Behavioral testing of minipigs transgenic for the Huntington gene-A three-year observational study
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, pozorovací studie
PubMed
29016656
PubMed Central
PMC5633197
DOI
10.1371/journal.pone.0185970
PII: PONE-D-17-25497
Knihovny.cz E-zdroje
- MeSH
- chování zvířat fyziologie MeSH
- geneticky modifikovaná zvířata MeSH
- Huntingtonova nemoc patofyziologie MeSH
- jazyk fyziologie MeSH
- lidé MeSH
- miniaturní prasata fyziologie MeSH
- prasata fyziologie MeSH
- protein huntingtin genetika fyziologie MeSH
- učení fyziologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- pozorovací studie MeSH
- Názvy látek
- protein huntingtin MeSH
BACKGROUND: Large animal models of Huntington's disease (HD) may increase the reliability of translating preclinical findings to humans. Long live expectancy offers opportunities particularly for disease modifying approaches, but also challenges. The transgenic (tg) HD minipig model assessed in this study exhibits a high genetic homology with humans, similar body weight, and comparable brain structures. To test long-term safety, tolerability, and efficacy of novel therapeutic approaches in this model reliable assessments applicable longitudinally for several years are warranted for all phenotypical domains relevant in HD. OBJECTIVE: To investigate whether the tests proposed assessing motor, cognitive and behavioral domains can be applied repetitively over a 3-year period in minipigs with acceptable variability or learning effects and whether tgHD minipigs reveal changes in these domains compared to wildtype (wt) minipigs suggesting the development of an HD phenotype. METHODS: A cohort of 14 tgHD and 18 wt minipigs was followed for three years. Tests applied every six months included a tongue coordination and hurdle test for the motor domain, a color discrimination test for cognition, and a dominance test for assessing behavior. Statistical analyses were performed using repeated ANOVA for longitudinal group comparisons and Wilcoxon-tests for intra-visit differences between tgHD and wt minipigs. RESULTS: All tests applied demonstrated feasibility, acceptable variance and good consistency during the three-year period. No significant differences between tgHD and wt minipigs were detected suggesting lack of a phenotype before the age of four years. CONCLUSIONS: The assessment battery presented offers measures in all domains relevant for HD and can be applied in long-term phenotyping studies with tgHD minipigs. The observation of this cohort should be continued to explore the timeline of phenotype development and provide information for future interventional studies.
Department of Clinical Radiology University of Muenster Albert Schweitzer Campus 1 Muenster Germany
George Huntington Institute Technology Park Muenster Germany
Institute of Zoology University of Veterinary Medicine Hannover Hannover Germany
Zobrazit více v PubMed
Walker FO. Huntington’s disease. The Lancet. 2007. January 26;369(9557):218–28. PubMed
MacDonald M, Ambrose C, Duyao M, Myers R, Lin C, Srinidhi L, et al. The Huntington’s Disease Collaborative Research Group (1993) A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell. 72(6):971–83. PubMed
Killoran A, Biglan KM. Current therapeutic options for Huntington’s disease: Good clinical practice versus evidence-based approaches? Mov Disord. 2014. September 15;29(11):1404–13. doi: 10.1002/mds.26014 PubMed DOI
Tabrizi SJ, Workman J, Hart PE, Mangiarini L, Mahal A, Bates G, et al. Mitochondrial dysfunction and free radical damage in the Huntington R6/2 transgenic mouse. Ann Neurol. 2000. January;47(1):80–6. PubMed
Venuto CS, McGarry A, Ma Q, Kieburtz K. Pharmacologic approaches to the treatment of Huntington’s disease. Mov Disord. 2012. January;27(1):31–41. doi: 10.1002/mds.23953 PubMed DOI
Howland DS, Munoz-Sanjuan I. Mind the gap: Models in multiple species needed for therapeutic development in Huntington’s disease: HOWLAND AND MUNOZ-SANJUAN. Mov Disord. 2014. September 15;29(11):1397–403. doi: 10.1002/mds.26008 PubMed DOI
Yang XW, Gray M. Mouse Models for Validating Preclinical Candidates for Huntington’s Disease [Internet]. CRC Press/Taylor & Francis; 2011. [cited 2016 Nov 30]. https://www.ncbi.nlm.nih.gov/books/NBK56001/ PubMed
Morton AJ, Howland DS. Large Genetic Animal Models of Huntington’s Disease. J Huntingt Dis. 2013. January 1;2(1):3–19. PubMed
Monika B, Marian H-P, Stefan J, Petr V, Antonin P, Jana J, et al. A Transgenic Minipig Model of Huntington's Disease. J Huntington’s Dis. 2013;(1):47–68. PubMed
Schramke S, Schuldenzucker V, Schubert R, Frank F, Wirsig M, Ott S, et al. Behavioral phenotyping of minipigs transgenic for the Huntington gene. J Neurosci Methods. 2016. Mai;265:34–45. doi: 10.1016/j.jneumeth.2015.11.013 PubMed DOI
Unified Huntington’s disease rating scale: Reliability and consistency. Mov Disord. 1996. March;11(2):136–42. doi: 10.1002/mds.870110204 PubMed DOI
Reilmann R, Roos R, Rosser A, Grimbergen Y, Kraus P, Craufurd D, et al. A teaching film, video library and online certification for the Unified Huntington’s Disease Rating Scale Total Motor Score. Aktuelle Neurol. 2009. September;36(S 02):P474.
