Advantages of nanofibrous membranes for culturing of primary RPE cells compared to commercial scaffolds
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
18-04393S
Grantová Agentura České Republiky
19-09628J
Grantová Agentura České Republiky
TO01000107
Norway Grants and Technology Agency of the Czech Republic
PubMed
34687141
DOI
10.1111/aos.15034
Knihovny.cz E-zdroje
- Klíčová slova
- AMD, RPE, eye, nanofibrous membrane, retina, retinal pigment epithelium,
- MeSH
- bestrofiny metabolismus MeSH
- degenerace retiny * metabolismus MeSH
- kultivované buňky MeSH
- nanovlákna * chemie MeSH
- polyestery metabolismus MeSH
- prasata MeSH
- retinální pigmentový epitel metabolismus MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- bestrofiny MeSH
- polyestery MeSH
PURPOSE: Dysfunction of the retinal pigment epithelium (RPE) causes numerous forms of retinal degeneration. RPE replacement is a modern option to save vision. We aimed to test the results of transplanting cultured RPEs on biocompatible membranes. METHODS: We cultivated porcine primary RPE cells isolated from cadaver eyes from the slaughterhouse on two types of membranes: commercial polyester scaffolds Transwell (Corning Inc., Kenneburg, ME, USA) with 0.4 µm pore size and prepared Poly (L-lactide-co-DL-lactide) (PDLLA) nanofibrous membranes with an average pore size of 0.4 µm. RESULTS: Five types of assays were used for the analysis: immunocytochemistry (ICC), phagocytosis assay, Western blotting, real-time qPCR (RT-qPCR) and electron microscopy. RT-qPCR demonstrated that RPEs cultured on nanofibrous membranes have higher expressions of BEST1 (bestrophin 1), RLBP1 (retinaldehyde-binding protein 1), RPE65 (retinal pigment epithelium-specific 65 kDa protein), PAX6 (transcription factor PAX6), SOX9 (transcription factor SOX9), DCT (dopachrome tautomerase) and MITF (microphthalmia-associated transcription factor). ICC of the RPEs cultured on nanofibrous membranes showed more intensive staining of markers such as BEST1, MCT1 (monocarboxylate transporter 1), Na+ /K+ ATPase, RPE65 and acetylated tubulin in comparison with commercial ones. Additionally, the absence of α-SMA proved the stability of the RPE polarization state and the absence of epithelial-to-mesenchymal transition. RPE possessed high phagocytic activity. Electron microscopy of both membranes confirmed a confluent layer of RPE cells and their genuine morphological structure, which was comparable to native RPEs. CONCLUSIONS: Retinal pigment epitheliums cultured on polylactide nanofibrous membranes improved the final quality of the cell product by having better maturation and long-term survival of the RPE monolayer compared to those cultured on commercial polyester scaffolds. PDLLA-cultured RPEs are a plausible source for the replacement of non-functioning RPEs during cell therapy.
3rd Faculty of Medicine Charles University Prague Czech Republic
Department of Cell Biology Faculty of Science Charles University Prague Czech Republic
Department of Histology and Embryology Faculty of Medicine Masaryk University Brno Czech Republic
Institute of Experimental Medicine Academy of Sciences of the Czech Republic Prague Czech Republic
Zobrazit více v PubMed
Ablonczy Z & Crosson CE (2007): VEGF modulation of retinal pigment epithelium resistance. Exp Eye Res 85: 762-771.
Amaral J, Campos M, Maminishkis A, Khristov V, Zhou R, Charles ST, Stanzel BV, Jha B, Bunea I, Miller SS & Bharti K (2016): A porcine model of retinal pigment epithelium (RPE) injury to test the efficacy of human induced pluripotent stem cell-derived RPE (hiPSC--RPE) transplants. Invest Ophthalmol Vis Sci 57: 258.
Bakall B, Marmorstein LY, Hoppe G, Peachey NS, Wadelius C & Marmorstein AD (2003): Expression and localization of bestrophin during normal mouse development. Invest Ophthalmol vis Sci 44: 3622-3628.
Barca F, Caporossi T & Rizzo S (2014): Silicone oil: different physical proprieties and clinical applications. Biomed Res Int 2014: 1-7.
