Large Animal Models of Huntington's Disease: What We Have Learned and Where We Need to Go Next
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, přehledy
Grantová podpora
P51 OD011092
NIH HHS - United States
P51 RR000163
NCRR NIH HHS - United States
R01 NS099136
NINDS NIH HHS - United States
PubMed
32925082
PubMed Central
PMC7597371
DOI
10.3233/jhd-200425
PII: JHD200425
Knihovny.cz E-zdroje
- Klíčová slova
- Minipigs, nonhuman primates, sheep, therapeutics,
- MeSH
- geneticky modifikovaná zvířata * MeSH
- Huntingtonova nemoc * genetika patologie patofyziologie terapie MeSH
- miniaturní prasata MeSH
- modely nemocí na zvířatech * MeSH
- ovce MeSH
- prasata MeSH
- primáti MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Genetically modified rodent models of Huntington's disease (HD) have been especially valuable to our understanding of HD pathology and the mechanisms by which the mutant HTT gene alters physiology. However, due to inherent differences in genetics, neuroanatomy, neurocircuitry and neurophysiology, animal models do not always faithfully or fully recapitulate human disease features or adequately predict a clinical response to treatment. Therefore, conducting translational studies of candidate HD therapeutics only in a single species (i.e. mouse disease models) may not be sufficient. Large animal models of HD have been shown to be valuable to the HD research community and the expectation is that the need for translational studies that span rodent and large animal models will grow. Here, we review the large animal models of HD that have been created to date, with specific commentary on differences between the models, the strengths and disadvantages of each, and how we can advance useful models to study disease pathophysiology, biomarker development and evaluation of promising therapeutics.
CHDI Management CHDI Foundation Princeton NJ USA
Diplomate MedVet American College of Veterinary Internal Medicine Neurology Columbus OH USA
Institute of Animal Physiology and Genetics Libechov Czech Republic
Oregon National Primate Research Center at The Oregon Health and Science University Portland OR USA
Zobrazit více v PubMed
The Huntington’s Disease Collaborative Research Group. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell. 1993;72(6):971–83. doi: 10.1016/0092-8674(93)90585-e PubMed DOI
Farshim PP, Bates GP. Mouse models of Huntington’s disease. Methods Mol Biol. 2018;1780:97–120. doi: 10.1007/978-1-4939-7825-0_6 PubMed DOI
Chang R, Liu X, Li S, Li XJ. Transgenic animal models for study of the pathogenesis of Huntington’s disease and therapy. Drug Des Devel Ther. 2015;9:2179–88. doi: 10.2147/DDDT.S58470 PubMed DOI PMC
Beaumon V, Zhong S, Lin H, Xu W, Bradaia A, Steidl E, et al. Phosphodiesterase 10A inhibition improves cortico-basal ganglia function in Huntington’s disease models. Neuron. 2016;92(6):1220–37. doi: 10.1016/j.neuron.2016.10.064 PubMed DOI
McGarry A, McDermott M, Kieburtz K, de Blieck EA, Beal F, Marder K, et al. A randomized, double-blind, placebo-controlled trial of coenzyme Q10 in Huntington disease. Neurology. 2017;88(2):152–9. doi: 10.1212/WNL.0000000000003478 PubMed DOI PMC
Crook ZR, Housman D. Huntington’s disease: Can mice lead the way to treatment? Neuron. 2011;69(3):423–35. doi: 10.1016/j.neuron.2010.12.035 PubMed DOI PMC
Wild EJ, Tabrizi SJ. Therapies targeting DNA and RNA in Huntington’s disease. Lancet Neurol. 2017;10:837–47. doi: 10.1016/S1474-4422[17]30280-6 PubMed DOI PMC
