The Effects of the Coating and Aging of Biodegradable Polylactic Acid Membranes on In Vitro Primary Human Retinal Pigment Epithelium Cells
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
TO01000107
Norwegian Research Council
801133
European Union
No. CZ.02.01.01/00/22_008/0004562
European Regional Development Fund
PubMed
38790928
PubMed Central
PMC11117638
DOI
10.3390/biomedicines12050966
PII: biomedicines12050966
Knihovny.cz E-resources
- Keywords
- AMD, DNA damage, RPE, eye, gene expression, nanofibrous membrane, retina, retinal pigment epithelium,
- Publication type
- Journal Article MeSH
Age-related macular degeneration (AMD) is the most frequent cause of blindness in developed countries. The replacement of dysfunctional human retinal pigment epithelium (hRPE) cells by the transplantation of in vitro-cultivated hRPE cells to the affected area emerges as a feasible strategy for regenerative therapy. Synthetic biomimetic membranes arise as powerful hRPE cell carriers, but as biodegradability is a requirement, it also poses a challenge due to its limited durability. hRPE cells exhibit several characteristics that putatively respond to the type of membrane carrier, and they can be used as biomarkers to evaluate and further optimize such membranes. Here, we analyze the pigmentation, transepithelial resistance, genome integrity, and maturation markers of hRPE cells plated on commercial polycarbonate (PC) versus in-house electrospun polylactide-based (PLA) membranes, both enabling separate apical/basolateral compartments. Our results show that PLA is superior to PC-based membranes for the cultivation of hRPEs, and the BEST1/RPE65 maturation markers emerge as the best biomarkers for addressing the quality of hRPE cultivated in vitro. The stability of the cultures was observed to be affected by PLA aging, which is an effect that could be partially palliated by the coating of the PLA membranes.
CIDETEC Basque Research and Technology Alliance 20014 Donostia San Sebastián Spain
Department of Cell Biology Faculty of Science Charles University 128 00 Prague Czech Republic
Department of Medical Biochemistry Oslo University Hospital 0424 Oslo Norway
Norwegian Center for Stem Cell Research Oslo University Hospital 0424 Oslo Norway
UKLO Network University St Kliment Ohridski 7000 Bitola North Macedonia
See more in PubMed
Nashine S., Nesburn A.B., Kuppermann B.D., Kenney M.C. Age-related macular degeneration (AMD) mitochondria modulate epigenetic mechanisms in retinal pigment epithelial cells. Exp. Eye Res. 2019;189:107701. doi: 10.1016/j.exer.2019.107701. PubMed DOI PMC
Popelka Š., Studenovská H., Abelová L., Ardan T., Studený P., Straňák Z., Klíma J., Dvořánková B., Kotek J., Hodan J., et al. A frame-supported ultrathin electrospun polymer membrane for transplantation of retinal pigment epithelial cells. Biomed. Mater. 2015;10:045022. doi: 10.1088/1748-6041/10/4/045022. PubMed DOI
Somasundaran S., Constable I.J., Mellough C.B., Carvalho L.S. Retinal pigment epithelium and age-related macular degeneration: A review of major disease mechanisms. Clin. Exp. Ophthalmol. 2020;48:1043–1056. doi: 10.1111/ceo.13834. PubMed DOI PMC