Batman C, Ozdamar Y, Mutevelli S, Sonmez K, Zilelioglu G & Karakaya J (2008): A comparative study of tissue glue and vicryl suture for conjunctival and scleral closure in conventional 20-gauge vitrectomy. Eye 23: 1382-1387.
Bednarz J, Teifel M, Friedl P & Engelmann K (2000): Immortalization of human corneal endothelial cells using electroporation protocol optimized for human corneal endothelial and human retinal pigment epithelial cells. Acta Ophthalmol Scand 78: 130-136.
Bharti K (2015): Induced to cure: engineering iPS cell derived RPE scaffolds to treat degenerative eye diseases. Acta Ophthalmol 93: ABS15-0109.
Blaauwgeers HG, Holtkamp GM, Rutten H et al. (1999): Polarized vascular endothelial growth factor secretion by human retinal pigment epithelium and localization of vascular endothelial growth factor receptors on the inner choriocapillaris. Evidence for a trophic paracrine relation. Am J Pathol 155: 421-428.
Bok D (1993): The retinal pigment epithelium: a versatile partner in vision. J Cell Sci Suppl 17: 189-195.
Casco-Robles MM, Islam MR, Inami W et al. (2016): Turning the fate of reprogramming cells from retinal disorder to regeneration by Pax6 in newts. Sci Rep 6: 33761.
da Cruz L, Fynes K, Georgiadis O et al. (2018): Phase 1 clinical study of an embryonic stem cell-derived retinal pigment epithelium patch in age-related macular degeneration. Nat Biotechnol 36: 328.
Damasceno E, Damasceno N, Hossy BH, Rio AC & Miguel NC (2015): Scleral wound healing and crosslink technique. Influence on sclerotomy cicatrization on the rabbit eyes. Evaluation with Histological and Morphological Analysis in the Scleral Tissue. A Pilot Study. Invest Ophthalmol Vis Sci 56: 371.
Diniz B, Thomas P, Thomas B et al. (2013): Subretinal implantation of retinal pigment epithelial cells derived from human embryonic stem cells: improved survival when implanted as a monolayer. Invest Ophthalmol Vis Sci 54: 5087-5096.
Duan P, Xu H, Zeng Y, Wang Y & Yin ZQ (2013): Human bone marrow stromal cells can differentiate to a retinal pigment epithelial phenotype when co-cultured with pig retinal pigment epithelium using a transwell system. Cell Physiol Biochem 31: 601-613.
Eichhorn, SJ & Sampson, WW (2005): Statistical geometry of pores and statistics of porous nanofibrous assemblies. J R Soc Interface 2: 309-318.
Falkner-Radler CI, Krebs I, Glittenberg C, Povazay B, Drexler W, Graf A & Binder S (2011): Human retinal pigment epithelium (RPE) transplantation: outcome after autologous RPE-choroid sheet and RPE cell-suspension in a randomised clinical study. Br J Ophthalmol 95: 370-375.
Fernandes RAB, Stefanini FR, Falabella P et al. (2017): Development of a new tissue injector for subretinal transplantation of human embryonic stem cell derived retinal pigmented epithelium. Int J Retina Vitreous 3: 41.
Fuchs U, Kivela T & Tarkkanen A (1991): Cytoskeleton in normal and reactive human retinal-pigment epithelial-cells. Invest Ophthalmol Vis Sci 32: 3178-3186.
Gong L, Wu Q, Song B, Lu B & Zhang Y (2008): Differentiation of rat mesenchymal stem cells transplanted into the subretinal space of sodium iodate-injected rats. Clin Exp Ophthalmol 36: 666-671.
Guo X, Zhu D, Lian R, Han Y, Guo Y, Li Z, Tang S & Chen J (2016): Matrigel and Activin A promote cell-cell contact and anti-apoptotic activity in cultured human retinal pigment epithelium cells. Exp Eye Res 147: 37-49.
Guymer R, Luthert P & Bird A (1999): Changes in Bruch’s membrane and related structures with age. Prog Retin Eye Res 18: 59-90.
Hariprasad SM & Singh A (2011): Polyethylene glycol hydrogel polymer sealant for vitrectomy surgery: an in vitro study of sutureless vitrectomy incision closure. Arch Ophthalmol 129: 322-325.
Hartnett ME, Lappas A, Darland D, McColm JR, Lovejoy S & D'Amore PA (2003): Retinal pigment epithelium and endothelial cell interaction causes retinal pigment epithelial barrier dysfunction via a soluble VEGF-dependent mechanism. Exp Eye Res 77: 593-599.
