Retinal Pigment Epithelium Cell Development: Extrapolating Basic Biology to Stem Cell Research
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
PubMed
36830851
PubMed Central
PMC9952929
DOI
10.3390/biomedicines11020310
PII: biomedicines11020310
Knihovny.cz E-zdroje
- Klíčová slova
- age-related macular degeneration, cell therapy, differentiation, retinal pigment epithelium (RPE), stem cells,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
The retinal pigment epithelium (RPE) forms an important cellular monolayer, which contributes to the normal physiology of the eye. Damage to the RPE leads to the development of degenerative diseases, such as age-related macular degeneration (AMD). Apart from acting as a physical barrier between the retina and choroidal blood vessels, the RPE is crucial in maintaining photoreceptor (PR) and visual functions. Current clinical intervention to treat early stages of AMD includes stem cell-derived RPE transplantation, which is still in its early stages of evolution. Therefore, it becomes essential to derive RPEs which are functional and exhibit features as observed in native human RPE cells. The conventional strategy is to use the knowledge obtained from developmental studies using various animal models and stem cell-based exploratory studies to understand RPE biogenies and developmental trajectory. This article emphasises such studies and aims to present a comprehensive understanding of the basic biology, including the genetics and molecular pathways of RPE development. It encompasses basic developmental biology and stem cell-based developmental studies to uncover RPE differentiation. Knowledge of the in utero developmental cues provides an inclusive methodology required for deriving RPEs using stem cells.
Department of Ophthalmology Oslo University Hospital 0450 Oslo Norway
Karl Landsteiner Institute for Retinal Research and Imaging 1030 Vienna Austria
Ocular and Stem Cell Translational Research Section NEI NIH Bethesda MD 20892 USA
Zobrazit více v PubMed
Jager R.D., Mieler W.F., Miller J.W. Age-Related Macular Degeneration. N. Engl. J. Med. 2008;358:2606–2617. doi: 10.1056/NEJMra0801537. PubMed DOI
Heesterbeek T.J., Lorés-Motta L., Hoyng C.B., Lechanteur Y.T.E., den Hollander A.I. Risk factors for progression of age-related macular degeneration. Ophthalmic Physiol. Opt. 2020;40:140–170. doi: 10.1111/opo.12675. PubMed DOI PMC
Cachafeiro M., Bemelmans A.-P., Samardzija M., Afanasieva T., Pournaras J.-A., Grimm C., Kostic C., Philippe S., Wenzel A., Arsenijevic Y. Hyperactivation of retina by light in mice leads to photoreceptor cell death mediated by VEGF and retinal pigment epithelium permeability. Cell Death Dis. 2013;4:e781. doi: 10.1038/cddis.2013.303. PubMed DOI PMC
McLeod D.S., Grebe R., Bhutto I., Merges C., Baba T., Lutty G.A. Relationship between RPE and Choriocapillaris in Age-Related Macular Degeneration. Investig. Ophthalmol. Vis. Sci. 2009;50:4982–4991. doi: 10.1167/iovs.09-3639. PubMed DOI PMC
Pugazhendhi A., Hubbell M., Jairam P., Ambati B. Neovascular Macular Degeneration: A Review of Etiology, Risk Factors, and Recent Advances in Research and Therapy. Int. J. Mol. Sci. 2021;22:1170. doi: 10.3390/ijms22031170. PubMed DOI PMC
Yang S., Zhou J., Li D. Functions and Diseases of the Retinal Pigment Epithelium. Front. Pharmacol. 2021;12:1170. doi: 10.3389/fphar.2021.727870. PubMed DOI PMC
Kim S.-Y., Kim Y., Oh Y. Inflammatory pathways in pathological neovascularization in retina and choroid: A narrative review on the inflammatory drug target molecules in retinal and choroidal neovascularization. Ann. Eye Sci. 2021;6:1–17. doi: 10.21037/aes-21-4. DOI