Sreekumar P.G., Kannan R. Mechanisms of protection of retinal pigment epithelial cells from oxidant injury by humanin and other mitochondrial-derived peptides: Implications for age-related macular degeneration. Redox Biol. 2020;37:101663. doi: 10.1016/j.redox.2020.101663. PubMed DOI PMC
Sharma R., Bose D., Maminishkis A., Bharti K. Retinal pigment epithelium replacement therapy for age-related macular degeneration: Are we there yet? Annu. Rev. Pharmacol. Toxicol. 2020;60:553–572. doi: 10.1146/annurev-pharmtox-010919-023245. PubMed DOI PMC
Michelet F., Balasankar A., Teo N., Stanton L.W., Singhal S. Rapid generation of purified human RPE from pluripotent stem cells using 2D cultures and lipoprotein uptake-based sorting. Stem. Cell Res. Ther. 2020;11:1–15. doi: 10.1126/scitranslmed.aao4097. PubMed DOI PMC
Shadforth A.M.A., George K.A., Kwan A.S., Chirila T.V., Harkin D.G. The cultivation of human retinal pigment epithelial cells on Bombyx mori silk fibroin. Biomaterials. 2012;33:4110–4117. doi: 10.1016/j.biomaterials.2012.02.040. PubMed DOI
Petrovski G., Lytvynchuk L., Ebbert A., Studenovska H., Nagymihály R., Josifovska N., Rais D., Popelka Š., Tichotová L., Nemesh Y., et al. Subretinal Implantation of Human Primary RPE Cells Cultured on Nanofibrous Membranes in Minipigs. Biomedicines. 2022;10:669. doi: 10.1007/s00417-016-3386-y. PubMed DOI PMC
Sharma R., Khristov V., Rising A., Jha B.S., Dejene R., Hotaling N., Li Y., Stoddard J., Stankewicz C., Wan Q., et al. Clinical-grade stem cell–derived retinal pigment epithelium patch rescues retinal degeneration in rodents and pigs. Sci. Transl. Med. 2019;11:eaat5580. doi: 10.1126/scitranslmed.aat5580. PubMed DOI PMC
Tichotová L., Studenovska H., Petrovski G., Popelka Š., Nemesh Y., Sedláčková M., Drutovič S., Rohiwal S., Jendelová P., Erceg S., et al. Advantages of nanofibrous membranes for culturing of primary RPE cells compared to commercial scaffolds. Acta Ophthalmol. 2022;100:E1172–E1185. doi: 10.1111/aos.15034. PubMed DOI
Stanzel B.V., Liu Z., Somboonthanakij S., Wongsawad W., Brinken R., Eter N., Corneo B., Holz F.G., Temple S., Stern J.H., et al. Human RPE Stem Cells Grown into Polarized RPE Monolayers on a Polyester Matrix Are Maintained after Grafting into Rabbit Subretinal Space. Stem Cell Rep. 2014;2:64–77. doi: 10.1016/j.stemcr.2013.11.005. PubMed DOI PMC
Lehmann G.L., Benedicto I., Philp N.J., Rodriguez-Boulan E. Plasma membrane protein polarity and trafficking in RPE cells: Past, present and future. Exp. Eye Res. 2014;126:5–15. doi: 10.1016/j.exer.2014.04.021. PubMed DOI PMC
Brandl C., Zimmermann S.J., Milenkovic V.M., Rosendahl S.M.G., Grassmann F., Milenkovic A., Hehr U., Federlin M., Wetzel C.H., Helbig H., et al. In-depth characterisation of retinal pigment epithelium (RPE) cells derived from human induced pluripotent stem cells (hiPSC) NeuroMolecular Med. 2014;16:551–564. doi: 10.1007/s12017-014-8308-8. PubMed DOI PMC
Blenkinsop T.A., Salero E., Stern J.H., Temple S. The culture and maintenance of functional retinal pigment epithelial monolayers from adult human eye. Methods Mol. Biol. 2013;945:45–65. doi: 10.1007/978-1-62703-125-7_4. PubMed DOI
