• This record comes from PubMed

The Effects of the Coating and Aging of Biodegradable Polylactic Acid Membranes on In Vitro Primary Human Retinal Pigment Epithelium Cells

. 2024 Apr 26 ; 12 (5) : . [epub] 20240426

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
TO01000107 Norwegian Research Council
801133 European Union
No. CZ.02.01.01/00/22_008/0004562 European Regional Development Fund

Links

PubMed 38790928
PubMed Central PMC11117638
DOI 10.3390/biomedicines12050966
PII: biomedicines12050966
Knihovny.cz E-resources

Age-related macular degeneration (AMD) is the most frequent cause of blindness in developed countries. The replacement of dysfunctional human retinal pigment epithelium (hRPE) cells by the transplantation of in vitro-cultivated hRPE cells to the affected area emerges as a feasible strategy for regenerative therapy. Synthetic biomimetic membranes arise as powerful hRPE cell carriers, but as biodegradability is a requirement, it also poses a challenge due to its limited durability. hRPE cells exhibit several characteristics that putatively respond to the type of membrane carrier, and they can be used as biomarkers to evaluate and further optimize such membranes. Here, we analyze the pigmentation, transepithelial resistance, genome integrity, and maturation markers of hRPE cells plated on commercial polycarbonate (PC) versus in-house electrospun polylactide-based (PLA) membranes, both enabling separate apical/basolateral compartments. Our results show that PLA is superior to PC-based membranes for the cultivation of hRPEs, and the BEST1/RPE65 maturation markers emerge as the best biomarkers for addressing the quality of hRPE cultivated in vitro. The stability of the cultures was observed to be affected by PLA aging, which is an effect that could be partially palliated by the coating of the PLA membranes.

See more in PubMed

Nashine S., Nesburn A.B., Kuppermann B.D., Kenney M.C. Age-related macular degeneration (AMD) mitochondria modulate epigenetic mechanisms in retinal pigment epithelial cells. Exp. Eye Res. 2019;189:107701. doi: 10.1016/j.exer.2019.107701. PubMed DOI PMC

Popelka Š., Studenovská H., Abelová L., Ardan T., Studený P., Straňák Z., Klíma J., Dvořánková B., Kotek J., Hodan J., et al. A frame-supported ultrathin electrospun polymer membrane for transplantation of retinal pigment epithelial cells. Biomed. Mater. 2015;10:045022. doi: 10.1088/1748-6041/10/4/045022. PubMed DOI

Somasundaran S., Constable I.J., Mellough C.B., Carvalho L.S. Retinal pigment epithelium and age-related macular degeneration: A review of major disease mechanisms. Clin. Exp. Ophthalmol. 2020;48:1043–1056. doi: 10.1111/ceo.13834. PubMed DOI PMC

Sreekumar P.G., Kannan R. Mechanisms of protection of retinal pigment epithelial cells from oxidant injury by humanin and other mitochondrial-derived peptides: Implications for age-related macular degeneration. Redox Biol. 2020;37:101663. doi: 10.1016/j.redox.2020.101663. PubMed DOI PMC

Sharma R., Bose D., Maminishkis A., Bharti K. Retinal pigment epithelium replacement therapy for age-related macular degeneration: Are we there yet? Annu. Rev. Pharmacol. Toxicol. 2020;60:553–572. doi: 10.1146/annurev-pharmtox-010919-023245. PubMed DOI PMC

Michelet F., Balasankar A., Teo N., Stanton L.W., Singhal S. Rapid generation of purified human RPE from pluripotent stem cells using 2D cultures and lipoprotein uptake-based sorting. Stem. Cell Res. Ther. 2020;11:1–15. doi: 10.1126/scitranslmed.aao4097. PubMed DOI PMC

Shadforth A.M.A., George K.A., Kwan A.S., Chirila T.V., Harkin D.G. The cultivation of human retinal pigment epithelial cells on Bombyx mori silk fibroin. Biomaterials. 2012;33:4110–4117. doi: 10.1016/j.biomaterials.2012.02.040. PubMed DOI

Petrovski G., Lytvynchuk L., Ebbert A., Studenovska H., Nagymihály R., Josifovska N., Rais D., Popelka Š., Tichotová L., Nemesh Y., et al. Subretinal Implantation of Human Primary RPE Cells Cultured on Nanofibrous Membranes in Minipigs. Biomedicines. 2022;10:669. doi: 10.1007/s00417-016-3386-y. PubMed DOI PMC