Handley RR, Reid SJ, Brauning R, Maclean P, Mears ER, Fourie I, et al. Brain urea increase is an early Huntington’s disease pathogenic event observed in a prodromal transgenic sheep model and HD cases. Proc Natl Acad Sci U S A. 2017;114(52):E11293–302. doi: 10.1073/pnas.1711243115 PubMed DOI PMC
Handley RR, Reid SJ, Patassini S, Rudiger SR, Obolonkin V, McLaughlan CJ, et al. Metabolic disruption identified in the Huntington’s disease transgenic sheep model. Sci Rep. 2016;6:20681. doi: 10.1038/srep20681 PubMed DOI PMC
Jacobsen JC, Bawden CS, Rudiger SR, McLaughlan CJ, Reid SJ, Waldvogel HJ, et al. An ovine transgenic Huntington’s disease model. Hum Mol Genet. 2010;19(10):1873–82. doi: 10.1093/hmg/ddq063 PubMed DOI PMC
Morton AJ, Rudiger SR, Wood NI, Sawiak SJ, Brown GC, Mclaughlan CJ, et al. Early and progressive circadian abnormalities in Huntington’s disease sheep are unmasked by social environment. Hum Mol Genet. 2014;23(13):3375–83. doi: 10.1093/hmg/ddu047 PubMed DOI
McBride SD, Morton AJ. Indices of comparative cognition: Assessing animal models of human brain function. Exp Brain Res. 2018;236(12):3379–90. doi: 10.1007/s00221-018-5370-8 PubMed DOI PMC
Sartoretto SC, Uzeda MJ, Miguel FB, Nascimento JR, Ascoli F, Calasans-Maia MD. Sheep as an experimental model for biomaterial implant evaluation. Acta Ortop Bras. 2016;24:262–6. doi: 10.1590/1413-785220162405161949 PubMed DOI PMC
Morton AJ, Howland DS. Large genetic animal models of Huntington’s disease. J Huntingtons Dis. 2013;2(1):3–19. doi: 10.3233/JHD-130050 PubMed DOI
Arricau Bouvery N, Souriau A, Lechopier P, Rodolakis A. Experimental Coxiella burnetii infection in pregnant goats: Excretion routes. Vet Res. 2003;34(4):423–33. doi: 10.1051/vetres:2003017 PubMed DOI
Clark NJ, Soares Magalhaes RJ. Airborne geographical dispersal of Q fever from livestock holdings to human communities: A systematic review and critical appraisal of evidence. BMC Infect Dis. 2018;18(1):218. doi: 10.1186/s12879-018-3135-4 PubMed DOI PMC
Reid SJ, Patassini S, Handley RR, Rudiger SR, McLaughlan CJ, Osmand A, et al. Further molecular characterisation of the OVT73 transgenic sheep model of Huntington’s disease identifies cortical aggregates. J Huntingtons Dis. 2013;2(3):279–95. doi: 10.3233/JHD-130067 PubMed DOI
Skene DJ, Middleton B, Fraser CK, Pennings JL, Kuchel TR, Rudiger SR, et al. Metabolic profiling of presymptomatic Huntington’s disease sheep reveals novel biomarkers. Sci Rep. 2017;7:43030. doi: 10.1038/srep43030 PubMed DOI PMC
Mondo E, Moser R, Gao G, Mueller C, Sena-Esteves M, Sapp E, et al. Selective neuronal uptake and distribution of AAVrh8, AAV9, and AAVrh10 in sheep after intra-striatal administration. J Huntingtons Dis. 2018;7(4):309–19. doi: 10.3233/JHD-180302 PubMed DOI
Pfister EL, DiNardo N, Mondo E, Borel F, Conroy F, Fraser C, et al. Artificial miRNAs reduce human mutant huntingtin throughout the striatum in a transgenic sheep model of Huntington’s disease. Hum Gene Ther. 2018;29(6):663–73. doi: 10.1089/hum.2017.199 PubMed DOI PMC
Neueder A, Landles C, Ghosh R, Howland D, Myers RH, Faull RLM, et al. The pathogenic exon 1 HTT protein is produced by incomplete splicing in Huntington’s disease patients. Sci Rep. 2017;7(1):1307. doi: 10.1038/s41598-017-01510-z PubMed DOI PMC
de Lahunta AG. Extraparamidal nuclear lesions & movement disorders. In: Veterinary neuroanatomy and clinical neurology 3rd ed St. Louis: Missouri Elsevier Saunders; 2009.