Reilmann R. Huntington’s disease: Towards disease modification—Gaps and bridges, facts and opinions. Basal Ganglia. 2012. Dezember;2(4):241–8.
Tabrizi SJ, Langbehn DR, Leavitt BR, Roos RA, Durr A, Craufurd D, et al. Biological and clinical manifestations of Huntington’s disease in the longitudinal TRACK-HD study: cross-sectional analysis of baseline data. Lancet Neurol. 2009. September;8(9):791–801. PubMed PMC
Tabrizi SJ, Scahill RI, Owen G, Durr A, Leavitt BR, Roos RA, et al. Predictors of phenotypic progression and disease onset in premanifest and early-stage Huntington’s disease in the TRACK-HD study: analysis of 36-month observational data. Lancet Neurol. 2013. July;12(7):637–49. doi: 10.1016/S1474-4422(13)70088-7 PubMed DOI
Reilmann R, Rouzade-Dominguez M-L, Saft C, Süssmuth SD, Priller J, Rosser A, et al. A randomized, placebo-controlled trial of AFQ056 for the treatment of chorea in Huntington’s disease. Mov Disord. 2015. März;30(3):427–31. doi: 10.1002/mds.26174 PubMed DOI
Kieburtz K, Landwehrmeyer B, Reilmann R, Savola J, Eyal E, Grachev I. Efficacy, Safety, and Tolerability of Pridopidine in Huntington Disease (HD): Results from the Phase II, Double-blind, Placebo-controlled, Dose-Ranging Study, Pride-HD (P2.005). Neurology. 2017. April 18;88(16).
Reilmann R, Bohlen S, Klopstock T, Bender A, Weindl A, Saemann P, et al. Tongue force analysis assesses motor phenotype in premanifest and symptomatic Huntington’s disease. Mov Disord. 2010. October 15;25(13):2195–202. doi: 10.1002/mds.23243 PubMed DOI
Dumas E., van den Bogaard S., Middelkoop H., Roos R. A review of cognition in Huntington´s disease. In Front Biosci; 2013. p. 1–18. PubMed
Paulsen JS, Long JD, Johnson HJ, Aylward EH, Ross CA, Williams JK, et al. Clinical and biomarker changes in premanifest Huntington disease show trial feasibility: A decade of the PREDICT-HD study. Front Aging Neurosci [Internet]. 2014. January 1 [cited 2016 Nov 30];6(APR). Available from: http://escholarship.org/uc/item/2ms8c2jv PubMed PMC
Stout JC, Jones R, Labuschagne I, O’Regan AM, Say MJ, Dumas EM, et al. Evaluation of longitudinal 12 and 24 month cognitive outcomes in premanifest and early Huntington’s disease. J Neurol Neurosurg Psychiatry. 2012. July 1;83(7):687–94. doi: 10.1136/jnnp-2011-301940 PubMed DOI PMC
Lione LA, Carter RJ, Hunt MJ, Bates GP, Morton AJ, Dunnett SB. Selective Discrimination Learning Impairments in Mice Expressing the Human Huntington’s Disease Mutation. J Neurosci. 1999. December 1;19(23):10428–37. PubMed PMC
Craufurd D, Thompson JC, Snowden JS. Behavioral changes in Huntington disease. Cogn Behav Neurol. 2001;14(4):219–26. PubMed
Fisher CA, Sewell K, Brown A, Churchyard A. Aggression in Huntington’s Disease: A Systematic Review of Rates of Aggression and Treatment Methods. J Huntingt Dis. 2014. January 1;3(4):319–32. PubMed
Lijam N, Paylor R, McDonald MP, Crawley JN, Deng C-X, Herrup K, et al. Social Interaction and Sensorimotor Gating Abnormalities in Mice Lacking Dvl1. Cell. 1997. September 5;90(5):895–905. PubMed
Székely S, Orbán E, Kurucz I, Sárváry J. Tube dominance in piglets. Structure and stability of dominance order. Appl Anim Ethol. 1983. January 1;9(3):279–88.