Sharma R., Khristov V., Rising A., Jha B.S., Dejene R., Hotaling N., Li Y., Stoddard J., Stankewicz C., Wan Q., et al. Clinical-grade stem cell–derived retinal pigment epithelium patch rescues retinal degeneration in rodents and pigs. Sci. Transl. Med. 2019;11:eaat5580. doi: 10.1126/scitranslmed.aat5580. PubMed DOI PMC

Tichotová L., Studenovska H., Petrovski G., Popelka Š., Nemesh Y., Sedláčková M., Drutovič S., Rohiwal S., Jendelová P., Erceg S., et al. Advantages of nanofibrous membranes for culturing of primary RPE cells compared to commercial scaffolds. Acta Ophthalmol. 2022;100:E1172–E1185. doi: 10.1111/aos.15034. PubMed DOI

Stanzel B.V., Liu Z., Somboonthanakij S., Wongsawad W., Brinken R., Eter N., Corneo B., Holz F.G., Temple S., Stern J.H., et al. Human RPE Stem Cells Grown into Polarized RPE Monolayers on a Polyester Matrix Are Maintained after Grafting into Rabbit Subretinal Space. Stem Cell Rep. 2014;2:64–77. doi: 10.1016/j.stemcr.2013.11.005. PubMed DOI PMC

Lehmann G.L., Benedicto I., Philp N.J., Rodriguez-Boulan E. Plasma membrane protein polarity and trafficking in RPE cells: Past, present and future. Exp. Eye Res. 2014;126:5–15. doi: 10.1016/j.exer.2014.04.021. PubMed DOI PMC

Brandl C., Zimmermann S.J., Milenkovic V.M., Rosendahl S.M.G., Grassmann F., Milenkovic A., Hehr U., Federlin M., Wetzel C.H., Helbig H., et al. In-depth characterisation of retinal pigment epithelium (RPE) cells derived from human induced pluripotent stem cells (hiPSC) NeuroMolecular Med. 2014;16:551–564. doi: 10.1007/s12017-014-8308-8. PubMed DOI PMC

Blenkinsop T.A., Salero E., Stern J.H., Temple S. The culture and maintenance of functional retinal pigment epithelial monolayers from adult human eye. Methods Mol. Biol. 2013;945:45–65. doi: 10.1007/978-1-62703-125-7_4. PubMed DOI

Hu X., Calton M.A., Tang S., Vollrath D. Depletion of Mitochondrial DNA in Differentiated Retinal Pigment Epithelial Cells. Sci. Rep. 2019;9:1–10. doi: 10.1038/s41598-019-51761-1. PubMed DOI PMC

Abberton K., Bortolotto S., Woods A., Findlay M., Morrison W., Thompson E., Messina A. Myogel, a Novel, Basement Membrane-Rich, Extracellular Matrix Derived from Skeletal Muscle, Is Highly Adipogenic in vivo and in vitro. Cells Tissues Organs. 2008;188:347–358. doi: 10.1159/000121575. PubMed DOI

Kelly D.J., Prendergast P.J. Prediction of the optimal mechanical properties for a scaffold used in osteochondral defect repair. Tissue Eng.—Part B Rev. 2006;12:2509–2519. doi: 10.1089/ten.2006.12.2509. PubMed DOI

Anghelina M., Krishnan P., Moldovan L., Moldovan N.I. Monocytes/Macrophages Cooperate with Progenitor Cells during Neovascularization and Tissue Repair. Am. J. Pathol. 2006;168:529–541. doi: 10.2353/ajpath.2006.050255. PubMed DOI PMC

Bischoff J. Approaches to studying cell adhesion molecules in angiogenesis. Trends Cell Biol. 1995;5:69–74. doi: 10.1016/S0962-8924(00)88949-7. PubMed DOI

Wiencke A.K., Kiilgaard J.F., Nicolini J., Bundgaard M., Röpke C., La Cour M. Growth of cultured porcine retinal pigment epithelial cells Anne. Acta Ophthalmol. Scand. 2019;60:2384. doi: 10.1034/j.1600-0420.2003.00030.x. PubMed DOI

Shang P., Stepicheva N.A., Hose S., Zigler J.S., Jr., Sinha D. Primary cell cultures from the mouse retinal pigment epithelium. J. Vis. Exp. 2018;133:e56997. doi: 10.3791/56997. PubMed DOI PMC

Jarrett S.G., Lewin A.S., Boulton M.E. The importance of Mitochondria in age-related and inherited eye disorders. Ophthalmic Res. 2010;44:179–190. doi: 10.1159/000316480. PubMed DOI PMC

Hyttinen J.M.T., Viiri J., Kaarniranta K., Błasiak J. Mitochondrial quality control in AMD: Does mitophagy play a pivotal role? Cell. Mol. Life Sci. 2018;75:2991–3008. doi: 10.1007/s00018-018-2843-7. PubMed DOI PMC

