Emerging Roles of Exosomes in Huntington's Disease

. 2021 Apr 15 ; 22 (8) : . [epub] 20210415

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid33920936

Grantová podpora
19-01747S Grantová Agentura České Republiky
LTC18079 Ministerstvo Školství, Mládeže a Tělovýchovy
CA16119 European Cooperation in Science and Technology (COST)

Huntington's disease (HD) is a rare hereditary autosomal dominant neurodegenerative disorder, which is caused by expression of mutant huntingtin protein (mHTT) with an abnormal number of glutamine repeats in its N terminus, and characterized by intracellular mHTT aggregates (inclusions) in the brain. Exosomes are small extracellular vesicles that are secreted generally by all cell types and can be isolated from almost all body fluids such as blood, urine, saliva, and cerebrospinal fluid. Exosomes may participate in the spreading of toxic misfolded proteins across the central nervous system in neurodegenerative diseases. In HD, such propagation of mHTT was observed both in vitro and in vivo. On the other hand, exosomes might carry molecules with neuroprotective effects. In addition, due to their capability to cross blood-brain barrier, exosomes hold great potential as sources of biomarkers available from periphery or carriers of therapeutics into the central nervous system. In this review, we discuss the emerging roles of exosomes in HD pathogenesis, diagnosis, and therapy.

Zobrazit více v PubMed

Théry C., Witwer K.W., Aikawa E., Alcaraz M.J., Anderson J.D., Andriantsitohaina R., Antoniou A., Arab T., Archer F., Atkin-Smith G.K., et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): A position statement of the international society for extracellular vesicles and update of the MISEV2014 guidelines. J. Extracell. Vesicles. 2018;7:1535750. doi: 10.1080/20013078.2018.1535750. PubMed DOI PMC

Yáñez-Mó M., Siljander P.R.-M., Andreu Z., Zavec A.B., Borràs F.E., Buzas E.I., Buzas K., Casal E., Cappello F., Carvalho J., et al. Biological properties of extracellular vesicles and their physiological functions. J. Extracell. Vesicles. 2015;4:27066. doi: 10.3402/jev.v4.27066. PubMed DOI PMC

Johnstone R.M., Adam M., Hammond J.R., Orr L., Turbide C. Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles (exosomes) J. Biol. Chem. 1987;262:9412–9420. doi: 10.1016/S0021-9258(18)48095-7. PubMed DOI

Van Niel G., D’Angelo G., Raposo G. Shedding light on the cell biology of extracellular vesicles. Nat. Rev. Mol. Cell Biol. 2018;19:213–228. doi: 10.1038/nrm.2017.125. PubMed DOI

Lakhal S., Wood M.J.A. Exosome nanotechnology: An emerging paradigm shift in drug delivery: Exploitation of exosome nanovesicles for systemic in vivo delivery of RNAi heralds new horizons for drug delivery across biological barriers. BioEssays. 2011;33:737–741. doi: 10.1002/bies.201100076. PubMed DOI

Zhang Z.G., Chopp M. Exosomes in stroke pathogenesis and therapy. J. Clin. Investig. 2016;126:1190–1197. doi: 10.1172/JCI81133. PubMed DOI PMC

Valadi H., Ekström K., Bossios A., Sjöstrand M., Lee J.J., Lötvall J.O. Exosome-mediated transfer of MRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat. Cell Biol. 2007;9:654–659. doi: 10.1038/ncb1596. PubMed DOI

Malm T., Loppi S., Kanninen K.M. Exosomes in Alzheimer’s disease. Neurochem. Int. 2016;97:193–199. doi: 10.1016/j.neuint.2016.04.011. PubMed DOI

Zhang Y., Liu Y., Liu H., Tang W.H. Exosomes: Biogenesis, biologic function and clinical potential. Cell Biosci. 2019;9:19. doi: 10.1186/s13578-019-0282-2. PubMed DOI PMC

Jan A., Rahman S., Khan S., Tasduq S., Choi I. Biology, pathophysiological role, and clinical implications of exosomes: A critical appraisal. Cells. 2019;8:99. doi: 10.3390/cells8020099. PubMed DOI PMC

Yue B., Yang H., Wang J., Ru W., Wu J., Huang Y., Lan X., Lei C., Chen H. Exosome biogenesis, secretion and function of exosomal MiRNAs in skeletal muscle myogenesis. Cell Prolif. 2020;53:e12857. doi: 10.1111/cpr.12857. PubMed DOI PMC

Lin J., Li J., Huang B., Liu J., Chen X., Chen X.-M., Xu Y.-M., Huang L.-F., Wang X.-Z. Exosomes: Novel biomarkers for clinical diagnosis. Sci. World J. 2015;2015:657086. doi: 10.1155/2015/657086. PubMed DOI PMC

Stuffers S., Sem Wegner C., Stenmark H., Brech A. Multivesicular endosome biogenesis in the absence of ESCRTs. Traffic Cph. Den. 2009;10:925–937. doi: 10.1111/j.1600-0854.2009.00920.x. PubMed DOI

Katzmann D.J., Babst M., Emr S.D. Ubiquitin-dependent sorting into the multivesicular body pathway requires the function of a conserved endosomal protein sorting complex, ESCRT-I. Cell. 2001;106:145–155. doi: 10.1016/S0092-8674(01)00434-2. PubMed DOI

Hong Y., Zhao T., Li X.-J., Li S. Mutant huntingtin inhibits AB-crystallin expression and impairs exosome secretion from astrocytes. J. Neurosci. 2017;37:9550–9563. doi: 10.1523/JNEUROSCI.1418-17.2017. PubMed DOI PMC

Properzi F., Ferroni E., Poleggi A., Vinci R. The regulation of exosome function in the CNS: Implications for neurodegeneration. Swiss Med. Wkly. 2015;145:w14204. doi: 10.4414/smw.2015.14204. PubMed DOI

