Huntingtin Co-Isolates with Small Extracellular Vesicles from Blood Plasma of TgHD and KI-HD Pig Models of Huntington's Disease and Human Blood Plasma
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
19-01747S
Czech Science Foundation
Cooperatio
Cooperatio Program, research area Neuroscience
MZ-ČR RVO- VFN 00064165
General University Hospital in Prague
GIP 22-SL-05-212
General University Hospital in Prague
RVO:67985904
Institute of Animal Physiology and Genetics
MZ NU20-04-00136
Czech health research council
739510
European Reference Network for Rare Neurological Diseases
PubMed
35628406
PubMed Central
PMC9147436
DOI
10.3390/ijms23105598
PII: ijms23105598
Knihovny.cz E-zdroje
- Klíčová slova
- Huntington´s disease, KI-HD, TgHD, biomarker, exosome, extracellular vesicle, fragment, huntingtin, neurodegenerative disease, pig model,
- MeSH
- biologické markery MeSH
- extracelulární vezikuly * metabolismus MeSH
- Huntingtonova nemoc * metabolismus MeSH
- krevní plazma metabolismus MeSH
- lidé MeSH
- prasata MeSH
- proteiny nervové tkáně genetika metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- biologické markery MeSH
- proteiny nervové tkáně MeSH
(1) Background: Huntington's disease (HD) is rare incurable hereditary neurodegenerative disorder caused by CAG repeat expansion in the gene coding for the protein huntingtin (HTT). Mutated huntingtin (mHTT) undergoes fragmentation and accumulation, affecting cellular functions and leading to neuronal cell death. Porcine models of HD are used in preclinical testing of currently emerging disease modifying therapies. Such therapies are aimed at reducing mHTT expression, postpone the disease onset, slow down the progression, and point out the need of biomarkers to monitor disease development and therapy efficacy. Recently, extracellular vesicles (EVs), particularly exosomes, gained attention as possible carriers of disease biomarkers. We aimed to characterize HTT and mHTT forms/fragments in blood plasma derived EVs in transgenic (TgHD) and knock-in (KI-HD) porcine models, as well as in HD patients' plasma. (2) Methods: Small EVs were isolated by ultracentrifugation and HTT forms were visualized by western blotting. (3) Results: The full length 360 kDa HTT co-isolated with EVs from both the pig model and HD patient plasma. In addition, a ~70 kDa mutant HTT fragment was specific for TgHD pigs. Elevated total huntingtin levels in EVs from plasma of HD groups compared to controls were observed in both pig models and HD patients, however only in TgHD were they significant (p = 0.02). (4) Conclusions: Our study represents a valuable initial step towards the characterization of EV content in the search for HD biomarkers.
Zobrazit více v PubMed
Dayalu P., Albin R.L. Huntington Disease. Neurol. Clin. 2015;33:101–114. doi: 10.1016/j.ncl.2014.09.003. PubMed DOI
McColgan P., Tabrizi S.J. Huntington’s Disease: A Clinical Review. Eur. J. Neurol. 2018;25:24–34. doi: 10.1111/ene.13413. PubMed DOI
Bashir H. Emerging Therapies in Huntington’s Disease. Expert Rev. Neurother. 2019;19:983–995. doi: 10.1080/14737175.2019.1631161. PubMed DOI
Tabrizi S.J., Flower M.D., Ross C.A., Wild E.J. Huntington Disease: New Insights into Molecular Pathogenesis and Therapeutic Opportunities. Nat. Rev. Neurol. 2020;16:529–546. doi: 10.1038/s41582-020-0389-4. PubMed DOI
Saudou F., Humbert S. The Biology of Huntingtin. Neuron. 2016;89:910–926. doi: 10.1016/j.neuron.2016.02.003. PubMed DOI
Zheng Z., Diamond M.I. Huntington Disease and the Huntingtin Protein. Prog. Mol. Biol. Transl. Sci. 2012;107:189–214. doi: 10.1016/B978-0-12-385883-2.00010-2. PubMed DOI
