Electrospun poly(l-lactide-co-dl-lactide) nanofibrous scaffold as substrate for ex vivo limbal epithelial cell cultivation
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
38803982
PubMed Central
PMC11128869
DOI
10.1016/j.heliyon.2024.e30970
PII: S2405-8440(24)07001-4
Knihovny.cz E-zdroje
- Klíčová slova
- Biomaterial, Limbal epithelial stem cells, Ocular tissue engineering, PDLLA, Tissue sealant,
- Publikační typ
- časopisecké články MeSH
Ultrathin electrospun poly (l-lactide-co-dl-lactide) nanofibrous membranes coated with fibronectin were explored as scaffolds for the ex vivo cultivation of limbal epithelial cells (LECs) for the treatment of limbal stem cell deficiency. The developed scaffolds were compared with the "gold-standard" fibrin gel. The resulting membranes composed of nanofibers possessed a very low thickness of 4 μm and allowed very good optical transparency in the wet state. The fibronectin-coated nanofibrous scaffolds demonstrated LEC expansion and successful cultivation similar to that on fibrin gel. Unlike the regular cobblestone epithelial cell morphology on the fibrin gel, the nanofibrous scaffold presented a mostly irregular epithelial morphology with a shift to a mesenchymal phenotype, as confirmed by the upregulation of profibroblastic genes: ACTA2 (p = 0.023), FBLN1 (p < 0.001), and THY1 (p < 0.001). Both culture conditions revealed comparable expression of stem cell markers, including KLF4, ΔNp63α and ABCG2, emphasizing the promise of polylactide-based nanofibrous membranes for further investigations.
Zobrazit více v PubMed
Singh V., Tiwari A., Kethiri A.R., Sangwan V.S. Current perspectives of limbal-derived stem cells and its application in ocular surface regeneration and limbal stem cell transplantation. Stem Cells Transl. Med. 2021;10(8):1121–1128. PubMed PMC
Gonzalez G., Sasamoto Y., Ksander B.R., Frank M.H., Frank N.Y. Limbal stem cells: identity, developmental origin, and therapeutic potential. Wiley Interdiscip. Rev. Dev. Biol. 2018;7(2) PubMed PMC
Polisetti N., Roschinski B., Schlötzer-Schrehardt U., Maier P., Schlunck G., Reinhard T. A decellularized human limbal scaffold for limbal stem cell niche reconstruction. Int. J. Mol. Sci. 2021;22(18) PubMed PMC
Bonnet C., Roberts J.S., Deng S.X. Limbal stem cell diseases. Exp. Eye Res. 2021;205 PubMed PMC
Yang S., Lee H.J., Shin S., Park I.Y., Chung S.-H. Limbal epithelial stem cell sheets from young donors have better regenerative potential. Sci. Rep. 2022;12(1) PubMed PMC
Cabral J.V., Jackson C.J., Utheim T.P., Jirsova K. Ex vivo cultivated oral mucosal epithelial cell transplantation for limbal stem cell deficiency: a review. Stem Cell Res. Ther. 2020;11(1):301. PubMed PMC
Yazdanpanah G., Haq Z., Kang K., Jabbehdari S., Rosenblatt M.L., Djalilian A.R. Strategies for reconstructing the limbal stem cell niche. Ocul. Surf. 2019;17(2):230–240. PubMed PMC
Brejchova K., Trosan P., Studeny P., Skalicka P., Utheim T.P., Bednar J., et al. Characterization and comparison of human limbal explant cultures grown under defined and xeno-free conditions. Exp. Eye Res. 2018;176:20–28. PubMed
Rama P., Bonini S., Lambiase A., Golisano O., Paterna P., De Luca M., et al. Autologous fibrin-cultured limbal stem cells permanently restore the corneal surface of patients with total limbal stem cell deficiency. Transplantation. 2001;72(9) PubMed
Cakmak O., Babakurban S.T., Akkuzu H.G., Bilgi S., Ovalı E., Kongur M., et al. Injectable tissue-engineered cartilage using commercially available fibrin glue. Laryngoscope. 2013;123(12):2986–2992. PubMed
Ryu J.H., Kim I.-K., Cho S.-W., Cho M.-C., Hwang K.-K., Piao H., et al. Implantation of bone marrow mononuclear cells using injectable fibrin matrix enhances neovascularization in infarcted myocardium. Biomaterials. 2005;26(3):319–326. PubMed
Hong H., Stegemann J.P. 2D and 3D collagen and fibrin biopolymers promote specific ECM and integrin gene expression by vascular smooth muscle cells. J. Biomater. Sci. Polym. Ed. 2008;19(10):1279–1293. PubMed PMC