Zarbin M. Cell-Based Therapy for Degenerative Retinal Disease. Trends Mol. Med. 2016;22:115–134. doi: 10.1016/j.molmed.2015.12.007. PubMed DOI
Cai J., Nelson K.C., Wu M., Sternberg P., Jones D.P. Oxidative damage and protection of the RPE. Prog. Retin. Eye Res. 2000;19:205–221. doi: 10.1016/S1350-9462(99)00009-9. PubMed DOI
Whitmore S.S., Sohn E.H., Chirco K.R., Drack A.V., Stone E.M., Tucker B.A., Mullins R.F. Complement activation and choriocapillaris loss in early AMD: Implications for pathophysiology and therapy. Prog. Retin. Eye Res. 2015;45:1–29. doi: 10.1016/j.preteyeres.2014.11.005. PubMed DOI PMC
Feher J., Kovacs I., Artico M., Cavallotti C., Papale A., Balacco Gabrieli C. Mitochondrial alterations of retinal pigment epithelium in age-related macular degeneration. Neurobiol. Aging. 2006;27:983–993. doi: 10.1016/j.neurobiolaging.2005.05.012. PubMed DOI
Brown E.E., DeWeerd A.J., Ildefonso C.J., Lewin A.S., Ash J.D. Mitochondrial oxidative stress in the retinal pigment epithelium (RPE) led to metabolic dysfunction in both the RPE and retinal photoreceptors. Redox Biol. 2019;24:101201. doi: 10.1016/j.redox.2019.101201. PubMed DOI PMC
Strauss O. The Retinal Pigment Epithelium in Visual Function. Physiol. Rev. 2005;85:845–881. doi: 10.1152/physrev.00021.2004. PubMed DOI
Somasundaran S., Constable I.J., Mellough C.B., Carvalho L.S. Retinal pigment epithelium and age-related macular degeneration: A review of major disease mechanisms. Clin. Experiment. Ophthalmol. 2020;48:1043–1056. doi: 10.1111/ceo.13834. PubMed DOI PMC
Sharma R., Bose D., Maminishkis A., Bharti K. Retinal Pigment Epithelium Replacement Therapy for Age-Related Macular Degeneration: Are We There Yet? Annu. Rev. Pharmacol. Toxicol. 2020;60:553–572. doi: 10.1146/annurev-pharmtox-010919-023245. PubMed DOI PMC
Fuhrmann S., Zou C., Levine E.M. Retinal pigment epithelium development, plasticity, and tissue homeostasis. Exp. Eye Res. 2014;123:141–150. doi: 10.1016/j.exer.2013.09.003. PubMed DOI PMC
Holz F.G., Schmitz-Valckenberg S., Fleckenstein M. Recent developments in the treatment of age-related macular degeneration. J. Clin. Investig. 2014;124:1430–1438. doi: 10.1172/JCI71029. PubMed DOI PMC
Ammar M.J., Hsu J., Chiang A., Ho A.C., Regillo C.D. Age-related macular degeneration therapy: A review. Curr. Opin. Ophthalmol. 2020;31:215–221. doi: 10.1097/ICU.0000000000000657. PubMed DOI
Zarbin M., Sugino I., Townes-Anderson E. Concise Review: Update on Retinal Pigment Epithelium Transplantation for Age-Related Macular Degeneration. Stem Cells Transl. Med. 2019;8:466–477. doi: 10.1002/sctm.18-0282. PubMed DOI PMC
Fernández-Robredo P., Sancho A., Johnen S., Recalde S., Gama N., Thumann G., Groll J., García-Layana A. Current Treatment Limitations in Age-Related Macular Degeneration and Future Approaches Based on Cell Therapy and Tissue Engineering. J. Ophthalmol. 2014;2014:510285. doi: 10.1155/2014/510285. PubMed DOI PMC
Baradaran-Rafii A., Sarvari M., Alavi-Moghadam S., Payab M., Goodarzi P., Aghayan H.R., Larijani B., Rezaei-Tavirani M., Biglar M., Arjmand B. Cell-based approaches towards treating age-related macular degeneration. Cell Tissue Bank. 2020;21:339–347. doi: 10.1007/s10561-020-09826-3. PubMed DOI
Forest D.L., Johnson L.V., Clegg D.O. Cellular models and therapies for age-related macular degeneration. Dis. Model. Mech. 2015;8:421–427. doi: 10.1242/dmm.017236. PubMed DOI PMC
Schwartz S.D., Hubschman J.-P., Heilwell G., Franco-Cardenas V., Pan C.K., Ostrick R.M., Mickunas E., Gay R., Klimanskaya I., Lanza R. Embryonic stem cell trials for macular degeneration: A preliminary report. Lancet. 2012;379:713–720. doi: 10.1016/S0140-6736(12)60028-2. PubMed DOI