Tourette C., Li B., Bell R., O’Hare S., Kaltenbach L.S., Mooney S.D., Hughes R.E. A Large Scale Huntingtin Protein Interaction Network Implicates Rho GTPase Signaling Pathways in Huntington Disease. J. Biol. Chem. 2014;289:6709–6726. doi: 10.1074/jbc.M113.523696. PubMed DOI PMC
Wild E.J., Tabrizi S. Therapies Targeting DNA and RNA in Huntington’s Disease. Lancet Neurol. 2017;16:837–847. doi: 10.1016/S1474-4422(17)30280-6. PubMed DOI PMC
Ross C.A., Tabrizi S.J. Huntington’s Disease: From Molecular Pathogenesis to Clinical Treatment. Lancet Neurol. 2011;10:83–98. doi: 10.1016/S1474-4422(10)70245-3. PubMed DOI
Nopoulos P.C. Huntington Disease: A Single-Gene Degenerative Disorder of the Striatum. Dialogues Clin. Neurosci. 2016;18:91–98. doi: 10.31887/DCNS.2016.18.1/pnopoulos. PubMed DOI PMC
Van der Burg J.M., Björkqvist M., Brundin P. Beyond the Brain: Widespread Pathology in Huntington’s Disease. Lancet Neurol. 2009;8:765–774. doi: 10.1016/S1474-4422(09)70178-4. PubMed DOI
Bozzi M., Sciandra F. Molecular Mechanisms Underlying Muscle Wasting in Huntington’s Disease. Int. J. Mol. Sci. 2020;21:E8314. doi: 10.3390/ijms21218314. PubMed DOI PMC
Singh A., Agrawal N. Metabolism in Huntington’s Disease: A Major Contributor to Pathology. Metab. Brain Dis. 2021 doi: 10.1007/s11011-021-00844-y. PubMed DOI
Tomczyk M., Glaser T., Slominska E.M., Ulrich H., Smolenski R.T. Purine Nucleotides Metabolism and Signaling in Huntington’s Disease: Search for a Target for Novel Therapies. Int. J. Mol. Sci. 2021;22:6545. doi: 10.3390/ijms22126545. PubMed DOI PMC
Tomczyk M., Glaser T., Ulrich H., Slominska E.M., Smolenski R.T. Huntingtin Protein Maintains Balanced Energetics in Mouse Cardiomyocytes. Nucleosides Nucleotides Nucleic Acids. 2022;41:231–238. doi: 10.1080/15257770.2020.1815769. PubMed DOI
Ismailoglu I., Chen Q., Popowski M., Yang L., Gross S.S., Brivanlou A.H. Huntingtin Protein Is Essential for Mitochondrial Metabolism, Bioenergetics and Structure in Murine Embryonic Stem Cells. Dev. Biol. 2014;391:230–240. doi: 10.1016/j.ydbio.2014.04.005. PubMed DOI PMC
Evers M.M., Miniarikova J., Juhas S., Vallès A., Bohuslavova B., Juhasova J., Skalnikova H.K., Vodicka P., Valekova I., Brouwers C., et al. AAV5-MiHTT Gene Therapy Demonstrates Broad Distribution and Strong Human Mutant Huntingtin Lowering in a Huntington’s Disease Minipig Model. Mol. Ther. 2018;26:2163–2177. doi: 10.1016/j.ymthe.2018.06.021. PubMed DOI PMC
Caldwell K.A., Willicott C.W., Caldwell G.A. Modeling Neurodegeneration in Caenorhabditis Elegans. Dis. Models Mech. 2020;13:dmm046110. doi: 10.1242/dmm.046110. PubMed DOI PMC
Subhan I., Siddique Y.H. Modulation of Huntington’s Disease in Drosophila. CNS Neurol. Disord. Drug Targets. 2021;20:894–903. doi: 10.2174/1871527320666210412155508. PubMed DOI
Wang J., Cao H. Zebrafish and Medaka: Important Animal Models for Human Neurodegenerative Diseases. Int. J. Mol. Sci. 2021;22:10766. doi: 10.3390/ijms221910766. PubMed DOI PMC
Kaye J., Reisine T., Finkbeiner S. Huntington’s Disease Mouse Models: Unraveling the Pathology Caused by CAG Repeat Expansion. Fac. Rev. 2021;10:77. doi: 10.12703/r/10-77. PubMed DOI PMC
Howland D., Ellederova Z., Aronin N., Fernau D., Gallagher J., Taylor A., Hennebold J., Weiss A.R., Gray-Edwards H., McBride J. Large Animal Models of Huntington’s Disease: What We Have Learned and Where We Need to Go Next. J. Huntingt. Dis. 2020;9:201–216. doi: 10.3233/JHD-200425. PubMed DOI PMC
Kosior N., Leavitt B.R. Murine Models of Huntington’s Disease for Evaluating Therapeutics. Methods Mol. Biol. 2018;1780:179–207. doi: 10.1007/978-1-4939-7825-0_10. PubMed DOI