Zebrowska A., Skowronek A., Wojakowska A., Widlak P., Pietrowska M. Metabolome of exosomes: Focus on vesicles released by cancer cells and present in human body fluids. Int. J. Mol. Sci. 2019;20:3461. doi: 10.3390/ijms20143461. PubMed DOI PMC

Van Dommelen S.M., Vader P., Lakhal S., Kooijmans S.A.A., van Solinge W.W., Wood M.J.A., Schiffelers R.M. Microvesicles and exosomes: Opportunities for cell-derived membrane vesicles in drug delivery. J. Control. Release. 2012;161:635–644. doi: 10.1016/j.jconrel.2011.11.021. PubMed DOI

Théry C., Zitvogel L., Amigorena S. Exosomes: Composition, biogenesis and function. Nat. Rev. Immunol. 2002;2:569–579. doi: 10.1038/nri855. PubMed DOI

Beach A., Zhang H.-G., Ratajczak M.Z., Kakar S.S. Exosomes: An overview of biogenesis, composition and role in ovarian cancer. J. Ovarian Res. 2014;7:14. doi: 10.1186/1757-2215-7-14. PubMed DOI PMC

Babst M. MVB vesicle formation: ESCRT-dependent, ESCRT-independent and everything in between. Curr. Opin. Cell Biol. 2011;23:452–457. doi: 10.1016/j.ceb.2011.04.008. PubMed DOI PMC

Fevrier B., Vilette D., Archer F., Loew D., Faigle W., Vidal M., Laude H., Raposo G. Cells release prions in association with exosomes. Proc. Natl. Acad. Sci. USA. 2004;101:9683–9688. doi: 10.1073/pnas.0308413101. PubMed DOI PMC

Kalluri R. The biology and function of exosomes in cancer. J. Clin. Investig. 2016;126:1208–1215. doi: 10.1172/JCI81135. PubMed DOI PMC

Statello L., Maugeri M., Garre E., Nawaz M., Wahlgren J., Papadimitriou A., Lundqvist C., Lindfors L., Collén A., Sunnerhagen P., et al. Identification of RNA-binding proteins in exosomes capable of interacting with different types of RNA: RBP-facilitated transport of RNAs into exosomes. PLoS ONE. 2018;13:e0195969. doi: 10.1371/journal.pone.0195969. PubMed DOI PMC

Xia X., Wang Y., Huang Y., Zhang H., Lu H., Zheng J.C. Exosomal MiRNAs in central nervous system diseases: Biomarkers, pathological mediators, protective factors and therapeutic agents. Prog. Neurobiol. 2019;183:101694. doi: 10.1016/j.pneurobio.2019.101694. PubMed DOI PMC

Wang L., Zhang L. Circulating exosomal MiRNA as diagnostic biomarkers of neurodegenerative diseases. Front. Mol. Neurosci. 2020;13:53. doi: 10.3389/fnmol.2020.00053. PubMed DOI PMC

Manna I., De Benedittis S., Quattrone A., Maisano D., Iaccino E., Quattrone A. Exosomal MiRNAs as potential diagnostic biomarkers in Alzheimer’s disease. Pharmaceuticals. 2020;13:243. doi: 10.3390/ph13090243. PubMed DOI PMC

Helder D.I., Kaptein A.A., van Kempen G.M.J., van Houwelingen J.C., Roos R.A.C. Impact of Huntington’s disease on quality of life. Mov. Disord. 2001;16:325–330. doi: 10.1002/mds.1056. PubMed DOI

Coulson N.S., Buchanan H., Aubeeluck A. Social support in cyberspace: A content analysis of communication within a Huntington’s disease online support group. Patient Educ. Couns. 2007;68:173–178. doi: 10.1016/j.pec.2007.06.002. PubMed DOI

Dayalu P., Albin R.L. Huntington disease. Neurol. Clin. 2015;33:101–114. doi: 10.1016/j.ncl.2014.09.003. PubMed DOI

Wynford-Thomas R., Robertson N.P. The economic burden of chronic neurological disease. J. Neurol. 2017;264:2345–2347. doi: 10.1007/s00415-017-8632-7. PubMed DOI PMC

McColgan P., Tabrizi S.J. Huntington’s disease: A clinical review. Eur. J. Neurol. 2018;25:24–34. doi: 10.1111/ene.13413. PubMed DOI

Rawlins M.D., Wexler N.S., Wexler A.R., Tabrizi S.J., Douglas I., Evans S.J.W., Smeeth L. The prevalence of Huntington’s disease. Neuroepidemiology. 2016;46:144–153. doi: 10.1159/000443738. PubMed DOI

Arrasate M., Finkbeiner S. Protein aggregates in Huntington’s disease. Exp. Neurol. 2012;238:1–11. doi: 10.1016/j.expneurol.2011.12.013. PubMed DOI PMC

Ha A.D., Jankovic J. Exploring the correlates of intermediate CAG repeats in huntington disease. Postgrad. Med. 2011;123:116–121. doi: 10.3810/pgm.2011.09.2466. PubMed DOI

Schneider S.A., Bird T. Huntington’s disease, Huntington’s disease look-alikes, and benign hereditary chorea: What’s new? Mov. Disord. Clin. Pract. 2016;3:342–354. doi: 10.1002/mdc3.12312. PubMed DOI PMC

Capiluppi E., Romano L., Rebora P., Nanetti L., Castaldo A., Gellera C., Mariotti C., Macerollo A., Cislaghi M.G. Late-onset Huntington’s disease with 40–42 CAG expansion. Neurol. Sci. 2020;41:869–876. doi: 10.1007/s10072-019-04177-8. PubMed DOI PMC

Testa C.M., Jankovic J. Huntington disease: A quarter century of progress since the gene discovery. J. Neurol. Sci. 2019;396:52–68. doi: 10.1016/j.jns.2018.09.022. PubMed DOI

Craufurd D., MacLeod R., Frontali M., Quarrell O., Bijlsma E.K., Davis M., Hjermind L.E., Lahiri N., Mandich P., Martinez A., et al. Diagnostic genetic testing for Huntington’s disease. Pract. Neurol. 2015;15:80–84. doi: 10.1136/practneurol-2013-000790. PubMed DOI