Bang A, Deshpande S, Sumana A, Gadagkar R. Choosing an appropriate index to construct dominance hierarchies in animal societies: a comparison of three indices. Anim Behav. 2010. März;79(3):631–6.
Dolezalova D, Hruska-Plochan M, Bjarkam CR, Sørensen JCH, Cunningham M, Weingarten D, et al. Pig models of neurodegenerative disorders: Utilization in cell replacement-based preclinical safety and efficacy studies. J Comp Neurol. 2014. August 15;522(12):2784–801. doi: 10.1002/cne.23575 PubMed DOI
Wild EJ, Tabrizi SJ. Targets for future clinical trials in Huntington’s disease: What’s in the pipeline? Mov Disord. 2014. September 15;29(11):1434–45. doi: 10.1002/mds.26007 PubMed DOI PMC
Valekova I, Skalnikova H, Jarkovska K, Motlik J, Kovarova H. Multiplex Immunoassays for Quantification of Cytokines, Growth Factors, and Other Proteins in Stem Cell Communication In: Turksen K, editor. Stem Cell Renewal and Cell-Cell Communication [Internet]. Springer; New York; 2015. [cited 2017 May 9]. p. 39–63. (Methods in Molecular Biology). http://dx.doi.org/10.1007/7651_2014_94 PubMed DOI
Reilmann R, Tabrizi S, Leavitt B, Stout JC, Piccini P, Anderson KE, et al. Design of the Legato-hd study: A multinational, randomized, double-blind, placebo-controlled, parallel-group study to evaluate the efficacy and safety of laquinimod (0.5, 1.0 and 1.5 mg/day) as treatment in patients with Huntington’s disease: 1391. Mov Disord [Internet]. 2015. June 1 [cited 2017 May 9];30 http://insights.ovid.com/movement-disorders/mdis/2015/06/001/design-legato-hd-study-multinational-randomized/1391/01445483
Crook ZR, Housman D. Huntington’s Disease: Can Mice Lead the Way to Treatment? Neuron. 2011. February 10;69(3):423–35. doi: 10.1016/j.neuron.2010.12.035 PubMed DOI PMC
Kim J, Bordiuk OL, Ferrante RJ. Experimental Models of HD and Reflection on Therapeutic Strategies In: Jonathan Brotchie EB and P J, editor. International Review of Neurobiology [Internet]. Academic Press; 2011. [cited 2016 Nov 30]. p. 419–81. (Pathophysiology, Pharmacology, and Biochemistry of Dyskinesia; vol. 98). http://www.sciencedirect.com/science/article/pii/B978012381328200016X PubMed
William Yang X, Gray M. Mouse Models for Validating Preclinical Candidates for Huntington’s Disease In: Lo DC, Hughes RE, editors. Neurobiology of Huntington’s Disease: Applications to Drug Discovery [Internet]. Boca Raton (FL): CRC Press/Taylor & Francis; 2011. [cited 2017 Mar 15]. (Frontiers in Neuroscience). http://www.ncbi.nlm.nih.gov/books/NBK56001/
Schramke S, Schubert R, Frank F, Wirsig M, Fels M, Kemper N, et al. The Libechov Minipig as a Large Animal Model for Preclinical Research in Huntington’s disease—Thoughts and Perspectives. Čes Slov Neurol Neurochir. 2015. November 30;78/111(S2):55–60.
Schubert R, Frank F, Nagelmann N, Liebsch L, Schuldenzucker V, Schramke S, et al. Neuroimaging of a minipig model of Huntington’s disease: Feasibility of volumetric, diffusion-weighted and spectroscopic assessments. J Neurosci Methods. 2016. May 30;265:46–55. doi: 10.1016/j.jneumeth.2015.11.017 PubMed DOI
Lunney JK. Advances in swine biomedical model genomics. Int J Biol Sci. 2007. February 10;3(3):179–84. PubMed PMC
Large Animal Models of Huntington's Disease: What We Have Learned and Where We Need to Go Next