Karunadharma P.P., Nordgaard C.L., Olsen T.W., Ferrington D.A. Mitochondrial DNA damage as a potential mechanism for age-related macular degeneration. Investig. Opthalmol. Vis. Sci. 2010;51:5470–5479. doi: 10.1167/iovs.10-5429. PubMed DOI PMC

Masuda T., Wahlin K., Wan J., Hu J., Maruotti J., Yang X., Iacovelli J., Wolkow N., Kist R., Dunaief J.L., et al. Transcription Factor SOX9 Plays a Key Role in the Regulation of Visual Cycle Gene Expression in the Retinal Pigment. J. Biol. Chem. 2014;289:12908–12921. doi: 10.1074/jbc.M114.556738. PubMed DOI PMC

Jadeja R.N., Thounaojam M.C., Bartoli M., Martin P.M. Implications of NAD+ Metabolism in the Aging Retina and Retinal Degeneration. Oxidative Med. Cell. Longev. 2020;2020:2692794. doi: 10.1155/2020/2692794. PubMed DOI PMC

Fernandez-Godino R., Garland D.L., A Pierce E. Isolation, culture and characterization of primary mouse RPE cells. Nat. Protoc. 2016;11:1206–1218. doi: 10.1038/nprot.2016.065. PubMed DOI PMC

Subramaniam M.D., Iyer M., Nair A.P., Venkatesan D., Mathavan S., Eruppakotte N., Kizhakkillach S., Chandran M.K., Roy A., Gopalakrishnan A.V., et al. Oxidative stress and mitochondrial transfer: A new dimension towards ocular diseases. Genes Dis. 2020;9:610–637. doi: 10.1016/j.gendis.2020.11.020. PubMed DOI PMC

Sparrrow J.R., Hicks D., Hamel C.P. The Retinal Pigment Epithelium in Health and Disease. Curr. Mol. Med. 2010;10:802–823. doi: 10.2174/156652410793937813. PubMed DOI PMC

Brown E.E., DeWeerd A.J., Ildefonso C.J., Lewin A.S., Ash J.D. Mitochondrial oxidative stress in the retinal pigment epithelium (RPE) led to metabolic dysfunction in both the RPE and retinal photoreceptors. Redox Biol. 2019;24:101201. doi: 10.1016/j.redox.2019.101201. PubMed DOI PMC

Ablonczy Z., Dahrouj M., Tang P.H., Liu Y., Sambamurti K., Marmorstein A.D., Crosson C.E. Human retinal pigment epithelium cells as functional models for the RPE in vivo. Investig. Opthalmology Vis. Sci. 2011;52:8614–8620. doi: 10.1167/iovs.11-8021. PubMed DOI PMC

Storm T., Burgoyne T., Futter C.E. Membrane trafficking in the retinal pigment epithelium at a glance. J. Cell Sci. 2020;133:jcs238279. doi: 10.1242/jcs.238279. PubMed DOI

Caceres P.S., Rodriguez-Boulan E. Retinal pigment epithelium polarity in health and blinding diseases. Curr. Opin. Cell Biol. 2020;62:37–45. doi: 10.1016/j.ceb.2019.08.001. PubMed DOI PMC

Chen M., Muckersie E., Robertson M., Fraczek M., Forrester J.V., Xu H. Characterization of a spontaneous mouse retinal pigment epithelial cell line B6-RPE07. Investig. Opthalmology Vis. Sci. 2008;49:3699–3706. doi: 10.1167/iovs.07-1522. PubMed DOI

Srinivasan B., Kolli A.R., Esch M.B., Abaci H.E., Shuler M.L., Hickman J.J. TEER Measurement Techniques for In Vitro Barrier Model Systems. J. Lab. Autom. 2015;20:107–126. doi: 10.1177/2211068214561025. PubMed DOI PMC

Elbrecht D.H., Long C.J., Hickman J.J. Transepithelial/endothelial Electrical Resistance (TEER) theory and applications for microfluidic body-on-a-chip devices. J. Rare Dis. Res. Treat. 2016;1:46–52. doi: 10.29245/2572-9411/2016/3.1026. DOI

Yu-Wai-Man P., Newman N.J. Inherited eye-related disorders due to mitochondrial dysfunction. Hum. Mol. Genet. 2017;26:R12–R20. doi: 10.1093/hmg/ddx182. PubMed DOI PMC

Kaarniranta K., Pawlowska E., Szczepanska J., Jablkowska A., Blasiak J. Role of mitochondrial dna damage in ros-mediated pathogenesis of age-related macular degeneration (Amd) Int. J. Mol. Sci. 2019;20:2374. doi: 10.3390/ijms20102374. PubMed DOI PMC