Dickey A.S., La Spada A.R. Therapy development in Huntington disease: From current strategies to emerging opportunities. Am. J. Med. Genet. A. 2018;176:842–861. doi: 10.1002/ajmg.a.38494. PubMed DOI PMC

Pan L., Feigin A. Huntington’s disease: New frontiers in therapeutics. Curr. Neurol. Neurosci. Rep. 2021;21:10. doi: 10.1007/s11910-021-01093-3. PubMed DOI

Wild E.J., Tabrizi S. Therapies targeting DNA and RNA in Huntington’s disease. Lancet Neurol. 2017;16:837–847. doi: 10.1016/S1474-4422(17)30280-6. PubMed DOI PMC

Tabrizi S.J., Ghosh R., Leavitt B.R. Huntingtin lowering strategies for disease modification in Huntington’s disease. Neuron. 2019;101:801–819. doi: 10.1016/j.neuron.2019.01.039. PubMed DOI

Shannon K.M. Recent advances in the treatment of Huntington’s disease: Targeting DNA and RNA. CNS Drugs. 2020;34:219–228. doi: 10.1007/s40263-019-00695-3. PubMed DOI

Tabrizi S.J., Flower M.D., Ross C.A., Wild E.J. Huntington disease: New insights into molecular pathogenesis and therapeutic opportunities. Nat. Rev. Neurol. 2020;16:529–546. doi: 10.1038/s41582-020-0389-4. PubMed DOI

Bashir H. Emerging therapies in Huntington’s disease. Expert Rev. Neurother. 2019;19:983–995. doi: 10.1080/14737175.2019.1631161. PubMed DOI

Przybyl L., Wozna-Wysocka M., Kozlowska E., Fiszer A. What, when and how to measure—Peripheral biomarkers in therapy of Huntington’s disease. Int. J. Mol. Sci. 2021;22:1561. doi: 10.3390/ijms22041561. PubMed DOI PMC

Schulte J., Littleton J.T. The biological function of the Huntingtin protein and its relevance to Huntington’s disease pathology. Curr. Trends Neurol. 2011;5:65–78. PubMed PMC

Tourette C., Li B., Bell R., O’Hare S., Kaltenbach L.S., Mooney S.D., Hughes R.E. A large scale Huntingtin protein interaction network implicates Rho GTPase signaling pathways in Huntington disease. J. Biol. Chem. 2014;289:6709–6726. doi: 10.1074/jbc.M113.523696. PubMed DOI PMC

Arndt J.R., Chaibva M., Legleiter J. The emerging role of the first 17 amino acids of huntingtin in Huntington’s disease. Biomol. Concepts. 2015;6:33–46. doi: 10.1515/bmc-2015-0001. PubMed DOI PMC

Tabrizi S.J., Leavitt B.R., Landwehrmeyer G.B., Wild E.J., Saft C., Barker R.A., Blair N.F., Craufurd D., Priller J., Rickards H., et al. Targeting huntingtin expression in patients with Huntington’s disease. N. Engl. J. Med. 2019;380:2307–2316. doi: 10.1056/NEJMoa1900907. PubMed DOI

Datson N.A., González-Barriga A., Kourkouta E., Weij R., van de Giessen J., Mulders S., Kontkanen O., Heikkinen T., Lehtimäki K., van Deutekom J.C.T. The expanded CAG repeat in the huntingtin gene as target for therapeutic RNA modulation throughout the HD mouse brain. PLoS ONE. 2017;12:e0171127. doi: 10.1371/journal.pone.0171127. PubMed DOI PMC

Alterman J.F., Hall L.M., Coles A.H., Hassler M.R., Didiot M.-C., Chase K., Abraham J., Sottosanti E., Johnson E., Sapp E., et al. Hydrophobically modified SiRNAs silence huntingtin MRNA in primary neurons and mouse brain. Mol. Ther. Nucleic Acids. 2015;4:e266. doi: 10.1038/mtna.2015.38. PubMed DOI PMC

Didiot M.-C., Hall L.M., Coles A.H., Haraszti R.A., Godinho B.M., Chase K., Sapp E., Ly S., Alterman J.F., Hassler M.R., et al. Exosome-mediated delivery of hydrophobically modified SiRNA for huntingtin MRNA silencing. Mol. Ther. 2016;24:1836–1847. doi: 10.1038/mt.2016.126. PubMed DOI PMC

Biscans A., Haraszti R.A., Echeverria D., Miller R., Didiot M.-C., Nikan M., Roux L., Aronin N., Khvorova A. Hydrophobicity of lipid-conjugated SiRNAs predicts productive loading to small extracellular vesicles. Mol. Ther. 2018;26:1520–1528. doi: 10.1016/j.ymthe.2018.03.019. PubMed DOI PMC

Wu T., Yu M., Zhang L., Chen X., Pei Z. I02 Systemic injection of exosomal sirna significantly reduced huntingtin expression in transgenic mice of Huntington’s disease. J. Neurol. Neurosurg. Psychiatry. 2018;89:A88–A89. doi: 10.1136/jnnp-2018-EHDN.238. DOI

Lee S.-T., Im W., Ban J.-J., Lee M., Jung K.-H., Lee S.K., Chu K., Kim M. Exosome-based delivery of MiR-124 in a Huntington’s disease model. J. Mov. Disord. 2017;10:45–52. doi: 10.14802/jmd.16054. PubMed DOI PMC

Miniarikova J., Zanella I., Huseinovic A., van der Zon T., Hanemaaijer E., Martier R., Koornneef A., Southwell A.L., Hayden M.R., van Deventer S.J., et al. Design, characterization, and lead selection of therapeutic MiRNAs targeting huntingtin for development of gene therapy for Huntington’s disease. Mol. Ther. Nucleic Acids. 2016;5:e297. doi: 10.1038/mtna.2016.7. PubMed DOI PMC