Hayes MJ, Burgoyne T, Wavre-Shapton ST, Tolmachova T, Seabra MC & Futter CE (2019): Remodeling of the basal labyrinth of retinal pigment epithelial cells with osmotic challenge, age, and disease. Invest Ophthalmol Vis Sci 60: 2515-2524.
Hogan MJ, Alvarado JA & Weddell JE (1971): Histology of the human eye; an atlas and textbook. Philadelphia, PA: Saunders.
Holan V, Trosan P, Cejka C, Javorkova E, Zajicova A, Hermankova B, Chudickova M & Cejkova J (2015): A comparative study of the therapeutic potential of mesenchymal stem cells and limbal epithelial stem cells for ocular surface reconstruction. Stem Cells Transl Med 4: 1052-1063.
Hotaling NA, Khristov V, Wan Q et al. (2016): Nanofiber scaffold-based tissue-engineered retinal pigment epithelium to treat degenerative eye diseases. J Ocul Pharmacol Ther 32: 272-285.
Hu YT, Liu L, Lu B et al. (2012): A novel approach for subretinal implantation of ultrathin substrates containing stem cell-derived retinal pigment epithelium monolayer. Ophthalmic Res 48: 186-191.
Huang C, Wang JJ, Jing G, Li J, Jin C, Yu Q, Falkowski MW & Zhang SX (2015): Erp29 attenuates cigarette smoke extract-induced endoplasmic reticulum stress and mitigates tight junction damage in retinal pigment epithelial cells. Invest Ophthalmol Vis Sci 56: 6196-6207.
Hynes SR & Lavik EB (2010): A tissue-engineered approach towards retinal repair: scaffolds for cell transplantation to the subretinal space. Graefes Arch Clin Exp Ophthalmol 248: 763-778.
Ilmarinen T, Hiidenmaa H, Koobi P et al. (2015): Ultrathin polyimide membrane as cell carrier for subretinal transplantation of human embryonic stem cell derived retinal pigment epithelium. PLoS One 10, e0143669.
Jiang X, Sui X, Lu Y, Yan Y, Zhou C, Li L, Ren Q & Chai X (2013): In vitro and in vivo evaluation of a photosensitive polyimide thin-film microelectrode array suitable for epiretinal stimulation. J Neuroeng Rehabil 10: 48.
Jin M, Barron E, He S, Ryan SJ & Hinton DR (2002): Regulation of RPE intercellular junction integrity and function by hepatocyte growth factor. Invest Ophthalmol Vis Sci 43: 2782-2790.
Johnson LV, Forest DL, Banna CD et al. (2011): Cell culture model that mimics drusen formation and triggers complement activation associated with age-related macular degeneration. Proc Natl Acad Sci USA 108: 18277-18282.
Joshi R, Mankowski W, Winter M, Saini JS, Blenkinsop TA, Stern JH, Temple S & Cohen AR (2016): Automated measurement of cobblestone morphology for characterizing stem cell derived retinal pigment epithelial cell cultures. J Ocul Pharmacol Ther 32: 331-339.
Jun EJ, Kim JH, Purcell TL & Schanzlin DJ (2012): Comparison of bursting pressure after scleral tunnel incision sealed with sutures or an adherent ocular bandage in human globes. J Int Med Res 40: 756-760.
Kawaguchi T, Kobayashi K, Osa M & Yoshizaki T (2009): Is a “Cloud-Point Curve” in Aqueous Poly(N-isopropylacrylamide) Solution Binodal? J Phys Chem B 113: 5440-5447.
Lakkaraju A, Umapathy A, Tan LX, Daniele L, Philp NJ, Boesze-Battaglia K & Williams DS (2020): The cell biology of the retinal pigment epithelium. Prog Retin Eye Res 78: 100846.
Landes CA, Ballon A & Roth C (2006): Maxillary and mandibular osteosyntheses with PLGA and P(L/DL)LA implants: a 5-year inpatient biocompatibility and degradation experience. Plast Reconstr Surg 117: 2347-2360.
Lee DY, Lorach H, Huie P & Palanker D (2016): Implantation of modular photovoltaic subretinal prosthesis. Ophthalmic Surg Lasers Imaging Retina 47: 171-174.