Hu X., Calton M.A., Tang S., Vollrath D. Depletion of Mitochondrial DNA in Differentiated Retinal Pigment Epithelial Cells. Sci. Rep. 2019;9:1–10. doi: 10.1038/s41598-019-51761-1. PubMed DOI PMC
Abberton K., Bortolotto S., Woods A., Findlay M., Morrison W., Thompson E., Messina A. Myogel, a Novel, Basement Membrane-Rich, Extracellular Matrix Derived from Skeletal Muscle, Is Highly Adipogenic in vivo and in vitro. Cells Tissues Organs. 2008;188:347–358. doi: 10.1159/000121575. PubMed DOI
Kelly D.J., Prendergast P.J. Prediction of the optimal mechanical properties for a scaffold used in osteochondral defect repair. Tissue Eng.—Part B Rev. 2006;12:2509–2519. doi: 10.1089/ten.2006.12.2509. PubMed DOI
Anghelina M., Krishnan P., Moldovan L., Moldovan N.I. Monocytes/Macrophages Cooperate with Progenitor Cells during Neovascularization and Tissue Repair. Am. J. Pathol. 2006;168:529–541. doi: 10.2353/ajpath.2006.050255. PubMed DOI PMC
Bischoff J. Approaches to studying cell adhesion molecules in angiogenesis. Trends Cell Biol. 1995;5:69–74. doi: 10.1016/S0962-8924(00)88949-7. PubMed DOI
Wiencke A.K., Kiilgaard J.F., Nicolini J., Bundgaard M., Röpke C., La Cour M. Growth of cultured porcine retinal pigment epithelial cells Anne. Acta Ophthalmol. Scand. 2019;60:2384. doi: 10.1034/j.1600-0420.2003.00030.x. PubMed DOI
Shang P., Stepicheva N.A., Hose S., Zigler J.S., Jr., Sinha D. Primary cell cultures from the mouse retinal pigment epithelium. J. Vis. Exp. 2018;133:e56997. doi: 10.3791/56997. PubMed DOI PMC
Jarrett S.G., Lewin A.S., Boulton M.E. The importance of Mitochondria in age-related and inherited eye disorders. Ophthalmic Res. 2010;44:179–190. doi: 10.1159/000316480. PubMed DOI PMC
Hyttinen J.M.T., Viiri J., Kaarniranta K., Błasiak J. Mitochondrial quality control in AMD: Does mitophagy play a pivotal role? Cell. Mol. Life Sci. 2018;75:2991–3008. doi: 10.1007/s00018-018-2843-7. PubMed DOI PMC
Karunadharma P.P., Nordgaard C.L., Olsen T.W., Ferrington D.A. Mitochondrial DNA damage as a potential mechanism for age-related macular degeneration. Investig. Opthalmol. Vis. Sci. 2010;51:5470–5479. doi: 10.1167/iovs.10-5429. PubMed DOI PMC
Masuda T., Wahlin K., Wan J., Hu J., Maruotti J., Yang X., Iacovelli J., Wolkow N., Kist R., Dunaief J.L., et al. Transcription Factor SOX9 Plays a Key Role in the Regulation of Visual Cycle Gene Expression in the Retinal Pigment. J. Biol. Chem. 2014;289:12908–12921. doi: 10.1074/jbc.M114.556738. PubMed DOI PMC
Jadeja R.N., Thounaojam M.C., Bartoli M., Martin P.M. Implications of NAD+ Metabolism in the Aging Retina and Retinal Degeneration. Oxidative Med. Cell. Longev. 2020;2020:2692794. doi: 10.1155/2020/2692794. PubMed DOI PMC
Fernandez-Godino R., Garland D.L., A Pierce E. Isolation, culture and characterization of primary mouse RPE cells. Nat. Protoc. 2016;11:1206–1218. doi: 10.1038/nprot.2016.065. PubMed DOI PMC
