vis Sci. 2014;55(8):5431-5444. 10.1167/iovs.14-14325 PubMed DOI
Schwartz SD, Hubschman J-P, Heilwell G, et al. . Embryonic stem cell trials for macular degeneration: a preliminary report. Lancet. 2012;379(9817):713-720. 10.1016/S0140-6736(12)60028-2 PubMed DOI
Volarevic V, Markovic BS, Gazdic M, et al. . Ethical and safety issues of stem cell-based therapy. Int J Med Sci. 2018;15(1):36-45. 10.7150/ijms.21666 PubMed DOI PMC
Schwartz SD, Regillo CD, Lam BL, et al. . Human embryonic stem cell-derived retinal pigment epithelium in patients with age-related macular degeneration and Stargardt’s macular dystrophy: follow-up of two open-label phase 1/2 studies. Lancet. 2015;385(9967):509-516. 10.1016/S0140-6736(14)61376-3 PubMed DOI
Schwartz SD, Tan G, Hosseini H, Nagiel A.. Subretinal transplantation of embryonic stem cell–derived retinal pigment epithelium for the treatment of macular degeneration: an assessment at 4 years. Invest Ophthalmol Vis Sci. 2016;57(5):ORSFc1-ORSFc9. 10.1167/iovs.15-18681 PubMed DOI
Mehat MS, Sundaram V, Ripamonti C, et al. . Transplantation of human embryonic stem cell-derived retinal pigment epithelial cells in macular degeneration. Ophthalmology. 2018;125(11):1765-1775. 10.1016/j.ophtha.2018.04.037 PubMed DOI PMC
Zhang H, Su B, Jiao L, et al. . Transplantation of GMP-grade human iPSC-derived retinal pigment epithelial cells in rodent model: the first pre-clinical study for safety and efficacy in China. Ann Transl Med. 2021;9(3):245-261. https://doi.org/https://atm.amegroups.com/article/view/61730 PubMed PMC
McGill TJ, Stoddard J, Renner LM, et al. . Allogeneic iPSC-derived RPE cell graft failure following transplantation into the subretinal space in nonhuman primates. Invest Ophthalmol Vis Sci. 2018;59(3):1374-1383. 10.1167/iovs.17-22467 PubMed DOI PMC
Sugita S, Iwasaki Y, Makabe K, et al. . Successful transplantation of retinal pigment epithelial cells from MHC homozygote iPSCs in MHC-matched models. Stem Cell Rep. 2016;7(4):635-648. 10.1016/j.stemcr.2016.08.010 PubMed DOI PMC
Kanemura H, Go MJ, Shikamura M, et al. . Tumorigenicity studies of induced pluripotent stem cell (iPSC)-derived retinal pigment epithelium (RPE) for the treatment of age-related macular degeneration. PLoS One. 2014;9(1):e85336. 10.1371/journal.pone.0085336 PubMed DOI PMC
Sheridan CM, Mason S, Pattwell DM, et al. . Replacement of the RPE monolayer. Eye. 2009;23(10):1910-1915. 10.1038/eye.2008.420 PubMed DOI
Diniz B, Thomas P, Thomas B, et al. . Subretinal implantation of retinal pigment epithelial cells derived from human embryonic stem cells: improved survival when implanted as a monolayer. Invest Ophthalmol Vis Sci. 2013;54(7):5087-5096. 10.1167/iovs.12-11239 PubMed DOI PMC
Karim BM, Walter H, Alexandra P, et al. . Human ESC-derived retinal epithelial cell sheets potentiate rescue of photoreceptor cell loss in rats with retinal degeneration. Sci Transl Med. 2017;9(421):eaai7471. 10.1126/scitranslmed.aai7471 PubMed DOI
Kundu J, Michaelson A, Baranov P, Young MJ, Carrier RL.. Approaches to cell delivery: substrates and scaffolds for cell therapy. Dev Ophthalmol. 2014;53(978-3-318-02585-9):143-154. 10.1159/000357369 PubMed DOI
Ben M’Barek K, Bertin S, Brazhnikova E, et al. . Clinical-grade production and safe delivery of human ESC derived RPE sheets in primates and rodents. Biomaterials. 2020;230(February):119603. 10.1016/j.biomaterials.2019.119603 PubMed DOI