Forni M.F., Loureiro R.R., Cristovam P.C., Bonatti J.A., Sogayar M.C., Gomes J.Á.P. Comparison between different biomaterial scaffolds for limbal-derived stem cells growth and enrichment. Curr. Eye Res. 2013;38(1):27–34. PubMed
Talbot M., Carrier P., Giasson C.J., Deschambeault A., Guérin S.L., Auger F.A., et al. Autologous transplantation of rabbit limbal epithelia cultured on fibrin gels for ocular surface reconstruction. Mol. Vis. 2006;12:65–75. PubMed
Kneser U., Voogd A., Ohnolz J., Buettner O., Stangenberg L., Zhang Y.H., et al. Fibrin gel-immobilized primary osteoblasts in calcium phosphate bone cement: in vivo evaluation with regard to application as injectable biological bone substitute. Cells Tissues Organs. 2005;179(4):158–169. PubMed
Li Y., Meng H., Liu Y., Lee B.P. Fibrin gel as an injectable biodegradable scaffold and cell carrier for tissue engineering. Sci. World J. 2015 PubMed PMC
Nakamura T., Inatomi T., Sotozono C., Amemiya T., Kanamura N., Kinoshita S. Transplantation of cultivated autologous oral mucosal epithelial cells in patients with severe ocular surface disorders. Br. J. Ophthalmol. 2004;88(10):1280–1284. PubMed PMC
Inatomi T., Nakamura T., Koizumi N., Sotozono C., Yokoi N., Kinoshita S. Midterm results on ocular surface reconstruction using cultivated autologous oral mucosal epithelial transplantation. Am. J. Ophthalmol. 2006;141(2):267–275. PubMed
Ang L.P., Nakamura T., Inatomi T., Sotozono C., Koizumi N., Yokoi N., et al. Autologous serum-derived cultivated oral epithelial transplants for severe ocular surface disease. Arch. Ophthalmol. 2006;124(11):1543–1551. PubMed
Lee H.J., Nam S.M., Choi S.K., Seo K.Y., Kim H.O., Chung S.-H. Comparative study of substrate free and amniotic membrane scaffolds for cultivation of limbal epithelial sheet. Sci. Rep. 2018;8(1) PubMed PMC
Le Q., Deng S.X. The application of human amniotic membrane in the surgical management of limbal stem cell deficiency. Ocul. Surf. 2019;17(2):221–229. PubMed PMC
Malhotra C., Jain A.K. Human amniotic membrane transplantation: different modalities of its use in ophthalmology. World J. Transplant. 2014;4(2):111–121. PubMed PMC
Sharma S., Mohanty S., Gupta D., Jassal M., Agrawal A.K., Tandon R. Cellular response of limbal epithelial cells on electrospun poly-ε-caprolactone nanofibrous scaffolds for ocular surface bioengineering: a preliminary in vitro study. Mol. Vis. 2011;17:2898–2910. PubMed PMC
Haagdorens M., Cėpla V., Melsbach E., Koivusalo L., Skottman H., Griffith M., et al. In vitro cultivation of limbal epithelial stem cells on surface-modified crosslinked collagen scaffolds. Stem Cell. Int. 2019;2019 PubMed PMC
Pellegrini G., Ardigò D., Milazzo G., Iotti G., Guatelli P., Pelosi D., et al. Navigating market authorization: the path holoclar took to become the first stem cell product approved in the European union. Stem Cells Transl. Med. 2018;7(1):146–154. PubMed PMC
Hotaling N.A., Khristov V., Wan Q., Sharma R., Jha B.S., Lotfi M., et al. Nanofiber scaffold-based tissue-engineered retinal pigment epithelium to treat degenerative eye diseases. J. Ocul. Pharmacol. Therapeut. 2016;32(5):272–285. PubMed PMC
Stanzel B.V., Liu Z., Somboonthanakij S., Wongsawad W., Brinken R., Eter N., et al. Human RPE stem cells grown into polarized RPE monolayers on a polyester matrix are maintained after grafting into rabbit subretinal space. Stem Cell Rep. 2014;2(1):64–77. PubMed PMC
Surrao D.C., Greferath U., Chau Y.-Q., Skabo S.J., Huynh M., Shelat K.J., et al. Design, development and characterization of synthetic Bruch's membranes. Acta Biomater. 2017;64:357–376. PubMed
Abazari M.F., Hosseini Z., Zare Karizi S., Norouzi S., Amini Faskhoudi M., Saburi E., et al. Different osteogenic differentiation potential of mesenchymal stem cells on three different polymeric substrates. Gene. 2020:740–144534. PubMed
X H.Y. In: Biointegration of Medicasl Implant Materials. Sharma C., editor. Woodhead Publishing; 2010. Corneal Tissue Engineering.