Villablanca JR, Marcus RJ, Olmstead CE. Effects of caudate nuclei or frontal cortical ablations in cats. I. Neurology and gross behavior. Exp Neurol. 1976;52(3):389–420. https://doi.org/10.1016/0014-4886(76)90213-2. PubMed DOI
Richter A, Hamann M, Wissel J, Volk HA. Dystonia and paroxysmal dyskinesias: Under-recognized movement disorders in domestic animals? A comparison with human dystonia/paroxysmal dyskinesias. Front Vet Sci. 2015;2:65. doi: 10.3389/fvets.2015.00065 PubMed DOI PMC
Kuzmuk KN, Schook LB. Pigs as a model for biomedical sciences. In: The genetics of the pig. CABI, Wallingford; 2011. pp. 426-44. doi: 10.1079/9781845937560.0426 DOI
Swindle MM, Makin A, Herron AJ, Clubb FJ Jr, Frazier KS. Swine as models in biomedical research and toxicology testing. Vet Pathol. 2012;49(2):344–56. doi: 10.1177/0300985811402846 PubMed DOI
Dawson H. A comparative assessment of the pig, mouse and human genomes: Structural and functional analysis of genes involved in immunity an inflammation. In: McAnultiy PA, Dawjan Canderup ADWC, Hassintgs KL, editors. The Minipig In Biomedical Research. Boca Raton: CRC Press; 2011. pp. 664.
Mair KH, Sedlak C, Käser T, Pasternak A, Levast B, Gerner W, et al. The porcine innate immune system: An update. Dev Comp Immunol. 2014;45(2):321–43. doi: 10.1016/j.dci.2014.03.022 PubMed DOI PMC
Pabst R. The pig as a model for immunology research. Cell Tissue Res. 2020;380(2):287–304. doi: 10.1007/s00441-020-03206-9 PubMed DOI PMC
Reiland S. Growth and skeletal development of the pig. Acta Radiol Suppl. 1978;358:15–22. https://www.ncbi.nlm.nih.gov/pubmed/233594 PubMed
Vodička P, Smetana K, Dvořánková B, Emerick T, Xu YZ, Ourednik J, et al. The miniature pig as an animal model in biomedical research. Ann N Y Acad Sci. 1978;358:161–71. doi: 10.1196/annals.1334.015 PubMed DOI
Askeland G, Rodinova M, Štufková H, Dosoudilova Z, Baxa M, Smatlikova P, et al. A transgenic minipig model of Huntington’s disease shows early signs of behavioral and molecular pathologies. Dis Model Mech. 2018;11:dmm035949. doi: 10.1242/dmm.035949 PubMed DOI PMC
Schramke S, Schuldenzucker V, Schubert R, Frank F, Wirsig M, Ott S, et al. Behavioral phenotyping of minipigs transgenic for the Huntington gene. J Neurosci Methods. 2016;265:34–45. doi: 10.1016/j.jneumeth.2015.11.013 PubMed DOI
Schuldenzucker V, Schubert R, Muratori LM, Freisfeld F, Rieke L, Matheis T, et al. Behavioral testing of minipigs transgenic for the Huntington gene-A three-year observational study. PLoS One. 2017;12(10):e0185970. doi: 10.1371/journal.pone.0185970 PubMed DOI PMC
Pokorný M, Juhás Š, Juhásová J, Klíma J, Motlík J, Klempíř J, et al. Telemetry physical activity monitoring in minipig’s model of Huntington’s disease. Cesk Slovenská Neurol Neurochir. 78/. 2015;111:39–42. doi: 10.14735/amcsnn20152s39 DOI
McBride SD, Perentos N, Morton AJ. A mobile, high-throughput semi-automated system for testing cognition in large non- primate animal models of Huntington disease. J Neurosci Methods. 2016;265:25–33. doi: 10.1016/j.jneumeth.2015.08.025 PubMed DOI