Tezel TH, Del Priore LV.. Reattachment to a substrate prevents apoptosis of human retinal pigment epithelium, Graefe’s Arch. Clin Exp Ophthalmol. 1997;235(January):41-47. 10.1007/BF01007836 PubMed DOI
Nazari H, Zhang L, Zhu D, et al. . Stem cell based therapies for age-related macular degeneration: the promises and the challenges. Prog Retin Eye Res. 2015;48(September ):1-39. 10.1016/j.preteyeres.2015.06.004 PubMed DOI
Kamao H, Mandai M, Okamoto S, et al. . Characterization of human induced pluripotent stem cell-derived retinal pigment epithelium cell sheets aiming for clinical application. Stem Cell Rep. 2014;2(2):205-218. 10.1016/j.stemcr.2013.12.007 PubMed DOI PMC
Liu Z, Parikh BH, Tan QSW, et al. . Surgical transplantation of human RPE stem cell-derived RPE monolayers into non-human primates with immunosuppression. Stem Cell Rep. 2021;16(2):237-251. 10.1016/j.stemcr.2020.12.007 PubMed DOI PMC
Zhou M, Geathers JS, Grillo SL, et al. . Role of epithelial-mesenchymal transition in retinal pigment epithelium dysfunction. Front Cell Dev Biol. 2020;8(25 June):501. 10.3389/fcell.2020.00501 PubMed DOI PMC
Mandai M, Watanabe A, Kurimoto Y, et al. . Autologous induced stem-cell–derived retinal cells for macular degeneration. N Engl J Med. 2017;376(11):1038-1046. 10.1056/NEJMoa1608368 PubMed DOI
Booij JC, Baas DC, Beisekeeva J, Gorgels TGMF, Bergen AAB.. The dynamic nature of Bruch’s membrane. Prog Retin Eye Res. 2010;29(1):1-18. 10.1016/j.preteyeres.2009.08.003 PubMed DOI
Hynes SR, Lavik EB.. A tissue-engineered approach towards retinal repair: scaffolds for cell transplantation to the subretinal space, Graefe’s Arch. Clin Exp Ophthalmol. 2010;248(June):763-778. 10.1007/s00417-009-1263-7 PubMed DOI
Hu Y, Liu L, Lu B, et al. . A novel approach for subretinal implantation of ultrathin substrates containing stem cell-derived retinal pigment epithelium monolayer. Ophthalmic Res. 2012;48(4):186-191. 10.1159/000338749 PubMed DOI
Stanzel BV, Liu Z, Brinken R, et al. . Subretinal delivery of ultrathin rigid-elastic cell carriers using a metallic shooter instrument and biodegradable hydrogel encapsulation. Invest Ophthalmol Vis Sci. 2012;53(1):490-500. 10.1167/iovs.11-8260 PubMed DOI
Liu Z, Yu N, Holz FG, Yang F, Stanzel BV.. Enhancement of retinal pigment epithelial culture characteristics and subretinal space tolerance of scaffolds with 200 nm fiber topography. Biomaterials. 2014;35(9):2837-2850. 10.1016/j.biomaterials.2013.12.069 PubMed DOI
Ilmarinen T, Hiidenmaa H, Kööbi P, et al. . Ultrathin polyimide membrane as cell carrier for subretinal transplantation of human embryonic stem cell derived retinal pigment epithelium. PLoS One. 2015;10(11):e0143669. 10.1371/journal.pone.0143669 PubMed DOI PMC
Stanzel BV, Liu Z, Somboonthanakij S, et al. . Human RPE stem cells grown into polarized RPE monolayers on a polyester matrix are maintained after grafting into rabbit subretinal space. Stem Cell Rep. 2014;2(1):64-77. 10.1016/j.stemcr.2013.11.005 PubMed DOI PMC
Fernandes RAB, Stefanini FR, Falabella P, et al. . Development of a new tissue injector for subretinal transplantation of human embryonic stem cell derived retinal pigmented epithelium. Int J Retin Vitr. 2017;3(1):41. 10.1186/s40942-017-0095-6 PubMed DOI PMC