Schomberg D.T., Tellez A., Meudt J.J., Brady D.A., Dillon K.N., Arowolo F.K., Wicks J., Rousselle S.D., Shanmuganayagam D. Miniature Swine for Preclinical Modeling of Complexities of Human Disease for Translational Scientific Discovery and Accelerated Development of Therapies and Medical Devices. Toxicol. Pathol. 2016;44:299–314. doi: 10.1177/0192623315618292. PubMed DOI
Baxa M., Hruska-Plochan M., Juhas S., Vodicka P., Pavlok A., Juhasova J., Miyanohara A., Nejime T., Klima J., Macakova M., et al. A Transgenic Minipig Model of Huntington’s Disease. J. Huntingt. Dis. 2013;2:47–68. doi: 10.3233/JHD-130001. PubMed DOI
Yang W., Chen X., Li S., Li X.-J. Genetically Modified Large Animal Models for Investigating Neurodegenerative Diseases. Cell Biosci. 2021;11:218. doi: 10.1186/s13578-021-00729-8. PubMed DOI PMC
Askeland G., Rodinova M., Štufková H., Dosoudilova Z., Baxa M., Smatlikova P., Bohuslavova B., Klempir J., Nguyen T.D., Kuśnierczyk A., et al. A Transgenic Minipig Model of Huntington’s Disease Shows Early Signs of Behavioral and Molecular Pathologies. Dis. Models Mech. 2018;11:dmm035949. doi: 10.1242/dmm.035949. PubMed DOI PMC
Baxa M., Levinska B., Skrivankova M., Pokorny M., Juhasova J., Klima J., Klempir J., Motlík J., Juhas S., Ellederova Z. Longitudinal Study Revealing Motor, Cognitive and Behavioral Decline in a Transgenic Minipig Model of Huntington’s Disease. Dis. Models Mech. 2019;13:dmm.041293. doi: 10.1242/dmm.041293. PubMed DOI PMC
Navarro R., Juhas S., Keshavarzi S., Juhasova J., Motlik J., Johe K., Marsala S., Scadeng M., Lazar P., Tomori Z., et al. Chronic Spinal Compression Model in Minipigs: A Systematic Behavioral, Qualitative, and Quantitative Neuropathological Study. J. Neurotrauma. 2012;29:499–513. doi: 10.1089/neu.2011.2076. PubMed DOI PMC
Borovanský J., Horák V., Elleder M., Fortýn K., Smit N.P., Kolb A.M. Biochemical Characterization of a New Melanoma Model—The Minipig MeLiM Strain. Melanoma Res. 2003;13:543–548. doi: 10.1097/00008390-200312000-00001. PubMed DOI
Horak V., Palanova A., Cizkova J., Miltrova V., Vodicka P., Kupcova Skalnikova H. Melanoma-Bearing Libechov Minipig (MeLiM): The Unique Swine Model of Hereditary Metastatic Melanoma. Genes. 2019;10:915. doi: 10.3390/genes10110915. PubMed DOI PMC
Gao P., Li X., Du X., Liu S., Xu Y. Diagnostic and Therapeutic Potential of Exosomes in Neurodegenerative Diseases. Front. Aging Neurosci. 2021;13:790863. doi: 10.3389/fnagi.2021.790863. PubMed DOI PMC
He M., Zhang H.-N., Tang Z.-C., Gao S.-G. Diagnostic and Therapeutic Potential of Exosomal MicroRNAs for Neurodegenerative Diseases. Neural Plast. 2021;2021:8884642. doi: 10.1155/2021/8884642. PubMed DOI PMC
Lee S., Mankhong S., Kang J.-H. Extracellular Vesicle as a Source of Alzheimer’s Biomarkers: Opportunities and Challenges. Int. J. Mol. Sci. 2019;20:1728. doi: 10.3390/ijms20071728. PubMed DOI PMC
Colombo M., Raposo G., Théry C. Biogenesis, Secretion, and Intercellular Interactions of Exosomes and Other Extracellular Vesicles. Annu. Rev. Cell Dev. Biol. 2014;30:255–289. doi: 10.1146/annurev-cellbio-101512-122326. PubMed DOI
Sarko D.K., McKinney C.E. Exosomes: Origins and Therapeutic Potential for Neurodegenerative Disease. Front. Neurosci. 2017;11:82. doi: 10.3389/fnins.2017.00082. PubMed DOI PMC
Kalra H., Drummen G.P.C., Mathivanan S. Focus on Extracellular Vesicles: Introducing the Next Small Big Thing. Int. J. Mol. Sci. 2016;17:170. doi: 10.3390/ijms17020170. PubMed DOI PMC
Yáñez-Mó M., Siljander P.R.-M., Andreu Z., Zavec A.B., Borràs F.E., Buzas E.I., Buzas K., Casal E., Cappello F., Carvalho J., et al. Biological Properties of Extracellular Vesicles and Their Physiological Functions. J. Extracell. Vesicles. 2015;4:27066. doi: 10.3402/jev.v4.27066. PubMed DOI PMC
Van Niel G., D’Angelo G., Raposo G. Shedding Light on the Cell Biology of Extracellular Vesicles. Nat. Rev. Mol. Cell Biol. 2018;19:213–228. doi: 10.1038/nrm.2017.125. PubMed DOI