Burkersroda F.v., Schedl L., Göpferich A. Why degradable polymers undergo surface erosion or bulk erosion. Biomaterials. 2002;23(21):4221–4231. PubMed
Sharma R., Khristov V., Rising A., Jha B.S., Dejene R., Hotaling N., et al. Clinical-grade stem cell-derived retinal pigment epithelium patch rescues retinal degeneration in rodents and pigs. Sci. Transl. Med. 2019;11(475) PubMed PMC
Mirzaei A., Saburi E., Islami M., Ardeshirylajimi A., Omrani M.D., Taheri M., et al. Bladder smooth muscle cell differentiation of the human induced pluripotent stem cells on electrospun Poly(lactide-co-glycolide) nanofibrous structure. Gene. 2019;694:26–32. PubMed
Liu Z., Yu N., Holz F.G., Yang F., Stanzel B.V. Enhancement of retinal pigment epithelial culture characteristics and subretinal space tolerance of scaffolds with 200 nm fiber topography. Biomaterials. 2014;35(9):2837–2850. PubMed
Sanie-Jahromi F., Eghtedari M., Mirzaei E., Jalalpour M.H., Asvar Z., Nejabat M., et al. Propagation of limbal stem cells on polycaprolactone and polycaprolactone/gelatin fibrous scaffolds and transplantation in animal model. Bioimpacts. 2020;10(1):45–54. PubMed PMC
Zdraveva E., Bendelja K., Bočkor L., Dolenec T., Mijović B. Detection of limbal stem cells adhered to melt electrospun silk fibroin and gelatin-modified polylactic acid scaffolds. Polymers. 2023;15(3):777. PubMed PMC
Kubies D., Rypáček F., Kovářová J., Lednický F. Microdomain structure in polylactide-block-poly(ethylene oxide) copolymer films. Biomaterials. 2000;21(5):529–536. PubMed
Popelka Š., Studenovská H., Abelová L., Ardan T., Studený P., Straňák Z., et al. A frame-supported ultrathin electrospun polymer membrane for transplantation of retinal pigment epithelial cells. Biomed. Mater. 2015;10(4) PubMed
Riedl B., Prud'Homme R.E. Thermodynamic study of poly(vinyl chloride)/polyester blends by inverse-phase gas chromatography at 120°C. J. Polym. Sci. B Polym. Phys. 1986;24(11):2565–2582.
Team R. RStudio, PBC; Boston, MA, USA: 2023. RStudio: Integrated Development for R.http://www.rstudio.com/ Available from:
Hadley W. Springer New York; NY: 2009. ggplot2: Elegant Graphics for Data Analysis. 978-0-387-98141-3.
Mázl Chánová E., Pop-Georgievski O., Kumorek M.M., Janoušková O., Machová L., Kubies D., et al. Polymer brushes based on PLLA-b-PEO colloids for the preparation of protein resistant PLA surfaces. Biomater. Sci. 2017;5(6):1130–1143. PubMed
Wolbank S., Pichler V., Ferguson J.C., Meinl A., van Griensven M., Goppelt A., et al. Non-invasive in vivo tracking of fibrin degradation by fluorescence imaging. J. Tissue Eng. Regen. Med. 2015;9(8):973–976. PubMed
Zhang X., Wyss U.P., Pichora D., Goosen M.F.A. An investigation of poly(lactic acid) degradation. J. Bioact. Compat Polym. 1994;9(1):80–100.
Lehtonen T.J., Tuominen J.U., Hiekkanen E. Resorbable composites with bioresorbable glass fibers for load-bearing applications. In vitro degradation and degradation mechanism. Acta Biomater. 2013;9(1):4868–4877. PubMed
Lytvynchuk L., Ebbert A., Studenovska H., Nagymihály R., Josifovska N., Rais D., et al. Subretinal implantation of human primary RPE cells cultured on nanofibrous membranes in minipigs. Biomedicines. 2022;10(3):669. PubMed PMC
Popelka Š., Studenovská H., Abelová L., Ardan T., Studený P., Straňák Z., et al. A frame-supported ultrathin electrospun polymer membrane for transplantation of retinal pigment epithelial cells. Biomed. Mater. 2015;10(4) PubMed
Valente T.A.M., Silva D.M., Gomes P.S., Fernandes M.H., Santos J.D., Sencadas V. Effect of sterilization methods on electrospun poly(lactic acid) (PLA) fiber alignment for biomedical applications. ACS Appl. Mater. Interfaces. 2016;8(5):3241–3249. PubMed
Paneva D., Spasova M., Stoyanova N., Manolova N., Rashkov I. Electrospun fibers from polylactide-based stereocomplex: why? Int. J. Polym. Mater. Polym. Biomater. 2021;70(4):270–286.
Told R., Ujfalusi Z., Pentek A., Kerenyi M., Banfai K., Vizi A., et al. A state-of-the-art guide to the sterilization of thermoplastic polymers and resin materials used in the additive manufacturing of medical devices. Mater. Des. 2022:223–111119.