Evers M.M., Miniarikova J., Juhas S., Vallès A., Bohuslavova B., Juhasova J., Skalnikova H.K., Vodicka P., Valekova I., Brouwers C., et al. AAV5-MiHTT gene therapy demonstrates broad distribution and strong human mutant huntingtin lowering in a Huntington’s disease minipig model. Mol. Ther. 2018;26:2163–2177. doi: 10.1016/j.ymthe.2018.06.021. PubMed DOI PMC

Miniarikova J., Zimmer V., Martier R., Brouwers C.C., Pythoud C., Richetin K., Rey M., Lubelski J., Evers M.M., van Deventer S.J., et al. AAV5-MiHTT gene therapy demonstrates suppression of mutant huntingtin aggregation and neuronal dysfunction in a rat model of Huntington’s disease. Gene Ther. 2017;24:630–639. doi: 10.1038/gt.2017.71. PubMed DOI PMC

Pfister E., Dinardo N., Mondo E., Borel F., Conroy F., Fraser C., Gernoux G., Han X., Hu D., Johnson E., et al. Artificial MiRNAs reduce human mutant huntingtin throughout the striatum in a transgenic sheep model of Huntington’s disease. Hum. Gene Ther. 2017;29:663–673. doi: 10.1089/hum.2017.199. PubMed DOI PMC

Agustín-Pavón C., Mielcarek M., Garriga-Canut M., Isalan M. Deimmunization for gene therapy: Host matching of synthetic zinc finger constructs enables long-term mutant huntingtin repression in mice. Mol. Neurodegener. 2016;11:64. doi: 10.1186/s13024-016-0128-x. PubMed DOI PMC

Zeitler B., Froelich S., Marlen K., Shivak D.A., Yu Q., Li D., Pearl J.R., Miller J.C., Zhang L., Paschon D.E., et al. Allele-selective transcriptional repression of mutant HTT for the treatment of Huntington’s disease. Nat. Med. 2019;25:1131–1142. doi: 10.1038/s41591-019-0478-3. PubMed DOI

Shin J.W., Kim K.-H., Chao M.J., Atwal R.S., Gillis T., MacDonald M.E., Gusella J.F., Lee J.-M. Permanent inactivation of Huntington’s disease mutation by personalized allele-specific CRISPR/Cas9. Hum. Mol. Genet. 2016;25:4566–4576. doi: 10.1093/hmg/ddw286. PubMed DOI PMC

Yang S., Chang R., Yang H., Zhao T., Hong Y., Kong H.E., Sun X., Qin Z., Jin P., Li S., et al. CRISPR/Cas9-mediated gene editing ameliorates neurotoxicity in mouse model of Huntington’s disease. J. Clin. Investig. 2017;127:2719–2724. doi: 10.1172/JCI92087. PubMed DOI PMC

Roche Provides Update on Tominersen Programme in Manifest Huntington’s Disease. [(accessed on 29 March 2021)]; Available online: https://www.roche.com/media/releases/med-cor-2021-03-22b.htm.

Saudou F., Humbert S. The biology of huntingtin. Neuron. 2016;89:910–926. doi: 10.1016/j.neuron.2016.02.003. PubMed DOI

Zheng Z., Diamond M.I. Huntington disease and the huntingtin protein. Prog. Mol. Biol. Transl. Sci. 2012;107:189–214. doi: 10.1016/B978-0-12-385883-2.00010-2. PubMed DOI

Warby S.C., Doty C.N., Graham R.K., Carroll J.B., Yang Y.-Z., Singaraja R.R., Overall C.M., Hayden M.R. Activated Caspase-6 and Caspase-6-Cleaved Fragments of Huntingtin Specifically Colocalize in the Nucleus. Hum. Mol. Genet. 2008;17:2390–2404. doi: 10.1093/hmg/ddn139. PubMed DOI

Tebbenkamp A.T.N., Crosby K.W., Siemienski Z.B., Brown H.H., Golde T.E., Borchelt D.R. Analysis of proteolytic processes and enzymatic activities in the generation of huntingtin N-terminal fragments in an HEK293 cell model. PLoS ONE. 2012;7:e50750. doi: 10.1371/journal.pone.0050750. PubMed DOI PMC

El-Daher M.-T., Hangen E., Bruyère J., Poizat G., Al-Ramahi I., Pardo R., Bourg N., Souquere S., Mayet C., Pierron G., et al. Huntingtin proteolysis releases non-PolyQ fragments that cause toxicity through dynamin 1 dysregulation. EMBO J. 2015;34:2255–2271. doi: 10.15252/embj.201490808. PubMed DOI PMC

Ehrnhoefer D.E., Sutton L., Hayden M.R. Small changes, big impact: Posttranslational modifications and function of huntingtin in huntington disease. Neurosci. Rev. J. Bringing Neurobiol. Neurol. Psychiatry. 2011;17:475–492. doi: 10.1177/1073858410390378. PubMed DOI PMC

Martin D.D.O., Schmidt M.E., Nguyen Y.T., Lazic N., Hayden M.R. Identification of a novel caspase cleavage site in huntingtin that regulates mutant huntingtin clearance. FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 2019;33:3190–3197. doi: 10.1096/fj.201701510RRR. PubMed DOI

Wang X.-J., Cao Q., Zhang Y., Su X.-D. Activation and regulation of caspase-6 and its role in neurodegenerative diseases. Annu. Rev. Pharmacol. Toxicol. 2015;55:553–572. doi: 10.1146/annurev-pharmtox-010814-124414. PubMed DOI

Ross C.A., Tabrizi S.J. Huntington’s disease: From molecular pathogenesis to clinical treatment. Lancet Neurol. 2011;10:83–98. doi: 10.1016/S1474-4422(10)70245-3. PubMed DOI

MacDonald M.E., Ambrose C.M., Duyao M.P., Myers R.H., Lin C., Srinidhi L., Barnes G., Taylor S.A., James M., Groot N., et al. A Novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell. 1993;72:971–983. doi: 10.1016/0092-8674(93)90585-E. PubMed DOI