Yuyama K., Igarashi Y. Physiological and Pathological Roles of Exosomes in the Nervous System. Biomol. Concepts. 2016;7:53–68. doi: 10.1515/bmc-2015-0033. PubMed DOI
Rajendran L., Bali J., Barr M.M., Court F.A., Krämer-Albers E.-M., Picou F., Raposo G., van der Vos K.E., van Niel G., Wang J., et al. Emerging Roles of Extracellular Vesicles in the Nervous System. J. Neurosci. 2014;34:15482–15489. doi: 10.1523/JNEUROSCI.3258-14.2014. PubMed DOI PMC
Schnatz A., Müller C., Brahmer A., Krämer-Albers E.-M. Extracellular Vesicles in Neural Cell Interaction and CNS Homeostasis. FASEB BioAdvances. 2021;3:577–592. doi: 10.1096/fba.2021-00035. PubMed DOI PMC
Jin T., Gu J., Li Z., Xu Z., Gui Y. Recent Advances on Extracellular Vesicles in Central Nervous System Diseases. Clin. Interv. Aging. 2021;16:257–274. doi: 10.2147/CIA.S288415. PubMed DOI PMC
Busatto S., Morad G., Guo P., Moses M.A. The Role of Extracellular Vesicles in the Physiological and Pathological Regulation of the Blood-Brain Barrier. FASEB BioAdvances. 2021;3:665–675. doi: 10.1096/fba.2021-00045. PubMed DOI PMC
Choi H., Choi K., Kim D.-H., Oh B.-K., Yim H., Jo S., Choi C. Strategies for Targeted Delivery of Exosomes to the Brain: Advantages and Challenges. Pharmaceutics. 2022;14:672. doi: 10.3390/pharmaceutics14030672. PubMed DOI PMC
Alvarez-Erviti L., Seow Y., Yin H., Betts C., Lakhal S., Wood M.J.A. Delivery of SiRNA to the Mouse Brain by Systemic Injection of Targeted Exosomes. Nat. Biotechnol. 2011;29:341–345. doi: 10.1038/nbt.1807. PubMed DOI
Properzi F., Ferroni E., Poleggi A., Vinci R. The Regulation of Exosome Function in the CNS: Implications for Neurodegeneration. Swiss Med. Wkly. 2015;145:w14204. doi: 10.4414/smw.2015.14204. PubMed DOI
Vella L.J., Sharples R.A., Nisbet R.M., Cappai R., Hill A.F. The Role of Exosomes in the Processing of Proteins Associated with Neurodegenerative Diseases. Eur. Biophys. J. EBJ. 2008;37:323–332. doi: 10.1007/s00249-007-0246-z. PubMed DOI
Vandendriessche C., Bruggeman A., Van Cauwenberghe C., Vandenbroucke R.E. Extracellular Vesicles in Alzheimer’s and Parkinson’s Disease: Small Entities with Large Consequences. Cells. 2020;9:E2485. doi: 10.3390/cells9112485. PubMed DOI PMC
Gagliardi D., Bresolin N., Comi G.P., Corti S. Extracellular Vesicles and Amyotrophic Lateral Sclerosis: From Misfolded Protein Vehicles to Promising Clinical Biomarkers. Cell. Mol. Life Sci. CMLS. 2021;78:561–572. doi: 10.1007/s00018-020-03619-3. PubMed DOI PMC
Ruan Z., Pathak D., Venkatesan Kalavai S., Yoshii-Kitahara A., Muraoka S., Bhatt N., Takamatsu-Yukawa K., Hu J., Wang Y., Hersh S., et al. Alzheimer’s Disease Brain-Derived Extracellular Vesicles Spread Tau Pathology in Interneurons. Brain J. Neurol. 2021;144:288–309. doi: 10.1093/brain/awaa376. PubMed DOI PMC
Zhang X., Abels E.R., Redzic J.S., Margulis J., Finkbeiner S., Breakefield X.O. Potential Transfer of Polyglutamine and CAG-Repeat RNA in Extracellular Vesicles in Huntington’s Disease: Background and Evaluation in Cell Culture. Cell. Mol. Neurobiol. 2016;36:459–470. doi: 10.1007/s10571-016-0350-7. PubMed DOI PMC
Jeon I., Cicchetti F., Cisbani G., Lee S., Li E., Bae J., Lee N., Li L., Im W., Kim M., et al. Human-to-Mouse Prion-like Propagation of Mutant Huntingtin Protein. Acta Neuropathol. 2016;132:577–592. doi: 10.1007/s00401-016-1582-9. PubMed DOI PMC
Lee J., McKinney K.Q., Pavlopoulos A.J., Han M.H., Kim S.-H., Kim H.J., Hwang S. Exosomal Proteome Analysis of Cerebrospinal Fluid Detects Biosignatures of Neuromyelitis Optica and Multiple Sclerosis. Clin. Chim. Acta Int. J. Clin. Chem. 2016;462:118–126. doi: 10.1016/j.cca.2016.09.001. PubMed DOI