Mandai M., Watanabe A., Kurimoto Y., Hirami Y., Morinaga C., Daimon T., Fujihara M., Akimaru H., Sakai N., Shibata Y., et al. Autologous Induced Stem-Cell–Derived Retinal Cells for Macular Degeneration. N. Engl. J. Med. 2017;376:1038–1046. doi: 10.1056/NEJMoa1608368. PubMed DOI
van Meurs J.C., ter Averst E., Hofland L.J., van Hagen P.M., Mooy C.M., Baarsma G.S., Kuijpers R.W., Boks T., Stalmans P. Autologous peripheral retinal pigment epithelium translocation in patients with subfoveal neovascular membranes. Br. J. Ophthalmol. 2004;88:110–113. doi: 10.1136/bjo.88.1.110. PubMed DOI PMC
Binder S., Krebs I., Hilgers R.-D., Abri A., Stolba U., Assadoulina A., Kellner L., Stanzel B.V., Jahn C., Feichtinger H. Outcome of Transplantation of Autologous Retinal Pigment Epithelium in Age-Related Macular Degeneration: A Prospective Trial. Investig. Ophthalmol. Vis. Sci. 2004;45:4151–4160. doi: 10.1167/iovs.04-0118. PubMed DOI
Knoernschild T., Grasbon T., Wilsch C., Kampik A., Lütjen-Drecoll E. RPE cell transplants to non-immune-privileged sites of the eye transform into fibroblast-like cells. Curr. Eye Res. 2003;27:25–34. doi: 10.1076/ceyr.27.2.25.15453. PubMed DOI
Lytvynchuk L., Ebbert A., Studenovska H., Nagymihály R., Josifovska N., Rais D., Popelka Š., Tichotová L., Nemesh Y., Čížková J., et al. Subretinal Implantation of Human Primary RPE Cells Cultured on Nanofibrous Membranes in Minipigs. Biomedicines. 2022;10:669. doi: 10.3390/biomedicines10030669. PubMed DOI PMC
Xiang P., Wu K.-C., Zhu Y., Xiang L., Li C., Chen D.-L., Chen F., Xu G., Wang A., Li M., et al. A novel Bruch’s membrane-mimetic electrospun substrate scaffold for human retinal pigment epithelium cells. Biomaterials. 2014;35:9777–9788. doi: 10.1016/j.biomaterials.2014.08.040. PubMed DOI
Kashani A.H., Lebkowski J.S., Rahhal F.M., Avery R.L., Salehi-Had H., Dang W., Lin C.-M., Mitra D., Zhu D., Thomas B.B., et al. A bioengineered retinal pigment epithelial monolayer for advanced, dry age-related macular degeneration. Sci. Transl. Med. 2018;10:eaao4097. doi: 10.1126/scitranslmed.aao4097. PubMed DOI
Sharma R., Khristov V., Rising A., Jha B.S., Dejene R., Hotaling N., Li Y., Stoddard J., Stankewicz C., Wan Q., et al. Clinical-grade stem cell–derived retinal pigment epithelium patch rescues retinal degeneration in rodents and pigs. Sci. Transl. Med. 2019;11:eaat5580. doi: 10.1126/scitranslmed.aat5580. PubMed DOI PMC
Kuroda T., Ando S., Takeno Y., Kishino A., Kimura T. Robust induction of retinal pigment epithelium cells from human induced pluripotent stem cells by inhibiting FGF/MAPK signaling. Stem Cell Res. 2019;39:101514. doi: 10.1016/j.scr.2019.101514. PubMed DOI
Choudhary P., Booth H., Gutteridge A., Surmacz B., Louca I., Steer J., Kerby J., Whiting P.J. Directing Differentiation of Pluripotent Stem Cells Toward Retinal Pigment Epithelium Lineage. Stem Cells Transl. Med. 2017;6:490–501. doi: 10.5966/sctm.2016-0088. PubMed DOI PMC
Boulton M., Dayhaw-Barker P. The role of the retinal pigment epithelium: Topographical variation and ageing changes. Eye. 2001;15:384–389. doi: 10.1038/eye.2001.141. PubMed DOI
Adler R., Canto-Soler M.V. Molecular mechanisms of optic vesicle development: Complexities, ambiguities and controversies. Dev. Biol. 2007;305:1–13. doi: 10.1016/j.ydbio.2007.01.045. PubMed DOI PMC
Zaghloul N.A., Yan B., Moody S.A. Step-wise specification of retinal stem cells during normal embryogenesis. Biol. Cell. 2005;97:321–337. doi: 10.1042/BC20040521. PubMed DOI