Subramaniam M.D., Iyer M., Nair A.P., Venkatesan D., Mathavan S., Eruppakotte N., Kizhakkillach S., Chandran M.K., Roy A., Gopalakrishnan A.V., et al. Oxidative stress and mitochondrial transfer: A new dimension towards ocular diseases. Genes Dis. 2020;9:610–637. doi: 10.1016/j.gendis.2020.11.020. PubMed DOI PMC
Sparrrow J.R., Hicks D., Hamel C.P. The Retinal Pigment Epithelium in Health and Disease. Curr. Mol. Med. 2010;10:802–823. doi: 10.2174/156652410793937813. PubMed DOI PMC
Brown E.E., DeWeerd A.J., Ildefonso C.J., Lewin A.S., Ash J.D. Mitochondrial oxidative stress in the retinal pigment epithelium (RPE) led to metabolic dysfunction in both the RPE and retinal photoreceptors. Redox Biol. 2019;24:101201. doi: 10.1016/j.redox.2019.101201. PubMed DOI PMC
Ablonczy Z., Dahrouj M., Tang P.H., Liu Y., Sambamurti K., Marmorstein A.D., Crosson C.E. Human retinal pigment epithelium cells as functional models for the RPE in vivo. Investig. Opthalmology Vis. Sci. 2011;52:8614–8620. doi: 10.1167/iovs.11-8021. PubMed DOI PMC
Storm T., Burgoyne T., Futter C.E. Membrane trafficking in the retinal pigment epithelium at a glance. J. Cell Sci. 2020;133:jcs238279. doi: 10.1242/jcs.238279. PubMed DOI
Caceres P.S., Rodriguez-Boulan E. Retinal pigment epithelium polarity in health and blinding diseases. Curr. Opin. Cell Biol. 2020;62:37–45. doi: 10.1016/j.ceb.2019.08.001. PubMed DOI PMC
Chen M., Muckersie E., Robertson M., Fraczek M., Forrester J.V., Xu H. Characterization of a spontaneous mouse retinal pigment epithelial cell line B6-RPE07. Investig. Opthalmology Vis. Sci. 2008;49:3699–3706. doi: 10.1167/iovs.07-1522. PubMed DOI
Srinivasan B., Kolli A.R., Esch M.B., Abaci H.E., Shuler M.L., Hickman J.J. TEER Measurement Techniques for In Vitro Barrier Model Systems. J. Lab. Autom. 2015;20:107–126. doi: 10.1177/2211068214561025. PubMed DOI PMC
Elbrecht D.H., Long C.J., Hickman J.J. Transepithelial/endothelial Electrical Resistance (TEER) theory and applications for microfluidic body-on-a-chip devices. J. Rare Dis. Res. Treat. 2016;1:46–52. doi: 10.29245/2572-9411/2016/3.1026. DOI
Yu-Wai-Man P., Newman N.J. Inherited eye-related disorders due to mitochondrial dysfunction. Hum. Mol. Genet. 2017;26:R12–R20. doi: 10.1093/hmg/ddx182. PubMed DOI PMC
Kaarniranta K., Pawlowska E., Szczepanska J., Jablkowska A., Blasiak J. Role of mitochondrial dna damage in ros-mediated pathogenesis of age-related macular degeneration (Amd) Int. J. Mol. Sci. 2019;20:2374. doi: 10.3390/ijms20102374. PubMed DOI PMC
Lin H., Xu H., Liang F.Q., Liang H., Gupta P., Havey A.N., Boulton M.E., Godley B.F. Mitochondrial DNA damage and repair in rpe associated with aging and age-related macular degeneration. Investig. Opthalmology Vis. Sci. 2011;52:3521–3529. doi: 10.1167/iovs.10-6163. PubMed DOI PMC
Terluk M.R., Kapphahn R.J., Soukup L.M., Gong H., Gallardo C., Montezuma S.R., Ferrington D.A. Investigating mitochondria as a target for treating age-related macular degeneration. J. Neurosci. 2015;35:7304–7311. doi: 10.1523/JNEUROSCI.0190-15.2015. PubMed DOI PMC
Heller J.P., Kwok J.C.F., Vecino E., Martin K.R., Fawcett J.W. A method for the isolation and culture of adult rat retinal pigment epithelial (RPE) cells to study retinal diseases. Front. Cell. Neurosci. 2015;9:449. doi: 10.3389/fncel.2015.00449. PubMed DOI PMC