Hong Y., Zhao T., Li X.-J., Li S. Mutant Huntingtin Inhibits AB-Crystallin Expression and Impairs Exosome Secretion from Astrocytes. J. Neurosci. 2017;37:9550–9563. doi: 10.1523/JNEUROSCI.1418-17.2017. PubMed DOI PMC
Deng J., Koutras C., Donnelier J., Alshehri M., Fotouhi M., Girard M., Casha S., McPherson P.S., Robbins S.M., Braun J.E.A. Neurons Export Extracellular Vesicles Enriched in Cysteine String Protein and Misfolded Protein Cargo. Sci. Rep. 2017;7:956. doi: 10.1038/s41598-017-01115-6. PubMed DOI PMC
Ananbeh H., Vodicka P., Kupcova Skalnikova H. Emerging Roles of Exosomes in Huntington’s Disease. Int. J. Mol. Sci. 2021;22:4085. doi: 10.3390/ijms22084085. PubMed DOI PMC
Kapogiannis D., Mustapic M., Shardell M.D., Berkowitz S.T., Diehl T.C., Spangler R.D., Tran J., Lazaropoulos M.P., Chawla S., Gulyani S., et al. Association of Extracellular Vesicle Biomarkers With Alzheimer Disease in the Baltimore Longitudinal Study of Aging. JAMA Neurol. 2019;76:1340–1351. doi: 10.1001/jamaneurol.2019.2462. PubMed DOI PMC
Vingtdeux V., Sergeant N., Buée L. Potential Contribution of Exosomes to the Prion-Like Propagation of Lesions in Alzheimer’s Disease. Front. Physiol. 2012;3:229. doi: 10.3389/fphys.2012.00229. PubMed DOI PMC
Fiandaca M.S., Kapogiannis D., Mapstone M., Boxer A., Eitan E., Schwartz J.B., Abner E.L., Petersen R.C., Federoff H.J., Miller B.L., et al. Identification of Pre-Clinical Alzheimer’s Disease by a Profile of Pathogenic Proteins in Neurally-Derived Blood Exosomes: A Case-Control Study. Alzheimers Dement. J. Alzheimers Assoc. 2015;11:600–607.e1. doi: 10.1016/j.jalz.2014.06.008. PubMed DOI PMC
Goetzl E.J., Boxer A., Schwartz J.B., Abner E.L., Petersen R.C., Miller B.L., Kapogiannis D. Altered Lysosomal Proteins in Neural-Derived Plasma Exosomes in Preclinical Alzheimer Disease. Neurology. 2015;85:40–47. doi: 10.1212/WNL.0000000000001702. PubMed DOI PMC
Winston C.N., Goetzl E.J., Akers J.C., Carter B.S., Rockenstein E.M., Galasko D., Masliah E., Rissman R.A. Prediction of Conversion from Mild Cognitive Impairment to Dementia with Neuronally Derived Blood Exosome Protein Profile. Alzheimers Dement. Diagn. Assess. Dis. Monit. 2016;3:63–72. doi: 10.1016/j.dadm.2016.04.001. PubMed DOI PMC
Shi M., Liu C., Cook T.J., Bullock K.M., Zhao Y., Ginghina C., Li Y., Aro P., Dator R., He C., et al. Plasma Exosomal α-Synuclein Is Likely CNS-Derived and Increased in Parkinson’s Disease. Acta Neuropathol. 2014;128:639–650. doi: 10.1007/s00401-014-1314-y. PubMed DOI PMC
Tomlinson P.R., Zheng Y., Fischer R., Heidasch R., Gardiner C., Evetts S., Hu M., Wade-Martins R., Turner M.R., Morris J., et al. Identification of Distinct Circulating Exosomes in Parkinson’s Disease. Ann. Clin. Transl. Neurol. 2015;2:353–361. doi: 10.1002/acn3.175. PubMed DOI PMC
Vella L.J., Hill A.F., Cheng L. Focus on Extracellular Vesicles: Exosomes and Their Role in Protein Trafficking and Biomarker Potential in Alzheimer’s and Parkinson’s Disease. Int. J. Mol. Sci. 2016;17:173. doi: 10.3390/ijms17020173. PubMed DOI PMC
Cao X.-Y., Lu J.-M., Zhao Z.-Q., Li M.-C., Lu T., An X.-S., Xue L.-J. MicroRNA Biomarkers of Parkinson’s Disease in Serum Exosome-like Microvesicles. Neurosci. Lett. 2017;644:94–99. doi: 10.1016/j.neulet.2017.02.045. PubMed DOI
You Y., Ikezu T. Emerging Roles of Extracellular Vesicles in Neurodegenerative Disorders. Neurobiol. Dis. 2019;130:104512. doi: 10.1016/j.nbd.2019.104512. PubMed DOI PMC
Grad L.I., Yerbury J.J., Turner B.J., Guest W.C., Pokrishevsky E., O’Neill M.A., Yanai A., Silverman J.M., Zeineddine R., Corcoran L., et al. Intercellular Propagated Misfolding of Wild-Type Cu/Zn Superoxide Dismutase Occurs via Exosome-Dependent and -Independent Mechanisms. Proc. Natl. Acad. Sci. USA. 2014;111:3620–3625. doi: 10.1073/pnas.1312245111. PubMed DOI PMC