Zuber M.E., Gestri G., Viczian A.S., Barsacchi G., Harris W.A. Specification of the vertebrate eye by a network of eye field transcription factors. Development. 2003;130:5155–5167. doi: 10.1242/dev.00723. PubMed DOI
Kwan K.M., Otsuna H., Kidokoro H., Carney K.R., Saijoh Y., Chien C.-B. A complex choreography of cell movements shapes the vertebrate eye. Development. 2012;139:359–372. doi: 10.1242/dev.071407. PubMed DOI PMC
England S.J., Blanchard G.B., Mahadevan L., Adams R.J. A dynamic fate map of the forebrain shows how vertebrate eyes form and explains two causes of cyclopia. Development. 2006;133:4613–4617. doi: 10.1242/dev.02678. PubMed DOI
Muranishi Y., Terada K., Furukawa T. An essential role for Rax in retina and neuroendocrine system development. Dev. Growth Differ. 2012;54:341–348. doi: 10.1111/j.1440-169X.2012.01337.x. PubMed DOI
Mathers P.H., Grinberg A., Mahon K.A., Jamrich M. The Rx homeobox gene is essential for vertebrate eye development. Nature. 1997;387:603–607. doi: 10.1038/42475. PubMed DOI
Voronina V.A., Kozhemyakina E.A., O’Kernick C.M., Kahn N.D., Wenger S.L., Linberg J.V., Schneider A.S., Mathers P.H. Mutations in the human RAX homeobox gene in a patient with anophthalmia and sclerocornea. Hum. Mol. Genet. 2004;13:315–322. doi: 10.1093/hmg/ddh025. PubMed DOI
Liu W., Lagutin O., Swindell E., Jamrich M., Oliver G. Neuroretina specification in mouse embryos requires Six3-mediated suppression of Wnt8b in the anterior neural plate. J. Clin. Investig. 2010;120:3568–3577. doi: 10.1172/JCI43219. PubMed DOI PMC
Lagutin O.V., Zhu C.C., Kobayashi D., Topczewski J., Shimamura K., Puelles L., Russell H.R.C., McKinnon P.J., Solnica-Krezel L., Oliver G. Six3 repression of Wnt signaling in the anterior neuroectoderm is essential for vertebrate forebrain development. Genes Dev. 2003;17:368–379. doi: 10.1101/gad.1059403. PubMed DOI PMC
Loosli F., Winkler S., Wittbrodt J. Six3 overexpression initiates the formation of ectopic retina. Genes Dev. 1999;13:649–654. doi: 10.1101/gad.13.6.649. PubMed DOI PMC
Fuhrmann S. Chapter Three–Eye Morphogenesis and Patterning of the Optic Vesicle. In: Cagan R.L., Reh T.A., editors. Current Topics in Developmental Biology. Volume 93. Academic Press; Cambridge, MA, USA: 2010. pp. 61–84. PubMed PMC
Bharti K., Nguyen M.-T.T., Skuntz S., Bertuzzi S., Arnheiter H. The other pigment cell: Specification and development of the pigmented epithelium of the vertebrate eye. Pigment Cell Res. 2006;19:380–394. doi: 10.1111/j.1600-0749.2006.00318.x. PubMed DOI PMC
Amram B., Cohen-Tayar Y., David A., Ashery-Padan R. The retinal pigmented epithelium–from basic developmental biology research to translational approaches. Int. J. Dev. Biol. 2017;61:225–234. doi: 10.1387/ijdb.160393ra. PubMed DOI
Cohen-Tayar Y., Cohen H., Mitiagin Y., Abravanel Z., Levy C., Idelson M., Reubinoff B., Itzkovitz S., Raviv S., Kaestner K.H., et al. Pax6 regulation of Sox9 in the mouse retinal pigmented epithelium controls its timely differentiation and choroid vasculature development. Development. 2018;145:dev163691. doi: 10.1242/dev.163691. PubMed DOI
Bharti K., Liu W., Csermely T., Bertuzzi S., Arnheiter H. Alternative promoter use in eye development: The complex role and regulation of the transcription factor MITF. Development. 2008;135:1169–1178. doi: 10.1242/dev.014142. PubMed DOI PMC
Cavodeassi F., Bovolenta P. New functions for old genes: Pax6 and Mitf in eye pigment biogenesis. Pigment Cell Melanoma Res. 2014;27:1005–1007. doi: 10.1111/pcmr.12308. PubMed DOI