Schaffert L.-N., Carter W.G. Do post-translational modifications influence protein aggregation in neurodegenerative diseases: A systematic review. Brain Sci. 2020;10:232. doi: 10.3390/brainsci10040232. PubMed DOI PMC

Nasir J., Floresco S.B., O’Kusky J.R., Diewert V.M., Richman J.M., Zeisler J., Borowski A., Marth J.D., Phillips A.G., Hayden M.R. Targeted disruption of the Huntington’s disease gene results in embryonic lethality and behavioral and morphological changes in heterozygotes. Cell. 1995;81:811–823. doi: 10.1016/0092-8674(95)90542-1. PubMed DOI

Duyao M.P., Auerbach A.B., Ryan A., Persichetti F., Barnes G.T., McNeil S.M., Ge P., Vonsattel J.P., Gusella J.F., Joyner A.L., et al. Inactivation of the mouse Huntington’s disease gene homolog Hdh. Science. 1995;269:407–410. doi: 10.1126/science.7618107. PubMed DOI

Parsons M.P., Raymond L.A. Neurobiology of Brain Disorders. Elsevier; Amsterdam, The Netherlands: 2015. Huntington disease; pp. 303–320.

Harding R.J., Tong Y.-F. Proteostasis in Huntington’s disease: Disease mechanisms and therapeutic opportunities. Acta Pharmacol. Sin. 2018;39:754–769. doi: 10.1038/aps.2018.11. PubMed DOI PMC

Taylor J.P. Toxic proteins in neurodegenerative disease. Science. 2002;296:1991–1995. doi: 10.1126/science.1067122. PubMed DOI

Thakur A.K., Jayaraman M., Mishra R., Thakur M., Chellgren V.M., Byeon I.-J.L., Anjum D.H., Kodali R., Creamer T.P., Conway J.F., et al. Polyglutamine disruption of the huntingtin exon 1 N terminus triggers a complex aggregation mechanism. Nat. Struct. Mol. Biol. 2009;16:380–389. doi: 10.1038/nsmb.1570. PubMed DOI PMC

Li S., Li X.-J. Multiple pathways contribute to the pathogenesis of huntington disease found. Mol. Neurodegener. 2006;1:19. doi: 10.1186/1750-1326-1-19. PubMed DOI PMC

Koyuncu S., Fatima A., Gutierrez-Garcia R., Vilchez D. Proteostasis of huntingtin in health and disease. Int. J. Mol. Sci. 2017;18:1568. doi: 10.3390/ijms18071568. PubMed DOI PMC

Li H., Luo Y., Zhu L., Hua W., Zhang Y., Zhang H., Zhang L., Li Z., Xing P., Zhang Y., et al. Glia-derived exosomes: Promising therapeutic targets. Life Sci. 2019;239:116951. doi: 10.1016/j.lfs.2019.116951. PubMed DOI

Zhang G., Yang P. A novel cell-cell communication mechanism in the nervous system: Exosomes. J. Neurosci. Res. 2018;96:45–52. doi: 10.1002/jnr.24113. PubMed DOI

Caruso Bavisotto C., Scalia F., Marino Gammazza A., Carlisi D., Bucchieri F., Conway de Macario E., Macario A.J.L., Cappello F., Campanella C. Extracellular vesicle-mediated cell−cell communication in the nervous system: Focus on neurological diseases. Int. J. Mol. Sci. 2019;20:434. doi: 10.3390/ijms20020434. PubMed DOI PMC

Gunawardena S., Her L.-S., Brusch R.G., Laymon R.A., Niesman I.R., Gordesky-Gold B., Sintasath L., Bonini N.M., Goldstein L.S.B. Disruption of axonal transport by loss of huntingtin or expression of pathogenic PolyQ proteins in drosophila. Neuron. 2003;40:25–40. doi: 10.1016/S0896-6273(03)00594-4. PubMed DOI

Rossetti G., Magistrato A. Molecular mechanism of Huntington’s disease—A computational perspective. In: Ersoy Tunal N., editor. Huntington’s Disease—Core Concepts and Current Advances. InTech; London, UK: 2012.

Wyttenbach A., Carmichael J., Swartz J., Furlong R.A., Narain Y., Rankin J., Rubinsztein D.C. Effects of heat shock, heat shock protein 40 (HDJ-2), and proteasome inhibition on protein aggregation in cellular models of Huntington’s disease. Proc. Natl. Acad. Sci. USA. 2000;97:2898–2903. doi: 10.1073/pnas.97.6.2898. PubMed DOI PMC

Rajendran L., Bali J., Barr M.M., Court F.A., Krämer-Albers E.-M., Picou F., Raposo G., van der Vos K.E., van Niel G., Wang J., et al. Emerging roles of extracellular vesicles in the nervous system. J. Neurosci. 2014;34:15482–15489. doi: 10.1523/JNEUROSCI.3258-14.2014. PubMed DOI PMC

Yuyama K., Igarashi Y. Physiological and pathological roles of exosomes in the nervous system. Biomol. Concepts. 2016;7:53–68. doi: 10.1515/bmc-2015-0033. PubMed DOI

Schneider A., Simons M. Exosomes: Vesicular carriers for intercellular communication in neurodegenerative disorders. Cell Tissue Res. 2013;352:33–47. doi: 10.1007/s00441-012-1428-2. PubMed DOI PMC

Vella L.J., Sharples R.A., Nisbet R.M., Cappai R., Hill A.F. The role of exosomes in the processing of proteins associated with neurodegenerative diseases. Eur. Biophys. J. EBJ. 2008;37:323–332. doi: 10.1007/s00249-007-0246-z. PubMed DOI

Antonucci F., Turola E., Riganti L., Caleo M., Gabrielli M., Perrotta C., Novellino L., Clementi E., Giussani P., Viani P., et al. Microvesicles released from microglia stimulate synaptic activity via enhanced sphingolipid metabolism: Microglial MVs increase sphingolipid metabolism in neurons. EMBO J. 2012;31:1231–1240. doi: 10.1038/emboj.2011.489. PubMed DOI PMC