Hayashi N., Doi H., Kurata Y., Kagawa H., Atobe Y., Funakoshi K., Tada M., Katsumoto A., Tanaka K., Kunii M., et al. Proteomic Analysis of Exosome-Enriched Fractions Derived from Cerebrospinal Fluid of Amyotrophic Lateral Sclerosis Patients. Neurosci. Res. 2020;160:43–49. doi: 10.1016/j.neures.2019.10.010. PubMed DOI
Wang J.K.T., Langfelder P., Horvath S., Palazzolo M.J. Exosomes and Homeostatic Synaptic Plasticity Are Linked to Each Other and to Huntington’s, Parkinson’s, and Other Neurodegenerative Diseases by Database-Enabled Analyses of Comprehensively Curated Datasets. Front. Neurosci. 2017;11:149. doi: 10.3389/fnins.2017.00149. PubMed DOI PMC
Silverman J.M., Christy D., Shyu C.C., Moon K.-M., Fernando S., Gidden Z., Cowan C.M., Ban Y., Stacey R.G., Grad L.I., et al. CNS-Derived Extracellular Vesicles from Superoxide Dismutase 1 (SOD1)G93A ALS Mice Originate from Astrocytes and Neurons and Carry Misfolded SOD1. J. Biol. Chem. 2019;294:3744–3759. doi: 10.1074/jbc.RA118.004825. PubMed DOI PMC
Chung C.-C., Chan L., Chen J.-H., Bamodu O.A., Chiu H.-W., Hong C.-T. Plasma Extracellular Vesicles Tau and β-Amyloid as Biomarkers of Cognitive Dysfunction of Parkinson’s Disease. FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 2021;35:e21895. doi: 10.1096/fj.202100787R. PubMed DOI
Eren E., Leoutsakos J.-M., Troncoso J., Lyketsos C.G., Oh E.S., Kapogiannis D. Neuronal-Derived EV Biomarkers Track Cognitive Decline in Alzheimer’s Disease. Cells. 2022;11:436. doi: 10.3390/cells11030436. PubMed DOI PMC
Du M., Wang X., Ma F., Li F., Li H., Li F., Zhang A., Gao Y. Association between T-Tau Protein and Aβ42 in Plasma Neuronal-Derived Exosomes and Cognitive Impairment in Patients with Permanent Atrial Fibrillation and the Role of Anticoagulant Therapy and Inflammatory Mechanisms. J. Card. Surg. 2022;37:909–918. doi: 10.1111/jocs.16248. PubMed DOI
Théry C., Witwer K.W., Aikawa E., Alcaraz M.J., Anderson J.D., Andriantsitohaina R., Antoniou A., Arab T., Archer F., Atkin-Smith G.K., et al. Minimal Information for Studies of Extracellular Vesicles 2018 (MISEV2018): A Position Statement of the International Society for Extracellular Vesicles and Update of the MISEV2014 Guidelines. J. Extracell. Vesicles. 2018;7:1535750. doi: 10.1080/20013078.2018.1535750. PubMed DOI PMC
Li K., Wong D.K., Hong K.Y., Raffai R.L. Cushioned-Density Gradient Ultracentrifugation (C-DGUC): A Refined and High Performance Method for the Isolation, Characterization, and Use of Exosomes. Methods Mol. Biol. 2018;1740:69–83. doi: 10.1007/978-1-4939-7652-2_7. PubMed DOI PMC
Soto C., Pritzkow S. Protein Misfolding, Aggregation, and Conformational Strains in Neurodegenerative Diseases. Nat. Neurosci. 2018;21:1332–1340. doi: 10.1038/s41593-018-0235-9. PubMed DOI PMC
Weiss A., Abramowski D., Bibel M., Bodner R., Chopra V., DiFiglia M., Fox J., Kegel K., Klein C., Grueninger S., et al. Single-Step Detection of Mutant Huntingtin in Animal and Human Tissues: A Bioassay for Huntington’s Disease. Anal. Biochem. 2009;395:8–15. doi: 10.1016/j.ab.2009.08.001. PubMed DOI
Wild E.J., Boggio R., Langbehn D., Robertson N., Haider S., Miller J.R.C., Zetterberg H., Leavitt B.R., Kuhn R., Tabrizi S.J., et al. Quantification of Mutant Huntingtin Protein in Cerebrospinal Fluid from Huntington’s Disease Patients. J. Clin. Investig. 2015;125:1979–1986. doi: 10.1172/JCI80743. PubMed DOI PMC
Macdonald D., Tessari M.A., Boogaard I., Smith M., Pulli K., Szynol A., Albertus F., Lamers M.B.A.C., Dijkstra S., Kordt D., et al. Quantification Assays for Total and Polyglutamine-Expanded Huntingtin Proteins. PLoS ONE. 2014;9:e96854. doi: 10.1371/journal.pone.0096854. PubMed DOI PMC