Monk JE, Doyle RE, Colditz IG, Belson S, Cronin GM, Lee C. Towards a more practical attention bias test to assess affective state in sheep. PLoS One 201;13(1):e0190404. doi: 10.1371/journal.pone.0190404 PubMed DOI PMC
Zhou J-W, Xu Q-P, Yao J, Yu S-M, Cao S-Z. CRISPR/Cas9 genome editing technique and its application in site-directed genome modification of animals. Yi Chuan. 2015;37(10):1011–20. doi: 10.16288/j.yczz.15-066 PubMed DOI
Carlson DF, Tan W, Lillico SG, Stverakova D, Proudfoot C, Christian M, et al. Efficient TALEN-mediated gene knockout in livestock. Proc Natl Acad Sci U S A. 2012;109(43):17382–7. doi: 10.1073/pnas.1211446109 PubMed DOI PMC
Han W, She Q. CRISPR history: Discovery, characterization, and prosperity. Prog Mol Biol Transl Sci. 2017;152:1–21. doi: 10.1016/bs.pmbts.2017.10.001 PubMed DOI
Uchida M, Shimatsu Y, Onoe K, Matsuyama N, Niki R, Ikeda JE, et al. Production of transgenic miniature pigs by pronuclear microinjection. Transgenic Res. 2001;10(6):577–82. doi: 10.1023/A:1013059917280 PubMed DOI
Yang D, Wang C-E, Zhao B, Li W, Ouyang Z, Liu Z, et al. Expression of Huntington’s disease protein results in apoptotic neurons in the brains of cloned transgenic pigs. Hum Mol Genet. 2010;19:3983–94. doi: 10.1093/hmg/ddq313 PubMed DOI PMC
Baxa M, Hruska-Plochan M, Juhas S, Vodicka P, Pavlok A, Juhasova J, et al. A transgenic minipig model of Huntington’s disease. J Huntingtons Dis. 2013;2(1):47–68. doi: 10.3233/JHD-130001 PubMed DOI
Macakova M, Bohuslavova B, Vochozkova P, Pavlok A, Sedlackova M, Vidinska D, et al. Mutated huntingtin causes testicular pathology in transgenic minipig boars. Neurodegener Dis. 2016;16(3-4):245–59. doi: 10.1159/000443665 PubMed DOI
Vidinská D, Vochozková P, Šmatlíková P, Ardan T, Klíma J, Juhás Š, et al. Gradual phenotype development in Huntington disease transgenic minipig model at 24 months of age. Neurodegener Dis. 2018;18(2-3):107–19. doi: 10.1159/000488592 PubMed DOI
Evers MM, Miniarikova J, Juhas S, Vallès A, Bohuslavova B, Juhasova J, et al. AAV5-miHTT gene therapy demonstrates broad distribution and strong human mutant huntingtin lowering in a Huntington’s disease minipig model. Mol Ther. 2018;26(9):2163–77. doi: 10.1016/j.ymthe.2018.06.021 PubMed DOI PMC
Krizova J, Stufkova H, Rodinova M, Macakova M, Bohuslavova B, Vidinska D, et al. Mitochondrial metabolism in a large-animal model of Huntington disease: The hunt for biomarkers in the spermatozoa of presymptomatic minipigs. Neurodegener Dis. 2017;17:213–26. doi: 10.1159/000475467 PubMed DOI
Jozefovičová M, Herynek V, Jírů F, Dezortová M, Juhásová J, Juhás Š, et al. 31P MR spectroscopy of the testes and immunohistochemical analysis of sperm of transgenic boars carried N-terminal part of human mutated huntingtin. Cesk Slovenská Neurol Neurochir. 2015;78/111:28–33. doi: 10.14735/amcsnn20152s28 DOI
