Longitudinal study revealing motor, cognitive and behavioral decline in a transgenic minipig model of Huntington's disease

. 2019 Dec 12 ; 13 (2) : . [epub] 20191212

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid31704691

Huntington's disease (HD) is an inherited devastating neurodegenerative disease with no known cure to date. Several therapeutic treatments for HD are in development, but their safety, tolerability and efficacy need to be tested before translation to bedside. The monogenetic nature of this disorder has enabled the generation of transgenic animal models carrying a mutant huntingtin (mHTT) gene causing HD. A large animal model reflecting disease progression in humans would be beneficial for testing the potential therapeutic approaches. Progression of the motor, cognitive and behavioral phenotype was monitored in transgenic Huntington's disease minipigs (TgHD) expressing the N-terminal part of human mHTT. New tests were established to investigate physical activity by telemetry, and to explore the stress-induced behavioral and cognitive changes in minipigs. The longitudinal study revealed significant differences between 6- to 8-year-old TgHD animals and their wild-type (WT) controls in a majority of the tests. The telemetric study showed increased physical activity of 4.6- to 6.5-year-old TgHD boars compared to their WT counterparts during the lunch period as well as in the afternoon. Our phenotypic study indicates progression in adult TgHD minipigs and therefore this model could be suitable for longstanding preclinical studies of HD.This article has an associated First Person interview with the first author of the paper.

Zobrazit více v PubMed

Ardan T., Baxa M., Levinská B., Sedláčková M., Nguyen T. D., Klíma J., Juhás Š., Juhásová J., Šmatlíková P., Vochozková P. et al. (2020). Transgenic minipig model of Huntington's disease exhibiting gradually progressing neurodegeneration. PubMed DOI PMC

Askeland G., Rodinova M., Štufková H., Dosoudilova Z., Baxa M., Smatlikova P., Bohuslavova B., Klempir J., Nguyen T. D., Kuśnierczyk A. et al. (2018). A transgenic minipig model of Huntington's disease shows early signs of behavioral and molecular pathologies. PubMed DOI PMC

Baxa M., Hruska-Plochan M., Juhas S., Vodicka P., Pavlok A., Juhasova J., Miyanohara A., Nejime T., Klima J., Macakova M. et al. (2013). A transgenic minipig model of Huntington's disease. PubMed DOI

Beighton P. and Hayden M. R. (1981). Huntington's chorea. PubMed

Beraldi R., Chan C.-H., Rogers C. S., Kovács A. D., Meyerholz D. K., Trantzas C., Lambertz A. M., Darbro B. W., Weber K. L., White K. A. M. et al. (2015). A novel porcine model of ataxia telangiectasia reproduces neurological features and motor deficits of human disease. PubMed DOI PMC

Brandt J., Strauss M. E., Larus J., Jensen B., Folstein S. E. and Folstein M. F. (1984). Clinical correlates of dementia and disability in Huntington's disease. PubMed DOI

Cahill L. (2014). Fundamental sex difference in human brain architecture. PubMed DOI PMC

Caron N. S., Wright G. E. and Hayden M. R. (1993). Huntington disease

David A. S., Jeste D. V., Folstein M. F. and Folstein S. E. (1987). Voluntary movement dysfunction in Huntington's disease and tardive dyskinesia. PubMed DOI

Dumas E., van den Bogaard S., Middelkoop H. and Roos R. (2013). A review of cognition in Huntington's disease. PubMed DOI

Eddy C. M., Parkinson E. G. and Rickards H. E. (2016). Changes in mental state and behaviour in Huntington's disease. PubMed DOI

Evers M. M., Miniarikova J., Juhas S., Vallès A., Bohuslavova B., Juhasova J., Skalnikova H. K., Vodicka P., Valekova I., Brouwers C. et al. (2018). AAV5-miHTT gene therapy demonstrates broad distribution and strong human mutant huntingtin lowering in a Huntington's disease minipig model. PubMed DOI PMC

Herzog-Krzywoszanska R. and Krzywoszanski L. (2019). Sleep disorders in Huntington's disease. PubMed DOI PMC

Howland D. S. and Munoz-Sanjuan I. (2014). Mind the gap: models in multiple species needed for therapeutic development in Huntington's disease. PubMed DOI

Huntington Study Group (1996). Unified Huntington's disease rating scale: reliability and consistency. PubMed DOI

Jacobsen J. C., Bawden C. S., Rudiger S. R., McLaughlan C. J., Reid S. J., Waldvogel H. J., MacDonald M. E., Gusella J. F., Walker S. K., Kelly J. M. et al. (2010). An ovine transgenic Huntington's disease model. PubMed DOI PMC

Kocerha J., Liu Y., Willoughby D., Chidamparam K., Benito J., Nelson K., Xu Y., Chi T., Engelhardt H., Moran S. et al. (2013). Longitudinal transcriptomic dysregulation in the peripheral blood of transgenic Huntington's disease monkeys. PubMed DOI PMC

Krizova J., Stufkova H., Rodinova M., Macakova M., Bohuslavova B., Vidinska D., Klima J., Ellederova Z., Pavlok A., Howland D. S. et al. (2017). Mitochondrial metabolism in a large-animal model of Huntington disease: the hunt for biomarkers in the spermatozoa of presymptomatic minipigs. PubMed DOI

Kudo T., Schroeder A., Loh D. H., Kuljis D., Jordan M. C., Roos K. P. and Colwell C. S. (2011). Dysfunctions in circadian behavior and physiology in mouse models of Huntington's disease. PubMed DOI PMC