Liggett T.E., Griffiths T.D., Gaillard E.R. Isolation and characterization of a spontaneously immortalized bovine retinal pigmented epithelial cell line. BMC Cell Biol. 2009;10:33. doi: 10.1186/1471-2121-10-33. PubMed DOI PMC
Cai X., Conley S.M., Naash M.I. RPE65: Role in the visual cycle, human retinal disease, and gene therapy. Ophthalmic Genet. 2009;30:57–62. doi: 10.1080/13816810802626399. PubMed DOI PMC
Szatmári-Tóth M., Kristóf E., Veréb Z., Akhtar S., Facskó A., Fésüs L., Kauppinen A., Kaarniranta K., Petrovski G. Clearance of autophagy-associated dying retinal pigment epithelial cells—A possible source for inflammation in age-related macular degeneration. Cell Death Dis. 2016;7:e2367. doi: 10.1038/cddis.2016.133. PubMed DOI PMC
Wang W., Scheffler K., Esbensen Y., Eide L. Methods in Molecular Biology. Humana Press; New York, NY, USA: 2016. Quantification of DNA damage by real-time qPCR; pp. 27–32. PubMed DOI
Wang W., Esbensen Y., Scheffler K., Eide L. Mitochondrial Medicine. Humana Press; New York, NY, USA: 2015. Analysis of Mitochondrial DNA and RNA Integrity by a Real-Time qPCR-Based Method; pp. 97–106. PubMed DOI
Castellani C.A., Longchamps R.J., Sun J., Guallar E., Arking D.E. Thinking outside the nucleus: Mitochondrial DNA copy number in health and disease. Mitochondrion. 2020;53:214–223. doi: 10.1016/j.mito.2020.06.004. PubMed DOI PMC
Longchamps R.J., Castellani C.A., Yang S.Y., Newcomb C.E., Sumpter J.A., Lane J., Grove M.L., Guallar E., Pankratz N., Taylor K.D., et al. Evaluation of mitochondrial DNA copy number estimation techniques. PLoS ONE. 2020;15:1–14. doi: 10.1371/journal.pone.0228166. PubMed DOI PMC
Vaajasaari H., Ilmarinen T., Juuti-Uusitalo K., Rajala K., Onnela N., Narkilahti S., Suuronen R., Hyttinen J., Uusitalo H., Skottman H. Toward the defined and xeno-free differentiation of functional human pluripotent stem cell-derived retinal pigment epithelial cells. Mol. Vis. 2011;22:558–575. PubMed PMC
Carr A.-J., Vugler A.A., Yu L., Semo M., Coffey P., Moss S.E., Greenwood J. The expression of retinal cell markers in human retinal pigment epithelial cells and their augmentation by the synthetic retinoid fenretinide. Mol. Vis. 2011;17:1701–1715. PubMed PMC
Burke J.M. Epithelial phenotype and the RPE: Is the answer blowing in the Wnt? Prog. Retin. Eye Res. 2008;27:579–595. doi: 10.1016/j.preteyeres.2008.08.002. PubMed DOI PMC
Tian Y., Zonca M.R., Imbrogno J., Unser A.M., Sfakis L., Temple S., Belfort G., Xie Y. Polarized, Cobblestone, Human Retinal Pigment Epithelial Cell Maturation on a Synthetic PEG Matrix. ACS Biomater. Sci. Eng. 2017;3:890–902. doi: 10.1021/acsbiomaterials.6b00757. PubMed DOI
Harris T.I., Paterson C.A., Farjood F., Wadsworth I.D., Caldwell L., Lewis R.V., Jones J.A., Vargis E. Utilizing Recombinant Spider Silk Proteins to Develop a Synthetic Bruch’s Membrane for Modeling the Retinal Pigment Epithelium. ACS Biomater. Sci. Eng. 2019;5:4023–4036. doi: 10.1021/acsbiomaterials.9b00183. PubMed DOI PMC