Jozefovicova M, Herynek V, Jiru F, Dezortova M, Juhasova J, Juhas S, et al. Minipig model of Huntington’s disease: 1H magnetic resonance spectroscopy of the brain. Physiol Res. 2016;65(1):155–63. doi: 10.33549/physiolres.932967 PubMed DOI
Rodinova M, Krizova J, Stufkova H, Bohuslavova B, Askeland G, Dosoudilova Z, et al. Deterioration of mitochondrial bioenergetics and ultrastructure impairment in skeletal muscle of a transgenic minipig model in the early stages of Huntington’s disease. Dis Model Mech. 2019;12(7):dmm038737. doi: 10.1242/dmm.038737 PubMed DOI PMC
Saudou F, Humbert S. The biology of huntingtin. Neuron. 2016;89:910–26. doi: 10.1016/j.neuron.2016.02.003 PubMed DOI
Swami M, Hendricks AE, Gillis T, Massood T, Mysore J, Myers RH, et al. Somatic expansion of the Huntington’s disease CAG repeat in the brain is associated with an earlier age of disease onset. Hum Mol Genet. 2009;18:3039–47. doi: 10.1093/hmg/ddp242 PubMed DOI PMC
Yan S, Tu Z, Liu Z, Fan N, Yang H, Yang S, et al. A huntingtin knockin pig model recapitulates features of selective neurodegeneration in Huntington’s disease. Cell. 2018;173(4):989–1002.e13. doi: 10.1016/j.cell.2018.03.005 PubMed DOI PMC
Niemann H. Epigenetic reprogramming in mammalian species after SCNT-based cloning. Theriogenology. 2016;86(1):80–90. doi: 10.1016/j.theriogenology.2016.04.021 PubMed DOI
Brouillet E, Hantraye P, Ferrante RJ, Dolan R, Leroy-Willig A, Kowall NW, et al. Chronic mitochondrial energy impairment produces selective striatal degeneration and abnormal choreiform movements in primates. Proc Natl Acad Sci U S A. 1995;92(15):7105–9. doi: 10.1073/pnas.92.15.7105 PubMed DOI PMC
Burns LH, Pakzaban P, Deacon TW, Brownell AL, Tatter SB, Jenkins BG, et al. Selective putaminal excitotoxic lesions in non-human primates model the movement disorder of Huntington disease. Neuroscience. 1995;64(4):1007–17. doi: 10.1016/0306-4522(94)00431-4 PubMed DOI
Hantraye P, Riche D, Maziere M, Isacson O. A primate model of Huntington’s disease: Behavioral and anatomical studies of unilateral excitotoxic lesions of the caudate-putamen in the baboon. Exp Neurol. 1990;108(2):91–104. doi: 10.1016/0014-4886(90)90014-j PubMed DOI
Roitberg BZ, Emborg ME, Sramek JG, Palfi S, Kordower JH. Behavioral and morphological comparison of two nonhuman primate models of Huntington’s disease. Neurosurgery. 2002;50(1):137–45. doi: 10.1097/00006123-200201000-00022 PubMed DOI
Storey E, Cipolloni PB, Ferrante RJ, Kowall NW, Beal MF. Movement disorder following excitotoxin lesions in primates. Neuroreport. 1994;5(10):1259–61. doi: 10.1097/00001756-199406020-00026 PubMed DOI
Ramaswamy S, McBride JL, Kordower JH. Animal models of Huntington’s disease. ILAR J. 2007;48(4):356–73. doi: 10.1093/ilar.48.4.356 PubMed DOI
Lavisse S, Williams S, Lecourtois S, van Camp N, Guillermier M, Gipchtein P, et al. Longitudinal characterization of cognitive and motor deficits in an excitotoxic lesion model of striatal dysfunction in non-human primates. Neurobiol Dis. 2019;130:104484. doi: 10.1016/j.nbd.2019.104484 PubMed DOI