Lehtonen TJ, Tuominen JU & Hiekkanen E (2013): Resorbable composites with bioresorbable glass fibers for load-bearing applications. In vitro degradation and degradation mechanism. Acta Biomater 9: 4868-4877.
Lerit SJT & Abaño JMR (2012): Comparison of tensile strength of fibrin glue, 2-octyl cyanoacrylate, liquid ocular bandage, and conventional nylon 10-0 sutures in corneal laceration repair in an animal model. Philipp J Ophthalmol 37: 52-58.
Li X, Zhao M & He S (2020): RPE epithelial-mesenchymal transition plays a critical role in the pathogenesis of proliferative vitreoretinopathy. Ann Transl Med 8: 263.
Lindner U, Kramer J, Rohwedel J & Schlenke P (2010): Mesenchymal stem or stromal cells: toward a better understanding of their biology? Transfus Med Hemother 37: 75-83.
Liu Z, Yu N, Holz FG, Yang F & Stanzel BV (2014): Enhancement of retinal pigment epithelial culture characteristics and subretinal space tolerance of scaffolds with 200 nm fiber topography. Biomaterials 35: 2837-2850.
Maitz MF (2015): Applications of synthetic polymers in clinical medicine. Biosurf Biotribol 1: 161-176.
Marmorstein AD (2001): The polarity of the retinal pigment epithelium. Traffic 2: 867-872.
Marmorstein AD, Finnemann SC, Bonilha VL & Rodriguez-Boulan E. (1998): Morphogenesis of the retinal pigment epithelium: toward understanding retinal degenerative diseases. In: Fleischmajer R, Timpl R & Werb Z (eds) Morphogenesis: cellular Interactions. New Jersey: John Wiley & Sons, Ltd 1-12.
Marmorstein AD, Marmorstein LY, Rayborn M, Wang X, Hollyfield JG & Petrukhin K (2000): Bestrophin, the product of the Best vitelliform macular dystrophy gene (VMD2), localizes to the basolateral plasma membrane of the retinal pigment epithelium. Proc Natl Acad Sci USA 97: 12758-12763.
Masuda T & Esumi N (2010): SOX9, through interaction with microphthalmia-associated transcription factor (MITF) and OTX2, regulates BEST1 expression in the retinal pigment epithelium. J Biol Chem 285: 26933-26944.
McHugh KJ, Tao SL & Saint-Geniez M (2014): Porous poly(epsilon-Caprolactone) scaffolds for retinal pigment epithelium transplantation. Invest Ophthalmol Vis Sci 55: 1754-1762.
Pfeiffer RL, Marc RE & Jones BW (2016): Müller cell metabolic chaos during retinal degeneration. Exp Eye Res 150: 62-70.
Pilgrim MG, Lengyel I, Lanzirotti A et al. (2017): Subretinal pigment epithelial deposition of drusen components including hydroxyapatite in a primary cell culture model. Invest Ophthalmol Vis Sci 58: 708-719.
Popelka S, Studenovska H, Abelova L et al. (2015): A frame-supported ultrathin electrospun polymer membrane for transplantation of retinal pigment epithelial cells. Biomed Mater 10: 045022.
Ramsden CM, Powner MB, Carr AJF, Smart MJK, da Cruz L & Coffey PJ (2013): Stem cells in retinal regeneration: past, present and future. Development 140: 2576-2585.
Rodriguez-Crespo D, Di Lauro S, Singh AK, Garcia-Gutierrez MT, Garrosa M, Pastor JC, Fernandez-Bueno I & Srivastava GK (2014): Triple-layered mixed co-culture model of RPE cells with neuroretina for evaluating the neuroprotective effects of adipose-MSCs. Cell Tissue Res 358: 705-716.
Seo JM, Kim SJ, Chung H, Kim ET, Yu HG & Yu YS (2004): Biocompatibility of polyimide microelectrode array for retinal stimulation. Mater Sci Eng C Biomim Supramol Syst 24: 185-189.
Sharma R, Khristov V, Rising A et al. (2019): Clinical-grade stem cell-derived retinal pigment epithelium patch rescues retinal degeneration in rodents and pigs. Sci Transl Med 11: eaat5580.
Sheridan CM, Mason S, Pattwell DM, Kent D, Grierson I & Williams R (2009): Replacement of the RPE monolayer. Eye 23: 1910-1915.