Lin H., Xu H., Liang F.Q., Liang H., Gupta P., Havey A.N., Boulton M.E., Godley B.F. Mitochondrial DNA damage and repair in rpe associated with aging and age-related macular degeneration. Investig. Opthalmology Vis. Sci. 2011;52:3521–3529. doi: 10.1167/iovs.10-6163. PubMed DOI PMC

Terluk M.R., Kapphahn R.J., Soukup L.M., Gong H., Gallardo C., Montezuma S.R., Ferrington D.A. Investigating mitochondria as a target for treating age-related macular degeneration. J. Neurosci. 2015;35:7304–7311. doi: 10.1523/JNEUROSCI.0190-15.2015. PubMed DOI PMC

Heller J.P., Kwok J.C.F., Vecino E., Martin K.R., Fawcett J.W. A method for the isolation and culture of adult rat retinal pigment epithelial (RPE) cells to study retinal diseases. Front. Cell. Neurosci. 2015;9:449. doi: 10.3389/fncel.2015.00449. PubMed DOI PMC

Liggett T.E., Griffiths T.D., Gaillard E.R. Isolation and characterization of a spontaneously immortalized bovine retinal pigmented epithelial cell line. BMC Cell Biol. 2009;10:33. doi: 10.1186/1471-2121-10-33. PubMed DOI PMC

Cai X., Conley S.M., Naash M.I. RPE65: Role in the visual cycle, human retinal disease, and gene therapy. Ophthalmic Genet. 2009;30:57–62. doi: 10.1080/13816810802626399. PubMed DOI PMC

Szatmári-Tóth M., Kristóf E., Veréb Z., Akhtar S., Facskó A., Fésüs L., Kauppinen A., Kaarniranta K., Petrovski G. Clearance of autophagy-associated dying retinal pigment epithelial cells—A possible source for inflammation in age-related macular degeneration. Cell Death Dis. 2016;7:e2367. doi: 10.1038/cddis.2016.133. PubMed DOI PMC

Wang W., Scheffler K., Esbensen Y., Eide L. Methods in Molecular Biology. Humana Press; New York, NY, USA: 2016. Quantification of DNA damage by real-time qPCR; pp. 27–32. PubMed DOI

Wang W., Esbensen Y., Scheffler K., Eide L. Mitochondrial Medicine. Humana Press; New York, NY, USA: 2015. Analysis of Mitochondrial DNA and RNA Integrity by a Real-Time qPCR-Based Method; pp. 97–106. PubMed DOI

Castellani C.A., Longchamps R.J., Sun J., Guallar E., Arking D.E. Thinking outside the nucleus: Mitochondrial DNA copy number in health and disease. Mitochondrion. 2020;53:214–223. doi: 10.1016/j.mito.2020.06.004. PubMed DOI PMC

Longchamps R.J., Castellani C.A., Yang S.Y., Newcomb C.E., Sumpter J.A., Lane J., Grove M.L., Guallar E., Pankratz N., Taylor K.D., et al. Evaluation of mitochondrial DNA copy number estimation techniques. PLoS ONE. 2020;15:1–14. doi: 10.1371/journal.pone.0228166. PubMed DOI PMC

Vaajasaari H., Ilmarinen T., Juuti-Uusitalo K., Rajala K., Onnela N., Narkilahti S., Suuronen R., Hyttinen J., Uusitalo H., Skottman H. Toward the defined and xeno-free differentiation of functional human pluripotent stem cell-derived retinal pigment epithelial cells. Mol. Vis. 2011;22:558–575. PubMed PMC

Carr A.-J., Vugler A.A., Yu L., Semo M., Coffey P., Moss S.E., Greenwood J. The expression of retinal cell markers in human retinal pigment epithelial cells and their augmentation by the synthetic retinoid fenretinide. Mol. Vis. 2011;17:1701–1715. PubMed PMC

Burke J.M. Epithelial phenotype and the RPE: Is the answer blowing in the Wnt? Prog. Retin. Eye Res. 2008;27:579–595. doi: 10.1016/j.preteyeres.2008.08.002. PubMed DOI PMC

Tian Y., Zonca M.R., Imbrogno J., Unser A.M., Sfakis L., Temple S., Belfort G., Xie Y. Polarized, Cobblestone, Human Retinal Pigment Epithelial Cell Maturation on a Synthetic PEG Matrix. ACS Biomater. Sci. Eng. 2017;3:890–902. doi: 10.1021/acsbiomaterials.6b00757. PubMed DOI