Kashani AH, Lebkowski JS, Rahhal FM, et al. . A bioengineered retinal pigment epithelial monolayer for advanced, dry age-related macular degeneration. Sci Transl Med. 2018;10(435):eaao4097. 10.1126/scitranslmed.aao4097 PubMed DOI
Rajendran Nair DS, Zhu D, Sharma R, et al. . Long-term transplant effects of iPSC-RPE monolayer in immunodeficient RCS rats. Cells. 2021;10(11):2951. 10.3390/cells10112951 PubMed DOI PMC
Shokoohmand A, Jeon JE, Theodoropoulos C, et al. . A novel 3D cultured model for studying early changes in age-related macular degeneration. Macromol Biosci. 2017;17(12):1700221. 10.1002/mabi.201700221 PubMed DOI
Hayes MJ, Burgoyne T, Wavre-Shapton ST, et al. . Remodeling of the basal labyrinth of retinal pigment epithelial cells with osmotic challenge, age, and disease. Invest Ophthalmol Vis Sci. 2019;60(7):2515-2524. 10.1167/iovs.19-26784 PubMed DOI PMC
Tichotová L, Studenovska H, Petrovski G, et al. . Advantages of nanofibrous membranes for culturing of primary RPE cells compared to commercial scaffolds. Acta Ophthalmol. 2021;n/a(August):e1172-e1185. 10.1111/aos.15034 PubMed DOI
Popelka S, Studenovská H, Abelová L, et al. . A frame-supported ultrathin electrospun polymer membrane for transplantation of retinal pigment epithelial cells. Biomed Mater. 2015;10(4):45022. 10.1088/1748-6041/10/4/045022 PubMed DOI
Lytvynchuk L, Ebbert A, Studenovska H, et al. . Subretinal implantation of human primary RPE cells cultured on nanofibrous membranes in minipigs. Biomedicines. 2022;10(3):669. 10.3390/biomedicines10030669 PubMed DOI PMC
Singh S, Woerly S, Mclaughlin BJ.. Natural and artificial substrates for retinal pigment epithelial monolayer transplantation. Biomaterials. 2001;22(24):3337-3343. 10.1016/s0142-9612(01)00171-5 PubMed DOI
Xiang P, Wu K-C, Zhu Y, et al. . A novel Bruch’s membrane-mimetic electrospun substrate scaffold for human retinal pigment epithelium cells. Biomaterials. 2014;35(37):9777-9788. 10.1016/j.biomaterials.2014.08.040 PubMed DOI
Sorkio AE, Vuorimaa-Laukkanen EP, Hakola HM, et al. . Biomimetic collagen I and IV double layer Langmuir–Schaefer films as microenvironment for human pluripotent stem cell derived retinal pigment epithelial cells. Biomaterials. 2015;51(May):257-269. 10.1016/j.biomaterials.2015.02.005 PubMed DOI
Da Silva GR, Lima TH, Oréfice RL, et al. . In vitro and in vivo ocular biocompatibility of electrospun poly(ε-caprolactone) nanofibers. Eur J Pharm Sci. 2015;73(20 June):9-19. 10.1016/j.ejps.2015.03.003 PubMed DOI
Krishna Y, Sheridan C, Kent D, et al. . Expanded polytetrafluoroethylene as a substrate for retinal pigment epithelial cell growth and transplantation in age-related macular degeneration. Br J Ophthalmol. 2011;95(4):569-573. 10.1136/bjo.2009.169953 PubMed DOI
Kirillova A, Yeazel TR, Asheghali D, et al. . Fabrication of biomedical scaffolds using biodegradable polymers. Chem Rev. 2021;121(18):11238-11304. 10.1021/acs.chemrev.0c01200 PubMed DOI
Yang J, Antin P, Berx G, et al. ; O. behalf of the E.M.T.I.A. (TEMTIA). Guidelines and definitions for research on epithelial–mesenchymal transition. Nat Rev Mol Cell Biol. 2020;21(10 June):341-352. 10.1038/s41580-020-0237-9 PubMed DOI PMC