Palfi S, Brouillet E, Jarraya B, Bloch J, Jan C, Shin M, et al. Expression of mutated huntingtin fragment in the putamen is sufficient to produce abnormal movement in non-human primates. Mol Ther. 2007;15(8):1444–51. doi: 10.1038/sj.mt.6300185 PubMed DOI
Desplats PA, Kass KE, Gilmartin T, Stanwood GD, Woodward EL, Head SR, et al. Selective deficits in the expression of striatal-enriched mRNAs in Huntington’s disease. J Neurochem. 2006;96(3):743–57. doi: 10.1111/j.1471-4159.2005.03588.x PubMed DOI
Yang SH, Cheng PH, Banta H, Piotrowska-Nitsche K, Yang JJ, Cheng EC, et al. Towards a transgenic model of Huntington’s disease in a non-human primate. Nature. 2008;453(7197):921–24. doi: 10.1038/nature06975 PubMed DOI PMC
Chan AW, Xu Y, Jiang J, Rahim T, Zhao D, Kocerha J, et al. A two years longitudinal study of a transgenic Huntington disease monkey. BMC Neurosci. 2014;15:36. doi: 10.1186/1471-2202-15-36 PubMed DOI PMC
Chan AW, Jiang J, Chen Y, Li C, Prucha MS, Hu Y, et al. Progressive cognitive deficit, motor impairment and striatal pathology in a transgenic Huntington disease monkey model from infancy to adulthood. PLoS One. 2015;10(5):e0122335. doi: 10.1371/journal.pone.0122335 PubMed DOI PMC
Kocerha J, Liu Y, Willoughby D, Chidamparam K, Benito J, Nelson K, et al. Longitudinal transcriptomic dysregulation in the peripheral blood of transgenic Huntington’s disease monkeys. BMC Neurosci. 2013;14:88. doi: 10.1186/1471-2202-14-88 PubMed DOI PMC
Raper J, Bosinger S, Johnson Z, Tharp G, Moran SP, Chan AWS. Increased irritability, anxiety, and immune reactivity in transgenic Huntington’s disease monkeys. Brain Behav Immun. 2016;58:181–90. doi: 10.1016/j.bbi.2016.07.004 PubMed DOI PMC
Meng Y, Jiang J, Bachevalier J, Zhang X, Chan AW. Developmental whole brain white matter alterations in transgenic Huntington’s disease monkey. Sci Rep. 2017;7(1):379. doi: 10.1038/s41598-017-00381-8 PubMed DOI PMC
Lallani SB, Villalba RM, Chen Y, Smith Y, Chan AWS. Striatal Interneurons in transgenic nonhuman primate model of Huntington’s disease. Sci Rep. 2019;9(1):3528. doi: 10.1038/s41598-019-40165-w PubMed DOI PMC
Naidoo J, Stanek LM, Ohno K, Trewman S, Samaranch L, Hadaczek P, et al. Extensive transduction and enhanced spread of a modified AAV2 capsid in the non-human primate CNS. Mol Ther. 2018;26(10):2418–30. doi: 10.1016/j.ymthe.2018.07.008 PubMed DOI PMC
Tervo DG, Hwang BY, Viswanathan S, Gaj T, Lavzin M, Ritola KD, et al. A designer AAV variant permits efficient retrograde access to projection neurons. Neuron. 2016;92(2):372–82. doi: 10.1016/j.neuron.2016.09.021 PubMed DOI PMC
Weiss AR, Liguore WA, Domire JS, Button D, McBride JL. Intra-striatal AAV2. retro administration leads to extensive retrograde transport in the rhesus macaque brain: Implications for disease modeling and therapeutic development. Sci Rep. 2020;10(1):6970. doi: 10.1038/s41598-020-63559-7 PubMed DOI PMC