Wang S., Cesca F., Loers G., Schweizer M., Buck F., Benfenati F., Schachner M., Kleene R. Synapsin I Is an oligomannose-carrying glycoprotein, acts as an oligomannose-binding lectin, and promotes neurite outgrowth and neuronal survival when released via glia-derived exosomes. J. Neurosci. 2011;31:7275–7290. doi: 10.1523/JNEUROSCI.6476-10.2011. PubMed DOI PMC

Kanninen K.M., Bister N., Koistinaho J., Malm T. Exosomes as new diagnostic tools in CNS diseases. Biochim. Biophys. Acta BBA Mol. Basis Dis. 2016;1862:403–410. doi: 10.1016/j.bbadis.2015.09.020. PubMed DOI

Gharbi T., Zhang Z., Yang G.-Y. The function of astrocyte mediated extracellular vesicles in central nervous system diseases. Front. Cell Dev. Biol. 2020;8:568889. doi: 10.3389/fcell.2020.568889. PubMed DOI PMC

Mrowczynski O.D., Zacharia B.E., Connor J.R. Exosomes and their implications in central nervous system tumor biology. Prog. Neurobiol. 2019;172:71–83. doi: 10.1016/j.pneurobio.2018.06.006. PubMed DOI

Street J.M., Barran P.E., Mackay C.L., Weidt S., Balmforth C., Walsh T.S., Chalmers R.T.A., Webb D.J., Dear J.W. Identification and proteomic profiling of exosomes in human cerebrospinal fluid. J. Transl. Med. 2012;10:5. doi: 10.1186/1479-5876-10-5. PubMed DOI PMC

Banigan M.G., Kao P.F., Kozubek J.A., Winslow A.R., Medina J., Costa J., Schmitt A., Schneider A., Cabral H., Cagsal-Getkin O., et al. Differential expression of exosomal MicroRNAs in prefrontal cortices of schizophrenia and bipolar disorder patients. PLoS ONE. 2013;8:e48814. doi: 10.1371/journal.pone.0048814. PubMed DOI PMC

Lachenal G., Pernet-Gallay K., Chivet M., Hemming F.J., Belly A., Bodon G., Blot B., Haase G., Goldberg Y., Sadoul R. Release of exosomes from differentiated neurons and its regulation by synaptic glutamatergic activity. Mol. Cell. Neurosci. 2011;46:409–418. doi: 10.1016/j.mcn.2010.11.004. PubMed DOI

Fiandaca M.S., Kapogiannis D., Mapstone M., Boxer A., Eitan E., Schwartz J.B., Abner E.L., Petersen R.C., Federoff H.J., Miller B.L., et al. Identification of pre-clinical Alzheimer’s disease by a profile of pathogenic proteins in neurally-derived blood exosomes: A case-control study. Alzheimers Dement. J. Alzheimers Assoc. 2015;11:600–607.e1. doi: 10.1016/j.jalz.2014.06.008. PubMed DOI PMC

Gassama Y., Favereaux A. Emerging roles of extracellular vesicles in the central nervous system: Physiology, pathology, and therapeutic perspectives. Front. Cell. Neurosci. 2021;15:626043. doi: 10.3389/fncel.2021.626043. PubMed DOI PMC

Blandford S.N., Galloway D.A., Moore C.S. The roles of extracellular vesicle MicroRNAs in the central nervous system. Glia. 2018;66:2267–2278. doi: 10.1002/glia.23445. PubMed DOI

Paolicelli R.C., Bergamini G., Rajendran L. Cell-to-cell communication by extracellular vesicles: Focus on microglia. Neuroscience. 2019;405:148–157. doi: 10.1016/j.neuroscience.2018.04.003. PubMed DOI

Gupta A., Pulliam L. Exosomes as mediators of neuroinflammation. J. Neuroinflam. 2014;11:68. doi: 10.1186/1742-2094-11-68. PubMed DOI PMC

Ren P.-H., Lauckner J.E., Kachirskaia I., Heuser J.E., Melki R., Kopito R.R. Cytoplasmic penetration and persistent infection of mammalian cells by polyglutamine aggregates. Nat. Cell Biol. 2009;11:219–225. doi: 10.1038/ncb1830. PubMed DOI PMC

Costanzo M., Abounit S., Marzo L., Danckaert A., Chamoun Z., Roux P., Zurzolo C. Transfer of polyglutamine aggregates in neuronal cells occurs in tunneling nanotubes. J. Cell Sci. 2013;126:3678–3685. doi: 10.1242/jcs.126086. PubMed DOI

Herrera F., Tenreiro S., Miller-Fleming L., Outeiro T.F. Visualization of cell-to-cell transmission of mutant huntingtin oligomers. PLoS Curr. 2011;3:RRN1210. doi: 10.1371/currents.RRN1210. PubMed DOI PMC

Yang W., Dunlap J.R., Andrews R.B., Wetzel R. Aggregated polyglutamine peptides delivered to nuclei are toxic to mammalian cells. Hum. Mol. Genet. 2002;11:2905–2917. doi: 10.1093/hmg/11.23.2905. PubMed DOI

Pearce M.M.P., Spartz E.J., Hong W., Luo L., Kopito R.R. Prion-like transmission of neuronal huntingtin aggregates to phagocytic glia in the drosophila brain. Nat. Commun. 2015;6:6768. doi: 10.1038/ncomms7768. PubMed DOI PMC

Pecho-Vrieseling E., Rieker C., Fuchs S., Bleckmann D., Esposito M.S., Botta P., Goldstein C., Bernhard M., Galimberti I., Müller M., et al. Transneuronal propagation of mutant huntingtin contributes to non-cell autonomous pathology in neurons. Nat. Neurosci. 2014;17:1064–1072. doi: 10.1038/nn.3761. PubMed DOI