Raviv S., Bharti K., Rencus-Lazar S., Cohen-Tayar Y., Schyr R., Evantal N., Meshorer E., Zilberberg A., Idelson M., Reubinoff B., et al. PAX6 Regulates Melanogenesis in the Retinal Pigmented Epithelium through Feed-Forward Regulatory Interactions with MITF. PLoS Genet. 2014;10:e1004360. doi: 10.1371/journal.pgen.1004360. PubMed DOI PMC
Ramón Martínez-Morales J., Rodrigo I., Bovolenta P. Eye development: A view from the retina pigmented epithelium. BioEssays. 2004;26:766–777. doi: 10.1002/bies.20064. PubMed DOI
Fan Y., Nikitina T., Zhao J., Fleury T.J., Bhattacharyya R., Bouhassira E.E., Stein A., Woodcock C.L., Skoultchi A.I. Histone H1 Depletion in Mammals Alters Global Chromatin Structure but Causes Specific Changes in Gene Regulation. Cell. 2005;123:1199–1212. doi: 10.1016/j.cell.2005.10.028. PubMed DOI
Fyodorov D.V., Zhou B.-R., Skoultchi A.I., Bai Y. Emerging roles of linker histones in regulating chromatin structure and function. Nat. Rev. Mol. Cell Biol. 2018;19:192–206. doi: 10.1038/nrm.2017.94. PubMed DOI PMC
Luz-Madrigal A., Grajales-Esquivel E., Tangeman J., Kosse S., Liu L., Wang K., Fausey A., Liang C., Tsonis P.A., Del Rio-Tsonis K. DNA demethylation is a driver for chick retina regeneration. Epigenetics. 2020;15:998–1019. doi: 10.1080/15592294.2020.1747742. PubMed DOI PMC
Raeisossadati R., Ferrari M.F.R., Kihara A.H., AlDiri I., Gross J.M. Epigenetic regulation of retinal development. Epigenetics Chromatin. 2021;14:11. doi: 10.1186/s13072-021-00384-w. PubMed DOI PMC
Dvoriantchikova G., Seemungal R.J., Ivanov D. The epigenetic basis for the impaired ability of adult murine retinal pigment epithelium cells to regenerate retinal tissue. Sci. Rep. 2019;9:3860. doi: 10.1038/s41598-019-40262-w. PubMed DOI PMC
Wang J., Zibetti C., Shang P., Sripathi S.R., Zhang P., Cano M., Hoang T., Xia S., Ji H., Merbs S.L., et al. ATAC-Seq analysis reveals a widespread decrease of chromatin accessibility in age-related macular degeneration. Nat. Commun. 2018;9:1364. doi: 10.1038/s41467-018-03856-y. PubMed DOI PMC
Kim Y., Jeong Y., Kwon K., Ismail T., Lee H.-K., Kim C., Park J.-W., Kwon O.-S., Kang B.-S., Lee D.-S., et al. Physiological effects of KDM5C on neural crest migration and eye formation during vertebrate development. Epigenetics Chromatin. 2018;11:72. doi: 10.1186/s13072-018-0241-x. PubMed DOI PMC
Karg M., Lu Y., Hoffmann E., Philipose H., Sinclair D., Ksander B., Saint-Geniez M. In vivo epigenetic reprogramming reverses the age-induced morphological decline of retinal pigment epithelial cells. Investig. Ophthalmol. Vis. Sci. 2021;62:3283.
Rai K., Chidester S., Zavala C.V., Manos E.J., James S.R., Karpf A.R., Jones D.A., Cairns B.R. Dnmt2 functions in the cytoplasm to promote liver, brain, and retina development in zebrafish. Genes Dev. 2007;21:261–266. doi: 10.1101/gad.1472907. PubMed DOI PMC
Nasonkin I.O., Merbs S.L., Lazo K., Oliver V.F., Brooks M., Patel K., Enke R.A., Nellissery J., Jamrich M., Le Y.Z., et al. Conditional knockdown of DNA methyltransferase 1 reveals a key role of retinal pigment epithelium integrity in photoreceptor outer segment morphogenesis. Development. 2013;140:1330–1341. doi: 10.1242/dev.086603. PubMed DOI PMC
Adil A., Kumar V., Jan A.T., Asger M. Single-Cell Transcriptomics: Current Methods and Challenges in Data Acquisition and Analysis. Front. Neurosci. 2021;15:591122. doi: 10.3389/fnins.2021.591122. PubMed DOI PMC
Hu Y., Wang X., Hu B., Mao Y., Chen Y., Yan L., Yong J., Dong J., Wei Y., Wang W., et al. Dissecting the transcriptome landscape of the human fetal neural retina and retinal pigment epithelium by single-cell RNA-seq analysis. PLoS Biol. 2019;17:e3000365. doi: 10.1371/journal.pbio.3000365. PubMed DOI PMC