Baldo B., Sajjad M.U., Cheong R.Y., Bigarreau J., Vijayvargia R., McLean C., Perrier A.L., Seong I.S., Halliday G., Petersén Å., et al. Quantification of Total and Mutant Huntingtin Protein Levels in Biospecimens Using a Novel AlphaLISA Assay. eNeuro. 2018;5:1–16. doi: 10.1523/ENEURO.0234-18.2018. PubMed DOI PMC
Vallès A., Evers M.M., Stam A., Sogorb-Gonzalez M., Brouwers C., Vendrell-Tornero C., Acar-Broekmans S., Paerels L., Klima J., Bohuslavova B., et al. Widespread and Sustained Target Engagement in Huntington’s Disease Minipigs upon Intrastriatal MicroRNA-Based Gene Therapy. Sci. Transl. Med. 2021;13:eabb8920. doi: 10.1126/scitranslmed.abb8920. PubMed DOI
Chuang C.-L., Demontis F. Systemic Manifestation and Contribution of Peripheral Tissues to Huntington’s Disease Pathogenesis. Ageing Res. Rev. 2021;69:101358. doi: 10.1016/j.arr.2021.101358. PubMed DOI PMC
Macakova M., Bohuslavova B., Vochozkova P., Pavlok A., Sedlackova M., Vidinska D., Vochyanova K., Liskova I., Valekova I., Baxa M., et al. Mutated Huntingtin Causes Testicular Pathology in Transgenic Minipig Boars. Neurodegener. Dis. 2016;16:245–259. doi: 10.1159/000443665. PubMed DOI
Palviainen M., Saraswat M., Varga Z., Kitka D., Neuvonen M., Puhka M., Joenväärä S., Renkonen R., Nieuwland R., Takatalo M., et al. Extracellular Vesicles from Human Plasma and Serum Are Carriers of Extravesicular Cargo-Implications for Biomarker Discovery. PLoS ONE. 2020;15:e0236439. doi: 10.1371/journal.pone.0236439. PubMed DOI PMC
Denis H.L., Lamontagne-Proulx J., St-Amour I., Mason S.L., Rowley J.W., Cloutier N., Tremblay M.-È., Vincent A.T., Gould P.V., Chouinard S., et al. Platelet Abnormalities in Huntington’s Disease. J. Neurol. Neurosurg. Psychiatry. 2019;90:272–283. doi: 10.1136/jnnp-2018-318854. PubMed DOI PMC
Denis H.L., Lamontagne-Proulx J., St-Amour I., Mason S.L., Weiss A., Chouinard S., Barker R.A., Boilard E., Cicchetti F. Platelet-Derived Extracellular Vesicles in Huntington’s Disease. J. Neurol. 2018;265:2704–2712. doi: 10.1007/s00415-018-9022-5. PubMed DOI
Brennan K., Martin K., FitzGerald S.P., O’Sullivan J., Wu Y., Blanco A., Richardson C., Mc Gee M.M. A Comparison of Methods for the Isolation and Separation of Extracellular Vesicles from Protein and Lipid Particles in Human Serum. Sci. Rep. 2020;10:1039. doi: 10.1038/s41598-020-57497-7. PubMed DOI PMC
Roux Q., Van Deun J., Dedeyne S., Hendrix A. The EV-TRACK Summary Add-on: Integration of Experimental Information in Databases to Ensure Comprehensive Interpretation of Biological Knowledge on Extracellular Vesicles. J. Extracell. Vesicles. 2020;9:1699367. doi: 10.1080/20013078.2019.1699367. PubMed DOI PMC
Van Deun J., Mestdagh P., Sormunen R., Cocquyt V., Vermaelen K., Vandesompele J., Bracke M., De Wever O., Hendrix A. The Impact of Disparate Isolation Methods for Extracellular Vesicles on Downstream RNA Profiling. J. Extracell. Vesicles. 2014;3:24858. doi: 10.3402/jev.v3.24858. PubMed DOI PMC
Lobb R.J., Becker M., Wen S.W., Wong C.S.F., Wiegmans A.P., Leimgruber A., Möller A. Optimized Exosome Isolation Protocol for Cell Culture Supernatant and Human Plasma. J. Extracell. Vesicles. 2015;4:27031. doi: 10.3402/jev.v4.27031. PubMed DOI PMC
Baranyai T., Herczeg K., Onódi Z., Voszka I., Módos K., Marton N., Nagy G., Mäger I., Wood M.J., El Andaloussi S., et al. Isolation of Exosomes from Blood Plasma: Qualitative and Quantitative Comparison of Ultracentrifugation and Size Exclusion Chromatography Methods. PLoS ONE. 2015;10:e0145686. doi: 10.1371/journal.pone.0145686. PubMed DOI PMC