Cicchetti F., Lacroix S., Cisbani G., Vallières N., Saint-Pierre M., St-Amour I., Tolouei R., Skepper J.N., Hauser R.A., Mantovani D., et al. Mutant huntingtin is present in neuronal grafts in huntington disease patients: Transfer of mutant huntingtin to normal tissue. Ann. Neurol. 2014;76:31–42. doi: 10.1002/ana.24174. PubMed DOI

Jeon I., Cicchetti F., Cisbani G., Lee S., Li E., Bae J., Lee N., Li L., Im W., Kim M., et al. Human-to-mouse prion-like propagation of mutant huntingtin protein. Acta Neuropathol. 2016;132:577–592. doi: 10.1007/s00401-016-1582-9. PubMed DOI PMC

Zhang X., Abels E.R., Redzic J.S., Margulis J., Finkbeiner S., Breakefield X.O. Potential transfer of polyglutamine and CAG-repeat RNA in extracellular vesicles in Huntington’s disease: Background and evaluation in cell culture. Cell. Mol. Neurobiol. 2016;36:459–470. doi: 10.1007/s10571-016-0350-7. PubMed DOI PMC

Lee M., Liu T., Im W., Kim M. Exosomes from adipose-derived stem cells ameliorate phenotype of Huntington’s disease in vitro model. Eur. J. Neurosci. 2016;44:2114–2119. doi: 10.1111/ejn.13275. PubMed DOI

Deng J., Koutras C., Donnelier J., Alshehri M., Fotouhi M., Girard M., Casha S., McPherson P.S., Robbins S.M., Braun J.E.A. Neurons export extracellular vesicles enriched in cysteine string protein and misfolded protein cargo. Sci. Rep. 2017;7 doi: 10.1038/s41598-017-01115-6. PubMed DOI PMC

Boukouris S., Mathivanan S. Exosomes in bodily fluids are a highly stable resource of disease biomarkers. Proteom. Clin. Appl. 2015;9:358–367. doi: 10.1002/prca.201400114. PubMed DOI PMC

Manterola L., Guruceaga E., Pérez-Larraya J.G., González-Huarriz M., Jauregui P., Tejada S., Diez-Valle R., Segura V., Samprón N., Barrena C., et al. A small noncoding RNA signature found in exosomes of GBM patient serum as a diagnostic tool. Neuro-oncology. 2014;16:520–527. doi: 10.1093/neuonc/not218. PubMed DOI PMC

Vingtdeux V., Sergeant N., Buée L. Potential contribution of exosomes to the prion-like propagation of lesions in Alzheimer’s disease. Front. Physiol. 2012;3 doi: 10.3389/fphys.2012.00229. PubMed DOI PMC

Winston C.N., Goetzl E.J., Akers J.C., Carter B.S., Rockenstein E.M., Galasko D., Masliah E., Rissman R.A. Prediction of conversion from mild cognitive impairment to dementia with neuronally derived blood exosome protein profile. Alzheimers Dement. Diagn. Assess. Dis. Monit. 2016;3:63–72. doi: 10.1016/j.dadm.2016.04.001. PubMed DOI PMC

Goetzl E.J., Boxer A., Schwartz J.B., Abner E.L., Petersen R.C., Miller B.L., Kapogiannis D. Altered lysosomal proteins in neural-derived plasma exosomes in preclinical Alzheimer disease. Neurology. 2015;85:40–47. doi: 10.1212/WNL.0000000000001702. PubMed DOI PMC

Tomlinson P.R., Zheng Y., Fischer R., Heidasch R., Gardiner C., Evetts S., Hu M., Wade-Martins R., Turner M.R., Morris J., et al. Identification of distinct circulating exosomes in Parkinson’s disease. Ann. Clin. Transl. Neurol. 2015;2:353–361. doi: 10.1002/acn3.175. PubMed DOI PMC

Vella L.J., Hill A.F., Cheng L. Focus on extracellular vesicles: Exosomes and their role in protein trafficking and biomarker potential in Alzheimer’s and Parkinson’s disease. Int. J. Mol. Sci. 2016;17:173. doi: 10.3390/ijms17020173. PubMed DOI PMC

Cao X.-Y., Lu J.-M., Zhao Z.-Q., Li M.-C., Lu T., An X.-S., Xue L.-J. MicroRNA biomarkers of Parkinson’s disease in serum exosome-like microvesicles. Neurosci. Lett. 2017;644:94–99. doi: 10.1016/j.neulet.2017.02.045. PubMed DOI

You Y., Ikezu T. Emerging roles of extracellular vesicles in neurodegenerative disorders. Neurobiol. Dis. 2019;130:104512. doi: 10.1016/j.nbd.2019.104512. PubMed DOI PMC

Shi M., Liu C., Cook T.J., Bullock K.M., Zhao Y., Ginghina C., Li Y., Aro P., Dator R., He C., et al. Plasma exosomal α-synuclein is likely CNS-derived and increased in Parkinson’s disease. Acta Neuropathol. 2014;128:639–650. doi: 10.1007/s00401-014-1314-y. PubMed DOI PMC

Foster B.P., Balassa T., Benen T.D., Dominovic M., Elmadjian G.K., Florova V., Fransolet M.D., Kestlerova A., Kmiecik G., Kostadinova I.A., et al. Extracellular vesicles in blood, milk and body fluids of the female and male urogenital tract and with special regard to reproduction. Crit. Rev. Clin. Lab. Sci. 2016;53:379–395. doi: 10.1080/10408363.2016.1190682. PubMed DOI

Espinosa-Parrilla Y., Gonzalez-Billault C., Fuentes E., Palomo I., Alarcón M. Decoding the role of platelets and related MicroRNAs in aging and neurodegenerative disorders. Front. Aging Neurosci. 2019;11 doi: 10.3389/fnagi.2019.00151. PubMed DOI PMC