Booij J.C., van Soest S., Swagemakers S.M.A., Essing A.H.W., Verkerk A.J.M.H., van der Spek P.J., Gorgels T.G.M.F., Bergen A.A.B. Functional annotation of the human retinal pigment epithelium transcriptome. BMC Genom. 2009;10:164. doi: 10.1186/1471-2164-10-164. PubMed DOI PMC
Lidgerwood G.E., Senabouth A., Smith-Anttila C.J.A., Gnanasambandapillai V., Kaczorowski D.C., Amann-Zalcenstein D., Fletcher E.L., Naik S.H., Hewitt A.W., Powell J.E., et al. Transcriptomic Profiling of Human Pluripotent Stem Cell-derived Retinal Pigment Epithelium over Time. Genom. Proteom. Bioinform. 2021;19:223–242. doi: 10.1016/j.gpb.2020.08.002. PubMed DOI PMC
Voigt A.P., Mulfaul K., Mullin N.K., Flamme-Wiese M.J., Giacalone J.C., Stone E.M., Tucker B.A., Scheetz T.E., Mullins R.F. Single-cell transcriptomics of the human retinal pigment epithelium and choroid in health and macular degeneration. Proc. Natl. Acad. Sci. USA. 2019;116:24100–24107. doi: 10.1073/pnas.1914143116. PubMed DOI PMC
Whitmore S.S., Wagner A.H., DeLuca A.P., Drack A.V., Stone E.M., Tucker B.A., Zeng S., Braun T.A., Mullins R.F., Scheetz T.E. Transcriptomic analysis across nasal, temporal, and macular regions of human neural retina and RPE/choroid by RNA-Seq. Exp. Eye Res. 2014;129:93–106. doi: 10.1016/j.exer.2014.11.001. PubMed DOI PMC
West K.A., Yan L., Shadrach K., Sun J., Hasan A., Miyagi M., Crabb J.S., Hollyfield J.G., Marmorstein A.D., Crabb J.W. Protein Database, Human Retinal Pigment Epithelium. Mol. Cell. Proteom. 2003;2:37–49. doi: 10.1074/mcp.D200001-MCP200. PubMed DOI
Hongisto H., Jylhä A., Nättinen J., Rieck J., Ilmarinen T., Veréb Z., Aapola U., Beuerman R., Petrovski G., Uusitalo H., et al. Comparative proteomic analysis of human embryonic stem cell-derived and primary human retinal pigment epithelium. Sci. Rep. 2017;7:6016. doi: 10.1038/s41598-017-06233-9. PubMed DOI PMC
Pelkonen L., Sato K., Reinisalo M., Kidron H., Tachikawa M., Watanabe M., Uchida Y., Urtti A., Terasaki T. LC–MS/MS Based Quantitation of ABC and SLC Transporter Proteins in Plasma Membranes of Cultured Primary Human Retinal Pigment Epithelium Cells and Immortalized ARPE19 Cell Line. Mol. Pharm. 2017;14:605–613. doi: 10.1021/acs.molpharmaceut.6b00782. PubMed DOI
Pfeffer B.A., Fliesler S.J. Reassessing the suitability of ARPE-19 cells as a valid model of native RPE biology. Exp. Eye Res. 2022;219:109046. doi: 10.1016/j.exer.2022.109046. PubMed DOI
Zhou M., Geathers J.S., Grillo S.L., Weber S.R., Wang W., Zhao Y., Sundstrom J.M. Role of Epithelial-Mesenchymal Transition in Retinal Pigment Epithelium Dysfunction. Front. Cell Dev. Biol. 2020;8:501. doi: 10.3389/fcell.2020.00501. PubMed DOI PMC
Alge C.S., Suppmann S., Priglinger S.G., Neubauer A.S., May C.A., Hauck S., Welge-Lussen U., Ueffing M., Kampik A. Comparative Proteome Analysis of Native Differentiated and Cultured Dedifferentiated Human RPE Cells. Investig. Ophthalmol. Vis. Sci. 2003;44:3629–3641. doi: 10.1167/iovs.02-1225. PubMed DOI
An E., Lu X., Flippin J., Devaney J.M., Halligan B., Hoffman E., Csaky K., Hathout Y. Secreted Proteome Profiling in Human RPE Cell Cultures Derived from Donors with Age Related Macular Degeneration and Age Matched Healthy Donors. J. Proteome Res. 2006;5:2599–2610. doi: 10.1021/pr060121j. PubMed DOI
Lee R.C., Feinbaum R.L., Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-4. Cell. 1993;75:843–854. doi: 10.1016/0092-8674(93)90529-Y. PubMed DOI
Wightman B., Ha I., Ruvkun G. Posttranscriptional regulation of the heterochronic gene lin-4 by lin-4 mediates temporal pattern formation in C. elegans. Cell. 1993;75:855–862. doi: 10.1016/0092-8674(93)90530-4. PubMed DOI