Wang H, Unternaehrer JJ.. Epithelial-mesenchymal transition and cancer stem cells: at the crossroads of differentiation and dedifferentiation. Dev Dyn. 2019;248(1):10-20. 10.1002/dvdy.24678 PubMed DOI
Savagner P. The epithelial–mesenchymal transition (EMT) phenomenon. Ann Oncol. 2010;21(Suppl 7):vii89-vii92. 10.1093/annonc/mdq292 PubMed DOI PMC
Tamiya S, Liu L, Kaplan HJ.. Epithelial-mesenchymal transition and proliferation of retinal pigment epithelial cells initiated upon loss of cell-cell contact. Invest Ophthalmol Vis Sci. 2010;51(5):2755-2763. 10.1167/iovs.09-4725 PubMed DOI
Feng Y-L, Chen D-Q, Vaziri ND, Guo Y, Zhao Y-Y.. Small molecule inhibitors of epithelial-mesenchymal transition for the treatment of cancer and fibrosis. Med Res Rev. 2020;40(1):54-78. 10.1002/med.21596 PubMed DOI
Saika S, Kono-Saika S, Tanaka T, et al. . Smad3 is required for dedifferentiation of retinal pigment epithelium following retinal detachment in mice. Lab Investig. 2004;84(10):1245-1258. 10.1038/labinvest.3700156 PubMed DOI
Janmey PA, Winer JP, Murray ME, Wen Q.. The hard life of soft cells. Cell Motil. 2009;66(May):597-605. 10.1002/cm.20382 PubMed DOI PMC
Janmey PA, McCulloch CA.. Cell mechanics: integrating cell responses to mechanical stimuli. Annu Rev Biomed Eng. 2007;9(August):1-34. 10.1146/annurev.bioeng.9.060906.151927 PubMed DOI
White C, DiStefano T, Olabisi R.. The influence of substrate modulus on retinal pigment epithelial cells. J Biomed Mater Res Part A. 2017;105(5):1260-1266. 10.1002/jbm.a.35992 PubMed DOI PMC
Fisher RF. The influence of age on some ocular basement membranes. Eye. 1987;1(2):184-189. 10.1038/eye.1987.35 PubMed DOI
Boochoon KS, Manarang JC, Davis JT, McDermott AM, Foster WJ.. The influence of substrate elastic modulus on retinal pigment epithelial cell phagocytosis. J Biomech. 2014;47(12):3237-3240. 10.1016/j.jbiomech.2014.06.021 PubMed DOI PMC
Evans MJ, Kaufman MH.. Establishment in culture of pluripotential cells from mouse embryos. Nature. 1981;292(5819):154-156. 10.1038/292154a0 PubMed DOI
Takahashi K, Yamanaka S.. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126(4):663-676. 10.1016/j.cell.2006.07.024 PubMed DOI
Fox IJ, Daley GQ, Goldman SA, et al. . Use of differentiated pluripotent stem cells in replacement therapy for treating disease. Science (80-). 2014;345(6199):1247391. 10.1126/science.1247391 PubMed DOI PMC
Zakrzewski W, Dobrzyński M, Szymonowicz M, Rybak Z.. Stem cells: past, present, and future. Stem Cell Res Ther. 2019;10(1):68. 10.1186/s13287-019-1165-5 PubMed DOI PMC
Bhutto I, Lutty G.. Understanding age-related macular degeneration (AMD): relationships between the photoreceptor/retinal pigment epithelium/Bruch’s membrane/choriocapillaris complex. Mol Aspects Med. 2012;33(4):295-317. 10.1016/j.mam.2012.04.005 PubMed DOI PMC
Bharti K, Rao M, Hull SC, et al. . Developing cellular therapies for retinal degenerative diseases. Invest Ophthalmol Vis Sci. 2014;55(2):1191-1202. 10.1167/iovs.13-13481 PubMed DOI PMC
Vugler A, Carr A-J, Lawrence J, et al. . Elucidating the phenomenon of HESC-derived RPE: anatomy of cell genesis, expansion and retinal transplantation. Exp Neurol. 2008;214(2):347-361. 10.1016/j.expneurol.2008.09.007 PubMed DOI
Cyranoski D. Japanese man is first to receive “reprogrammed” stem cells from another person. Nature. 2017. 10.1038/nature.2017.21730 PubMed DOI