Rosales M.A.B., Shu D.Y., Iacovelli J., Saint-Geniez M. Loss of PGC-1α in RPE induces mesenchymal transition and promotes retinal degeneration. Life Sci. Alliance. 2019;2:e201800212. doi: 10.26508/lsa.201800212. PubMed DOI PMC
Youssef P.N., Sheibani N., Albert D.M. Retinal light toxicity. Eye. 2011;25:1–14. doi: 10.1038/eye.2010.149. PubMed DOI PMC
Yang S., Zhou J., Li D. Functions and Diseases of the Retinal Pigment Epithelium. Front. Pharmacol. 2021;12:727870. doi: 10.3389/fphar.2021.727870. PubMed DOI PMC
Yeste J., Illa X., Gutiérrez C., Solé M., Guimerà A., Villa R. Geometric correction factor for transepithelial electrical resistance measurements in transwell and microfluidic cell cultures. J. Phys. D Appl. Phys. 2016;49:375401. doi: 10.1088/0022-3727/49/37/375401. DOI
Masuda T., Esumi N. SOX9, through interaction with microphthalmia-associated transcription factor (MITF) and OTX2, regulates BEST1 expression in the retinal pigment epithelium. J. Biol. Chem. 2010;285:26933–26944. doi: 10.1074/jbc.M110.130294. PubMed DOI PMC
Seo J.-M., Kim S.J., Chung H., Kim E.T., Yu H.G., Yu Y.S. Biocompatibility of polyimide microelectrode array for retinal stimulation. Mater. Sci. Eng. C. 2004;24:185–189. doi: 10.1016/j.msec.2003.09.019. DOI
Kenney M.C., Riazi-Esfahani M., Kuppermann B.D. The Role of Mitochondria in AMD: Current Knowledge and Future Applications. J. Ophthalmic Vis. Res. 2017;12:424–428. doi: 10.4103/jovr.jovr_182_17. PubMed DOI PMC
Feher J., Kovacs I., Artico M., Cavallotti C., Papale A., Gabrieli C.B. Mitochondrial alterations of retinal pigment epithelium in age-related macular degeneration. Neurobiol. Aging. 2006;27:983–993. doi: 10.1016/j.neurobiolaging.2005.05.012. PubMed DOI
Zhang R., Engel A.L., Wang Y., Li B., Shen W., Gillies M.C., Chao J.R., Du J. Inhibition of Mitochondrial Respiration Impairs Nutrient Consumption and Metabolite Transport in Human Retinal Pigment Epithelium. J. Proteome Res. 2021;20:909–922. doi: 10.1021/acs.jproteome.0c00690. PubMed DOI PMC
Strauß O., Müller C., Reichhart N., Tamm E.R., Gomez N.M. The Role of Bestrophin-1 in Intracellular Ca2+ Signaling. Springer; Berlin/Heidelberg, Germany: 2014. PubMed DOI
Hollyfield J.G., Anderson R.E., LaVail M.M. Retinal Degenerative Diseases: Preface. Springer; New York, NY, USA: 2012.
Liang F., Godley B.F. Oxidative stress-induced mitochondrial DNA damage in human retinal pigment epithelial cells: A possible mechanism for RPE aging and age-related macular degeneration. Exp. Eye Res. 2003;76:397–403. doi: 10.1016/S0014-4835(03)00023-X. PubMed DOI
Rooney J.P., Ryde I.T., Sanders L.H., Howlett E.H., Colton M.D., Germ K.E., Mayer G.D., Greenamyre J.T., Meyer J.N. PCR Based Determination of Mitochondrial DNA Copy Number in Multiple Species. Methods Mol. Biol. 2015;1241:23–38. doi: 10.1007/978-1-4939-1875-1_3. PubMed DOI PMC
Castellani C.A., Longchamps R.J., Sumpter J.A., Newcomb C.E., Lane J.A., Grove M.L., Bressler J., Brody J.A., Floyd J.S., Bartz T.M., et al. Mitochondrial DNA copy number can influence mortality and cardiovascular disease via methylation of nuclear DNA CpGs. Genome Med. Biomark. Health Sci. 2020;12:84. doi: 10.1186/s13073-020-00778-7. PubMed DOI PMC