Ha M., Kim V.N. Regulation of microRNA biogenesis. Nat. Rev. Mol. Cell Biol. 2014;15:509–524. doi: 10.1038/nrm3838. PubMed DOI
Treiber T., Treiber N., Meister G. Regulation of microRNA biogenesis and its crosstalk with other cellular pathways. Nat. Rev. Mol. Cell Biol. 2019;20:5–20. doi: 10.1038/s41580-018-0059-1. PubMed DOI
Wang H.-C., Greene W.A., Kaini R.R., Shen-Gunther J., Chen H.-I.H., Car H., Wang Y. Profiling the microRNA Expression in Human iPS and iPS-derived Retinal Pigment Epithelium. Cancer Inform. 2014;13:CIN-S14074. doi: 10.4137/CIN.S14074. PubMed DOI PMC
Hu G., Huang K., Yu J., Gopalakrishna-Pillai S., Kong J., Xu H., Liu Z., Zhang K., Xu J., Luo Y., et al. Identification of miRNA Signatures during the Differentiation of hESCs into Retinal Pigment Epithelial Cells. PLoS ONE. 2012;7:e37224. doi: 10.1371/journal.pone.0037224. PubMed DOI PMC
Davis N., Mor E., Ashery-Padan R. Roles for Dicer1 in the patterning and differentiation of the optic cup neuroepithelium. Development. 2011;138:127–138. doi: 10.1242/dev.053637. PubMed DOI
Sundermeier T.R., Sakami S., Sahu B., Howell S.J., Gao S., Dong Z., Golczak M., Maeda A., Palczewski K. MicroRNA-processing Enzymes Are Essential for Survival and Function of Mature Retinal Pigmented Epithelial Cells in Mice. J. Biol. Chem. 2017;292:3366–3378. doi: 10.1074/jbc.M116.770024. PubMed DOI PMC
Iacovelli J., Zhao C., Wolkow N., Veldman P., Gollomp K., Ojha P., Lukinova N., King A., Feiner L., Esumi N., et al. Generation of Cre Transgenic Mice with Postnatal RPE-Specific Ocular Expression. Investig. Ophthalmol. Vis. Sci. 2011;52:1378–1383. doi: 10.1167/iovs.10-6347. PubMed DOI PMC
Ohana R., Weiman-Kelman B., Raviv S., Tamm E.R., Pasmanik-Chor M., Rinon A., Netanely D., Shamir R., Solomon A.S., Ashery-Padan R. MicroRNAs are essential for differentiation of the retinal pigmented epithelium and maturation of adjacent photoreceptors. Development. 2015;142:2487–2498. doi: 10.1242/jcs.177584. PubMed DOI
Du S.W., Palczewski K. MicroRNA regulation of critical retinal pigment epithelial functions. Trends Neurosci. 2022;45:78–90. doi: 10.1016/j.tins.2021.10.008. PubMed DOI PMC
Adijanto J., Castorino J.J., Wang Z.-X., Maminishkis A., Grunwald G.B., Philp N.J. Microphthalmia-associated Transcription Factor (MITF) Promotes Differentiation of Human Retinal Pigment Epithelium (RPE) by Regulating microRNAs-204/211 Expression. J. Biol. Chem. 2012;287:20491–20503. doi: 10.1074/jbc.M112.354761. PubMed DOI PMC
Jiang C., Qin B., Liu G., Sun X., Shi H., Ding S., Liu Y., Zhu M., Chen X., Zhao C. MicroRNA-184 promotes differentiation of the retinal pigment epithelium by targeting the AKT2/mTOR signaling pathway. Oncotarget. 2016;7:52340–52353. doi: 10.18632/oncotarget.10566. PubMed DOI PMC
Choi S.W., Kim J.-J., Seo M.-S., Park S.-B., Kang T.-W., Lee J.Y., Lee B.-C., Kang I., Shin T.-H., Kim H.-S., et al. miR-410 Inhibition Induces RPE Differentiation of Amniotic Epithelial Stem Cells via Overexpression of OTX2 and RPE65. Stem Cell Rev. Rep. 2015;11:376–386. doi: 10.1007/s12015-014-9568-2. PubMed DOI
Harhaj N.S., Antonetti D.A. Regulation of tight junctions and loss of barrier function in pathophysiology. Int. J. Biochem. Cell Biol. 2004;36:1206–1237. doi: 10.1016/j.biocel.2003.08.007. PubMed DOI
Wang F.E., Zhang C., Maminishkis A., Dong L., Zhi C., Li R., Zhao J., Majerciak V., Gaur A.B., Chen S., et al. MicroRNA-204/211 alters epithelial physiology. FASEB J. 2010;24:1552–1571. doi: 10.1096/fj.08-125856. PubMed DOI PMC