Sheridan CM, Pattwell D, Thompson S, Mason S, Kent DL & Grierson I (2010): Differentiation potential of mesenchymal stem cells to RPE cells. Invest Ophthalmol Vis Sci 51: 502.
Shokoohmand A, Jeon JE, Theodoropoulos C, Baldwin JG, Hutmacher DW & Feigl B (2017): A novel 3D cultured model for studying early changes in age-related macular degeneration. Macromol Biosci 17: 1700221.
Sorkio A, Porter PJ, Juuti-Uusitalo K, Meenan B, Skottman H & Burke G (2015): Surface modified biodegradable electrospun membranes as a carrier for human embryonic stem cell derived retinal pigment epithelial cells. Tissue Eng Part A 21: 2301-2314.
Sparrow JR, Nakanishi K & Parish CA (2000): The lipofuscin fluorophore A2E mediates blue light-induced damage to retinal pigmented epithelial cells. Invest Ophthalmol Vis Sci 41: 1981-1989.
Stanzel BV, Espana EM, Grueterich M, Kawakita T, Parel J-M, Tseng SCG & Binder S (2005): Amniotic membrane maintains the phenotype of rabbit retinal pigment epithelial cells in culture. Exp Eye Res 80: 103-112.
Stanzel BV, Liu Z, Brinken R, Braun N, Holz FG & Eter N (2012): Subretinal delivery of ultrathin rigid-elastic cell carriers using a metallic shooter instrument and biodegradable hydrogel encapsulation. Invest Ophthalmol Vis Sci 53: 490-500.
Stanzel BV, Liu Z, Somboonthanakij S et al. (2014): Human RPE stem cells grown into polarized RPE monolayers on a polyester matrix are maintained after grafting into rabbit subretinal space. Stem Cell Rep 2: 64-77.
Stout JT & Francis PJ (2011): Surgical approaches to gene and stem cell therapy for retinal disease. Hum Gene Ther 22: 531-535.
Surrao DC, Greferath U, Chau YQ et al. (2017): Design, development and characterization of synthetic Bruch's membranes. Acta Biomater 64: 357-376.
Toops KA, Tan LX & Lakkaraju A (2014): A detailed three-step protocol for live imaging of intracellular traffic in polarized primary porcine RPE monolayers. Exp Eye Res 124: 74-85.
Valtink M, Gruschwitz R, Funk RH & Engelmann K (2008): Two clonal cell lines of immortalized human corneal endothelial cells show either differentiated or precursor cell characteristics. Cells Tissues Organs 187: 286-294.
Vareilles P, Conquet P & Le Douarec J-C (1977): A method for the routine intraocular pressure (IOP) measurement in the rabbit: range of IOP variations in this species. Exp Eye Res 24: 369-375.
von Burkersroda F, Schedl L & Gopferich A (2002): Why degradable polymers undergo surface erosion or bulk erosion. Biomaterials 23: 4221-4231.
Vossmerbaeumer U, Ohnesorge S, Kuehl S, Haapalahti M, Kluter H, Jonas JB, Thierse H-J & Bieback K (2009): Retinal pigment epithelial phenotype induced in human adipose tissue-derived mesenchymal stromal cells. Cytotherapy 11: 177-188.
Warnke PH, Alamein M, Skabo S, Stephens S, Bourke R, Heiner P & Liu Q (2013): Primordium of an artificial Bruch’s membrane made of nanofibers for engineering of retinal pigment epithelium cell monolayers. Acta Biomater 9: 9414-9422.
Weir NA, Buchanan FJ, Orr JF & Dickson GR (2004): Degradation of poly-L-lactide. Part 1: in vitro and in vivo physiological temperature degradation. Proc Inst Mech Eng H 218: 307-319.
Yaji N, Yamato M, Yang J, Okano T & Hori S (2009): Transplantation of tissue-engineered retinal pigment epithelial cell sheets in a rabbit model. Biomaterials 30: 797-803.
Zhang XC, Wyss UP, Pichora D & Goosen MFA (1994): An investigation of poly(lactic acid) degradation. J Bioact Compat Polym 9: 80-100.
Zhou M, Geathers JS, Grillo SL, Weber SR, Wang W, Zhao Y & Sundstrom JM (2020): Role of epithelial-mesenchymal transition in retinal pigment epithelium dysfunction. Front Cell Dev Biol 8: 501.