Harris T.I., Paterson C.A., Farjood F., Wadsworth I.D., Caldwell L., Lewis R.V., Jones J.A., Vargis E. Utilizing Recombinant Spider Silk Proteins to Develop a Synthetic Bruch’s Membrane for Modeling the Retinal Pigment Epithelium. ACS Biomater. Sci. Eng. 2019;5:4023–4036. doi: 10.1021/acsbiomaterials.9b00183. PubMed DOI PMC

Rosales M.A.B., Shu D.Y., Iacovelli J., Saint-Geniez M. Loss of PGC-1α in RPE induces mesenchymal transition and promotes retinal degeneration. Life Sci. Alliance. 2019;2:e201800212. doi: 10.26508/lsa.201800212. PubMed DOI PMC

Youssef P.N., Sheibani N., Albert D.M. Retinal light toxicity. Eye. 2011;25:1–14. doi: 10.1038/eye.2010.149. PubMed DOI PMC

Yang S., Zhou J., Li D. Functions and Diseases of the Retinal Pigment Epithelium. Front. Pharmacol. 2021;12:727870. doi: 10.3389/fphar.2021.727870. PubMed DOI PMC

Yeste J., Illa X., Gutiérrez C., Solé M., Guimerà A., Villa R. Geometric correction factor for transepithelial electrical resistance measurements in transwell and microfluidic cell cultures. J. Phys. D Appl. Phys. 2016;49:375401. doi: 10.1088/0022-3727/49/37/375401. DOI

Masuda T., Esumi N. SOX9, through interaction with microphthalmia-associated transcription factor (MITF) and OTX2, regulates BEST1 expression in the retinal pigment epithelium. J. Biol. Chem. 2010;285:26933–26944. doi: 10.1074/jbc.M110.130294. PubMed DOI PMC

Seo J.-M., Kim S.J., Chung H., Kim E.T., Yu H.G., Yu Y.S. Biocompatibility of polyimide microelectrode array for retinal stimulation. Mater. Sci. Eng. C. 2004;24:185–189. doi: 10.1016/j.msec.2003.09.019. DOI

Kenney M.C., Riazi-Esfahani M., Kuppermann B.D. The Role of Mitochondria in AMD: Current Knowledge and Future Applications. J. Ophthalmic Vis. Res. 2017;12:424–428. doi: 10.4103/jovr.jovr_182_17. PubMed DOI PMC

Feher J., Kovacs I., Artico M., Cavallotti C., Papale A., Gabrieli C.B. Mitochondrial alterations of retinal pigment epithelium in age-related macular degeneration. Neurobiol. Aging. 2006;27:983–993. doi: 10.1016/j.neurobiolaging.2005.05.012. PubMed DOI

Zhang R., Engel A.L., Wang Y., Li B., Shen W., Gillies M.C., Chao J.R., Du J. Inhibition of Mitochondrial Respiration Impairs Nutrient Consumption and Metabolite Transport in Human Retinal Pigment Epithelium. J. Proteome Res. 2021;20:909–922. doi: 10.1021/acs.jproteome.0c00690. PubMed DOI PMC

Strauß O., Müller C., Reichhart N., Tamm E.R., Gomez N.M. The Role of Bestrophin-1 in Intracellular Ca2+ Signaling. Springer; Berlin/Heidelberg, Germany: 2014. PubMed DOI

Hollyfield J.G., Anderson R.E., LaVail M.M. Retinal Degenerative Diseases: Preface. Springer; New York, NY, USA: 2012.

Liang F., Godley B.F. Oxidative stress-induced mitochondrial DNA damage in human retinal pigment epithelial cells: A possible mechanism for RPE aging and age-related macular degeneration. Exp. Eye Res. 2003;76:397–403. doi: 10.1016/S0014-4835(03)00023-X. PubMed DOI

Rooney J.P., Ryde I.T., Sanders L.H., Howlett E.H., Colton M.D., Germ K.E., Mayer G.D., Greenamyre J.T., Meyer J.N. PCR Based Determination of Mitochondrial DNA Copy Number in Multiple Species. Methods Mol. Biol. 2015;1241:23–38. doi: 10.1007/978-1-4939-1875-1_3. PubMed DOI PMC

Castellani C.A., Longchamps R.J., Sumpter J.A., Newcomb C.E., Lane J.A., Grove M.L., Bressler J., Brody J.A., Floyd J.S., Bartz T.M., et al. Mitochondrial DNA copy number can influence mortality and cardiovascular disease via methylation of nuclear DNA CpGs. Genome Med. Biomark. Health Sci. 2020;12:84. doi: 10.1186/s13073-020-00778-7. PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...