Takayama K., Kaneko H., Hwang S.-J., Ye F., Higuchi A., Tsunekawa T., Matsuura T., Iwase T., Asami T., Ito Y., et al. Increased Ocular Levels of MicroRNA-148a in Cases of Retinal Detachment Promote Epithelial–Mesenchymal Transition. Investig. Ophthalmol. Vis. Sci. 2016;57:2699–2705. doi: 10.1167/iovs.15-18660. PubMed DOI
Zhang C., Miyagishima K.J., Dong L., Rising A., Nimmagadda M., Liang G., Sharma R., Dejene R., Wang Y., Abu-Asab M., et al. Regulation of phagolysosomal activity by miR-204 critically influences structure and function of retinal pigment epithelium/retina. Hum. Mol. Genet. 2019;28:3355–3368. doi: 10.1093/hmg/ddz171. PubMed DOI PMC
Murad N., Kokkinaki M., Gunawardena N., Gunawan M.S., Hathout Y., Janczura K.J., Theos A.C., Golestaneh N. miR-184 regulates ezrin, LAMP-1 expression, affects phagocytosis in human retinal pigment epithelium and is downregulated in age-related macular degeneration. FEBS J. 2014;281:5251–5264. doi: 10.1111/febs.13066. PubMed DOI
Choi S.W., Kim J.-J., Seo M.-S., Park S.-B., Shin T.-H., Shin J.-H., Seo Y., Kim H.-S., Kang K.-S. Inhibition by miR-410 facilitates direct retinal pigment epithelium differentiation of umbilical cord blood-derived mesenchymal stem cells. J. Vet. Sci. 2017;18:59–65. doi: 10.4142/jvs.2017.18.1.59. PubMed DOI PMC
Cui L., Lyu Y., Jin X., Wang Y., Li X., Wang J., Zhang J., Deng Z., Yang N., Zheng Z., et al. miR-194 suppresses epithelial-mesenchymal transition of retinal pigment epithelial cells by directly targeting ZEB1. Ann. Transl. Med. 2019;7:751. doi: 10.21037/atm.2019.11.90. PubMed DOI PMC
Zhang J., Wang J., Zheng L., Wang M., Lu Y., Li Z., Lian C., Mao S., Hou X., Li S., et al. miR-25 Mediates Retinal Degeneration Via Inhibiting ITGAV and PEDF in Rat. Curr. Mol. Med. 2017;17:359–374. doi: 10.2174/1566524018666171205122540. PubMed DOI
Zhang K., Ding S. Stem Cells and Eye Development. N. Engl. J. Med. 2011;365:370–372. doi: 10.1056/NEJMcibr1105280. PubMed DOI PMC
Sonoda S., Spee C., Barron E., Ryan S.J., Kannan R., Hinton D.R. A protocol for the culture and differentiation of highly polarized human retinal pigment epithelial cells. Nat. Protoc. 2009;4:662–673. doi: 10.1038/nprot.2009.33. PubMed DOI PMC
Limnios I.J., Chau Y.-Q., Skabo S.J., Surrao D.C., O’Neill H.C. Efficient differentiation of human embryonic stem cells to retinal pigment epithelium under defined conditions. Stem Cell Res. Ther. 2021;12:248. doi: 10.1186/s13287-021-02316-7. PubMed DOI PMC
Zahabi A., Shahbazi E., Ahmadieh H., Hassani S.-N., Totonchi M., Taei A., Masoudi N., Ebrahimi M., Aghdami N., Seifinejad A., et al. A New Efficient Protocol for Directed Differentiation of Retinal Pigmented Epithelial Cells from Normal and Retinal Disease Induced Pluripotent Stem Cells. Stem Cells Dev. 2011;21:2262–2272. doi: 10.1089/scd.2011.0599. PubMed DOI
Greber B., Coulon P., Zhang M., Moritz S., Frank S., Müller-Molina A.J., Araúzo-Bravo M.J., Han D.W., Pape H.-C., Schöler H.R. FGF signalling inhibits neural induction in human embryonic stem cells. EMBO J. 2011;30:4874–4884. doi: 10.1038/emboj.2011.407. PubMed DOI PMC
Sun C., Zhou J., Meng X. Primary cilia in retinal pigment epithelium development and diseases. J. Cell. Mol. Med. 2021;25:9084–9088. doi: 10.1111/jcmm.16882. PubMed DOI PMC
Fuhrmann S., Levine E.M., Reh T.A. Extraocular mesenchyme patterns the optic vesicle during early eye development in the embryonic chick. Development. 2000;127:4599–4609. doi: 10.1242/dev.127.21.4599. PubMed DOI
Buse E., de Groot H. Generation of developmental patterns in the neuroepithelium of the developing mammalian eye: The pigment epithelium of the eye. Neurosci. Lett. 1991;126:63–66. doi: 10.1016/0304-3940(91)90372-Z. PubMed DOI