Polisetti N., Agarwal P., Khan I., Kondaiah P., Sangwan V.S., Vemuganti G.K. Gene expression profile of epithelial cells and mesenchymal cells derived from limbal explant culture. Mol. Vis. 2010;16:1227–1240. PubMed PMC
Mariappan I., Kacham S., Purushotham J., Maddileti S., Siamwala J., Sangwan V.S. Spatial distribution of niche and stem cells in ex vivo human limbal cultures. Stem Cells Transl. Med. 2014;3(11):1331–1341. PubMed PMC
Levis H.J., Massie I., Dziasko M.A., Kaasi A., Daniels J.T. Rapid tissue engineering of biomimetic human corneal limbal crypts with 3D niche architecture. Biomaterials. 2013;34(35):8860–8868. PubMed
Ortega Í., Ryan A.J., Deshpande P., MacNeil S., Claeyssens F. Combined microfabrication and electrospinning to produce 3-D architectures for corneal repair. Acta Biomater. 2013;9(3):5511–5520. PubMed
Di Girolamo N., Sarris M., Chui J., Cheema H., Coroneo M.T., Wakefield D. Localization of the low-affinity nerve growth factor receptor p75 in human limbal epithelial cells. J. Cell Mol. Med. 2008;12(6b):2799–2811. PubMed PMC
Gur G., Rubin C., Katz M., Amit I., Citri A., Nilsson J., et al. LRIG1 restricts growth factor signaling by enhancing receptor ubiquitylation and degradation. EMBO J. 2004;23(16):3270–3281. PubMed PMC
Herdenberg C., Hedman H. Hypothesis: Do LRIG proteins regulate stem cell quiescence by promoting BMP signaling? Stem Cell Rev. Rep. 2023;19(1):59–66. PubMed PMC
Roy O., Leclerc V.B., Bourget J.M., Thériault M., Proulx S. Understanding the process of corneal endothelial morphological change in vitro. Invest. Ophthalmol. Vis. Sci. 2015;56(2):1228–1237. PubMed
Pei Y., Sherry D.M., McDermott A.M. Thy-1 distinguishes human corneal fibroblasts and myofibroblasts from keratocytes. Exp. Eye Res. 2004;79(5):705–712. PubMed
Fujikawa L.S., Foster C.S., Gipson I.K., Colvin R.B. Basement membrane components in healing rabbit corneal epithelial wounds: immunofluorescence and ultrastructural studies. J. Cell Biol. 1984;98(1):128–138. PubMed PMC
Murakami J., Nishida T., Otori T. Coordinated appearance of beta 1 integrins and fibronectin during corneal wound healing. J. Lab. Clin. Med. 1992;120(1):86–93. PubMed
Câmara J., Jarai G. Epithelial-mesenchymal transition in primary human bronchial epithelial cells is Smad-dependent and enhanced by fibronectin and TNF-alpha. Fibrogenesis Tissue Repair. 2010;3(1):2. PubMed PMC
Nasser W., Amitai-Lange A., Soteriou D., Hanna R., Tiosano B., Fuchs Y., et al. Corneal-committed cells restore the stem cell pool and tissue boundary following injury. Cell Rep. 2018;22(2):323–331. PubMed
Ruan Y., Jiang S., Musayeva A., Pfeiffer N., Gericke A. Corneal epithelial stem cells-physiology, pathophysiology and therapeutic options. Cells. 2021;10(9) PubMed PMC
Albert R., Veréb Z., Csomós K., Moe M.C., Johnsen E.O., Olstad O.K., et al. Cultivation and characterization of cornea limbal epithelial stem cells on lens capsule in animal material-free medium. PLoS One. 2012;7(10) PubMed PMC
Moll R., Divo M., Langbein L. The human keratins: biology and pathology. Histochem. Cell Biol. 2008;129(6):705–733. PubMed PMC
Fujimoto S., Hayashi R., Hara S., Sasamoto Y., Harrington J., Tsujikawa M., et al. KLF4 prevents epithelial to mesenchymal transition in human corneal epithelial cells via endogenous TGF-β2 suppression. Regen. Ther. 2019;11:249–257. PubMed PMC
Di Iorio E., Barbaro V., Ruzza A., Ponzin D., Pellegrini G., De Luca M. Isoforms of DeltaNp63 and the migration of ocular limbal cells in human corneal regeneration. Proc. Natl. Acad. Sci. U. S. A. 2005;102(27):9523–9528. PubMed PMC
Ebrahimi M., Taghi-Abadi E., Baharvand H. Limbal stem cells in review. J. Ophthalmic Vis. Res. 2009;4(1):40–58. PubMed PMC
De Paiva C.S., Pflugfelder S.C., Li D.Q. Cell size correlates with phenotype and proliferative capacity in human corneal epithelial cells. Stem Cell. 2006;24(2):368–375. PubMed PMC