Kupcova Skalnikova H., Bohuslavova B., Turnovcova K., Juhasova J., Juhas S., Rodinova M., Vodicka P. Isolation and Characterization of Small Extracellular Vesicles from Porcine Blood Plasma, Cerebrospinal Fluid, and Seminal Plasma. Proteomes. 2019;7:17. doi: 10.3390/proteomes7020017. PubMed DOI PMC
Tao T., Tartakoff A.M. Nuclear Relocation of Normal Huntingtin. Traffic Cph. Den. 2001;2:385–394. doi: 10.1034/j.1600-0854.2001.002006385.x. PubMed DOI
Karimi N., Cvjetkovic A., Jang S.C., Crescitelli R., Hosseinpour Feizi M.A., Nieuwland R., Lötvall J., Lässer C. Detailed Analysis of the Plasma Extracellular Vesicle Proteome after Separation from Lipoproteins. Cell. Mol. Life Sci. CMLS. 2018;75:2873–2886. doi: 10.1007/s00018-018-2773-4. PubMed DOI PMC
Tauro B.J., Greening D.W., Mathias R.A., Ji H., Mathivanan S., Scott A.M., Simpson R.J. Comparison of Ultracentrifugation, Density Gradient Separation, and Immunoaffinity Capture Methods for Isolating Human Colon Cancer Cell Line LIM1863-Derived Exosomes. Methods. 2012;56:293–304. doi: 10.1016/j.ymeth.2012.01.002. PubMed DOI
Fauré J., Lachenal G., Court M., Hirrlinger J., Chatellard-Causse C., Blot B., Grange J., Schoehn G., Goldberg Y., Boyer V., et al. Exosomes Are Released by Cultured Cortical Neurones. Mol. Cell. Neurosci. 2006;31:642–648. doi: 10.1016/j.mcn.2005.12.003. PubMed DOI
Onódi Z., Pelyhe C., Terézia Nagy C., Brenner G.B., Almási L., Kittel Á., Manček-Keber M., Ferdinandy P., Buzás E.I., Giricz Z. Isolation of High-Purity Extracellular Vesicles by the Combination of Iodixanol Density Gradient Ultracentrifugation and Bind-Elute Chromatography From Blood Plasma. Front. Physiol. 2018;9:1479. doi: 10.3389/fphys.2018.01479. PubMed DOI PMC
Vidinská D., Vochozková P., Šmatlíková P., Ardan T., Klíma J., Juhás Š., Juhásová J., Bohuslavová B., Baxa M., Valeková I., et al. Gradual Phenotype Development in Huntington Disease Transgenic Minipig Model at 24 Months of Age. Neurodegener. Dis. 2018;18:107–119. doi: 10.1159/000488592. PubMed DOI
Jozefovicova M., Herynek V., Jiru F., Dezortova M., Juhasova J., Juhas S., Motlik J., Hajek M. Minipig Model of Huntington’s Disease: 1H Magnetic Resonance Spectroscopy of the Brain. Physiol. Res. 2016;65:155–163. doi: 10.33549/physiolres.932967. PubMed DOI
Ardan T., Baxa M., Levinská B., Sedláčková M., Nguyen T.D., Klíma J., Juhás Š., Juhásová J., Šmatlíková P., Vochozková P., et al. Transgenic Minipig Model of Huntington’s Disease Exhibiting Gradually Progressing Neurodegeneration. Dis. Models Mech. 2019;13:dmm041319. doi: 10.1242/dmm.041319. PubMed DOI PMC
Théry C., Amigorena S., Raposo G., Clayton A. Isolation and Characterization of Exosomes from Cell Culture Supernatants and Biological Fluids. Curr. Protoc. Cell Biol. 2006;30:3–22. doi: 10.1002/0471143030.cb0322s30. PubMed DOI
Červenka J., Tylečková J., Kupcová Skalníková H., Vodičková Kepková K., Poliakh I., Valeková I., Pfeiferová L., Kolář M., Vaškovičová M., Pánková T., et al. Proteomic Characterization of Human Neural Stem Cells and Their Secretome during in Vitro Differentiation. Front. Cell. Neurosci. 2021;14:612560. doi: 10.3389/fncel.2020.612560. PubMed DOI PMC
Pospichalova V., Svoboda J., Dave Z., Kotrbova A., Kaiser K., Klemova D., Ilkovics L., Hampl A., Crha I., Jandakova E., et al. Simplified Protocol for Flow Cytometry Analysis of Fluorescently Labeled Exosomes and Microvesicles Using Dedicated Flow Cytometer. J. Extracell. Vesicles. 2015;4:25530. doi: 10.3402/jev.v4.25530. PubMed DOI PMC
R Core Team . R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing; Vienna, Austria: 2020.
Wickham H., Averick M., Bryan J., Chang W., McGowan L.D., François R., Grolemund G., Hayes A., Henry L., Hester J., et al. Welcome to the Tidyverse. J. Open Source Softw. 2019;4:1686. doi: 10.21105/joss.01686. DOI