Morozova KN, Suldina LA, Malankhanova TB, Grigor’eva EV, Zakian SM, Kiseleva E, et al. Introducing an expanded CAG tract into the huntingtin gene causes a wide spectrum of ultrastructural defects in cultured human cells. PLoS One. 2018;13(10):e0204735. doi: 10.1371/jour-nal.pone.0204735 PubMed DOI PMC
Yang H, Wang H, Shivalila CS, Cheng AW, Shi L, Jaenisch R. One-step generation of mice carrying reporter and conditional alleles by CRISPR/Cas-mediated genome engineering. Cell. 2013;154(6):1370–9. doi: 10.1016/j.cell.2013.08.022 PubMed DOI PMC
Cui Y, Niu Y, Zhou J, Chen Y, Cheng Y, Li S, et al. Generation of a precise Oct4-hrGFP knockin cynomolgus monkey model via CRISPR/Cas9-assisted homologous recombination. Cell Res. 2018;28(3):383–6. doi: 10.1038/cr.2018.10 PubMed DOI PMC
Liang P, Xu Y, Zhang X, Ding C, Huang R, Zhang Z, et al. CRISPR/Cas9-mediated gene editing in human tripronuclear zygotes. Protein Cell. 2015;6(5):363–72. doi: 10.1007/s13238-015-0153-5 PubMed DOI PMC
Tang L, Zeng Y, Du H, Gong M, Peng J, Zhang B, et al. CRISPR/Cas9-mediated gene editing in human zygotes using Cas9 protein. Mol Genet Genomics. 2017;292(3):525–33. doi: 10.1007/s00438-017-1299-z PubMed DOI
Disotell TR, Tosi AJ. The monkey’s perspective. Genome Biol. 2007;8(9):226. doi: 10.1186/gb-2007-8-9-226 PubMed DOI PMC
Eaton SL, Proudfoot C, Lillico SG, Skehel P, Kline RA, Hamer K, et al. CRISPR/Cas9 mediated generation of an ovine model for infantile neuronal ceroid lipofuscinosis (CLN1 disease). Sci Rep. 2019;9(1):9891. doi: 10.1038/s41598-019-45859-9 PubMed DOI PMC
Gray-Edwards HL, Randle AN, Maitland SA, Benatti HR, Hubbard SM, Canning PF, et al. Adeno-associated virus gene therapy in a sheep model of Tay-Sachs disease. Hum Gene Ther. 2018;29(3):312–26. doi: 10.1089/hum.2017.163 PubMed DOI
Torres PA, Zeng BJ, Porter BF, Alroy J, Horak F, Horak J, et al. Tay-Sachs disease in Jacob sheep. Mol Genet Metab. 2010;101(4):357–63. doi: 10.1016/j.ymgme.2010.08.006 PubMed DOI
Fan Z, Perisse IV, Cotton CU, Regouski M, Meng Q, Domb C, et al. A sheep model of cystic fibrosis generated by CRISPR/Cas9 disruption of the CFTR gene. JCI Insight. 2018;3(19):e123529. doi: 10.1172/jci.insight.123529 PubMed DOI PMC
Gao QS, Xuan MF, Luo ZB, Paek HJ, Kang JD, Yin XJ. Hairless-knockout piglets generated using the clustered regularly interspaced short palindromic repeat/CRISPR-associated-9 exhibit abnormalities in the skin and thymus. Exp Anim. 2019;68(4):519–29. doi: 10.1538/expanim.19-0018 PubMed DOI PMC
Zou X, Ouyang H, Yu T, Chen X, Pang D, Tang X, Chen C. Preparation of a new type 2 diabetic miniature pig model via the CRISPR/Cas9 system. Cell Death Dis. 2019;10(11):823. doi: 10.1038/s41419-019-2056-5 PubMed DOI PMC
Kalds P, Zhou S, Cai B, Liu J, Wang Y, Petersen B, et al. Sheep and goat genome engineering: From random transgenesis to the CRISPR era. Front Genet. 2019;10:750. doi: 10.3389/fgene.2019.00750 PubMed DOI PMC