Lai J.-S., Goodnight S., Downing N. R., Ready R. E., Paulsen J. S., Kratz A. L., Stout J. C., McCormack M. K., Cella D., Ross C. et al. (2018). Evaluating cognition in individuals with Huntington disease: neuro-qol cognitive functioning measures. PubMed DOI PMC

Lee J. K., Ding Y., Conrad A. L., Cattaneo E., Epping E., Mathews K., Gonzalez-Alegre P., Cahill L., Magnotta V., Schlaggar B. L. et al. (2017). Sex-specific effects of the Huntington gene on normal neurodevelopment. PubMed DOI PMC

Macakova M., Bohuslavova B., Vochozkova P., Pavlok A., Sedlackova M., Vidinska D., Vochyanova K., Liskova I., Valekova I., Baxa M. et al. (2016). Mutated Huntingtin causes testicular pathology in transgenic minipig boars. PubMed DOI

Marino L. and Colvin C. M. (2015). Thinking Pigs: A Comparative Review of Cognition, Emotion, and Personality in Sus domesticus

McBride S. D., Perentos N. and Morton A. J. (2016). A mobile, high-throughput semi-automated system for testing cognition in large non-primate animal models of Huntington disease. PubMed DOI

Morton A. J. and Howland D. S. (2013). Large genetic animal models of Huntington's disease. PubMed DOI

Morton A. J., Wood N. I., Hastings M. H., Hurelbrink C., Barker R. A. and Maywood E. S. (2005). Disintegration of the sleep-wake cycle and circadian timing in Huntington's disease. PubMed DOI PMC

Nance M. A. (1998). Huntington disease: clinical, genetic, and social aspects. PubMed DOI

Pokorný M., Juhás S., Juhásová J., Klíma J., Motlík J., Klempíř J. and Havlík J. (2015). Telemetry physical activity monitoring in minipig's model of Huntington's disease. DOI

Reilmann R., Bohlen S., Klopstock T., Bender A., Weindl A., Saemann P., Auer D. P., Ringelstein E. B. and Lange H. W. (2010). Tongue force analysis assesses motor phenotype in premanifest and symptomatic Huntington's disease. PubMed DOI

Rodinova M., Krizova J., Stufkova H., Bohuslavova B., Askeland G., Dosoudilova Z., Juhas S., Juhasova J., Ellederova Z., Zeman J. et al. (2019). Skeletal muscle in an early manifest transgenic minipig model of Huntington's disease revealed deterioration of mitochondrial bioenergetics and ultrastructure impairment. PubMed DOI PMC

Rüb U., Hoche F., Brunt E. R., Heinsen H., Seidel K., Del Turco D., Paulson H. L., Bohl J., von Gall C., Vonsattel J.-P. et al. (2013). Degeneration of the cerebellum in Huntington's disease (HD): possible relevance for the clinical picture and potential gateway to pathological mechanisms of the disease process. PubMed DOI PMC

Schramke S., Schuldenzucker V., Schubert R., Frank F., Wirsig M., Ott S., Motlik J., Fels M., Kemper N., Hölzner E. et al. (2016). Behavioral phenotyping of minipigs transgenic for the Huntington gene. PubMed DOI

Schuldenzucker V., Schubert R., Muratori L. M., Freisfeld F., Rieke L., Matheis T., Schramke S., Motlik J., Kemper N., Radespiel U. et al. (2017). Behavioral testing of minipigs transgenic for the Huntington gene—A three-year observational study. PubMed DOI PMC

Smith M. A., Brandt J. and Shadmehr R. (2000). Motor disorder in Huntington's disease begins as a dysfunction in error feedback control. PubMed DOI PMC

Trejo A., Tarrats R. M., Alonso M. E., Boll M.-C., Ochoa A. and Velásquez L. (2004). Assessment of the nutrition status of patients with Huntington's disease. PubMed DOI

Uchida M., Shimatsu Y., Onoe K., Matsuyama N., Niki R., Ikeda J.-E. and Imai H. (2001). Production of transgenic miniature pigs by pronuclear microinjection. PubMed DOI

Vidinská D., Vochozková P., Šmatlíková P., Ardan T., Klíma J., Juhás S., Juhásová J., Bohuslavová B., Baxa M., Valeková I. et al. (2018). Gradual phenotype development in Huntington disease transgenic minipig model at 24 months of age. PubMed DOI

Vodička P., Smetana K. Jr, Dvořánková B., Emerick T., Xu Y. Z., Ourednik J., Ourednik V. and Motlík J. (2005). The miniature pig as an animal model in biomedical research. PubMed DOI

Vuong K., Canning C. G., Menant J. C. and Loy C. T. (2018). Gait, balance, and falls in Huntington disease. PubMed DOI

Yan S., Tu Z., Liu Z., Fan N., Yang H., Yang S., Yang W., Zhao Y., Ouyang Z., Lai C. et al. (2018). A Huntingtin knockin pig model recapitulates features of selective neurodegeneration in Huntington's disease. PubMed DOI PMC

Yang S.-H., Cheng P.-H., Banta H., Piotrowska-Nitsche K., Yang J.-J., Cheng E. C. H., Snyder B., Larkin K., Liu J., Orkin J. et al. (2008). Towards a transgenic model of Huntington's disease in a non-human primate. PubMed DOI PMC

Yang D., Wang C.-E., Zhao B., Li W., Ouyang Z., Liu Z., Yang H., Fan P., O'Neill A., Gu W. et al. (2010). Expression of Huntington's disease protein results in apoptotic neurons in the brains of cloned transgenic pigs. PubMed DOI PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...