Denis H.L., Lamontagne-Proulx J., St-Amour I., Mason S.L., Weiss A., Chouinard S., Barker R.A., Boilard E., Cicchetti F. Platelet-derived extracellular vesicles in Huntington’s disease. J. Neurol. 2018;265:2704–2712. doi: 10.1007/s00415-018-9022-5. PubMed DOI

Denis H.L., Lamontagne-Proulx J., St-Amour I., Mason S.L., Rowley J.W., Cloutier N., Tremblay M.-È., Vincent A.T., Gould P.V., Chouinard S., et al. Platelet abnormalities in Huntington’s disease. J. Neurol. Neurosurg. Psychiatry. 2019;90:272–283. doi: 10.1136/jnnp-2018-318854. PubMed DOI PMC

Quiroz-Baez R., Hernández-Ortega K., Martínez-Martínez E. Insights into the proteomic profiling of extracellular vesicles for the identification of early biomarkers of neurodegeneration. Front. Neurol. 2020;11:580030. doi: 10.3389/fneur.2020.580030. PubMed DOI PMC

Wang S., Kojima K., Mobley J.A., West A.B. Proteomic analysis of urinary extracellular vesicles reveal biomarkers for neurologic disease. EBioMedicine. 2019;45:351–361. doi: 10.1016/j.ebiom.2019.06.021. PubMed DOI PMC

Lugli G., Cohen A.M., Bennett D.A., Shah R.C., Fields C.J., Hernandez A.G., Smalheiser N.R. Plasma exosomal MiRNAs in persons with and without Alzheimer disease: Altered expression and prospects for biomarkers. PLoS ONE. 2015;10:e0139233. doi: 10.1371/journal.pone.0139233. PubMed DOI PMC

Palaniswamy R., Sevugan K., Sampathkumar Srisharnitha A. Molecular signatures in exosomes as diagnostic markers for neurodegenerative disorders. Ann. Alzheimers Dement. Care. 2020;4:12–17. doi: 10.17352/aadc.000012. DOI

Barbagallo C., Mostile G., Baglieri G., Giunta F., Luca A., Raciti L., Zappia M., Purrello M., Ragusa M., Nicoletti A. Specific signatures of serum MiRNAs as potential biomarkers to discriminate clinically similar neurodegenerative and vascular-related diseases. Cell. Mol. Neurobiol. 2020;40:531–546. doi: 10.1007/s10571-019-00751-y. PubMed DOI PMC

Yao Y.-F., Qu M.-W., Li G.-C., Zhang F.-B., Rui H.-C. Circulating exosomal MiRNAs as diagnostic biomarkers in Parkinson’s disease. Eur. Rev. Med. Pharmacol. Sci. 2018;22:5278–5283. doi: 10.26355/eurrev_201808_15727. PubMed DOI

Reed E.R., Latourelle J.C., Bockholt J.H., Bregu J., Smock J., Paulsen J.S., Myers R.H. MicroRNAs in CSF as prodromal biomarkers for huntington disease in the PREDICT-HD study. Neurology. 2018;90:e264–e272. doi: 10.1212/WNL.0000000000004844. PubMed DOI PMC

Díez-Planelles C., Sánchez-Lozano P., Crespo M.C., Gil-Zamorano J., Ribacoba R., González N., Suárez E., Martínez-Descals A., Martínez-Camblor P., Álvarez V., et al. Circulating MicroRNAs in Huntington’s disease: Emerging mediators in metabolic impairment. Pharmacol. Res. 2016;108:102–110. doi: 10.1016/j.phrs.2016.05.005. PubMed DOI

Johnson R., Zuccato C., Belyaev N.D., Guest D.J., Cattaneo E., Buckley N.J. A MicroRNA-based gene dysregulation pathway in Huntington’s disease. Neurobiol. Dis. 2008;29:438–445. doi: 10.1016/j.nbd.2007.11.001. PubMed DOI

Packer A.N., Xing Y., Harper S.Q., Jones L., Davidson B.L. The bifunctional MicroRNA MiR-9/MiR-9* regulates REST and CoREST and is downregulated in Huntington’s disease. J. Neurosci. Off. J. Soc. Neurosci. 2008;28:14341–14346. doi: 10.1523/JNEUROSCI.2390-08.2008. PubMed DOI PMC

Das E., Jana N.R., Bhattacharyya N.P. MicroRNA-124 targets CCNA2 and regulates cell cycle in STHdhQ111/HdhQ111 cells. Biochem. Biophys. Res. Commun. 2013;437:217–224. doi: 10.1016/j.bbrc.2013.06.041. PubMed DOI

Cao X., Pfaff S.L., Gage F.H. A functional study of MiR-124 in the developing neural tube. Genes Dev. 2007;21:531–536. doi: 10.1101/gad.1519207. PubMed DOI PMC

Matsumoto J., Stewart T., Banks W.A., Zhang J. The transport mechanism of extracellular vesicles at the blood-brain barrier. Curr. Pharm. Des. 2017;23:6206–6214. doi: 10.2174/1381612823666170913164738. PubMed DOI

Kumar A., Zhou L., Zhi K., Raji B., Pernell S., Tadrous E., Kodidela S., Nookala A., Kochat H., Kumar S. Challenges in biomaterial-based drug delivery approach for the treatment of neurodegenerative diseases: Opportunities for extracellular vesicles. Int. J. Mol. Sci. 2020;22:138. doi: 10.3390/ijms22010138. PubMed DOI PMC

Muhammad S.A. Are extracellular vesicles new hope in clinical drug delivery for neurological disorders? Neurochem. Int. 2021;144:104955. doi: 10.1016/j.neuint.2021.104955. PubMed DOI

Yu Y., Hou K., Ji T., Wang X., Liu Y., Zheng Y., Xu J., Hou Y., Chi G. The role of exosomal MicroRNAs in central nervous system diseases. Mol. Cell. Biochem. 2021 doi: 10.1007/s11010-021-04053-0. PubMed DOI

Pereira P., Queiroz J.A., Figueiras A., Sousa F. Current progress on MicroRNAs-based therapeutics in neurodegenerative diseases. Wiley Interdiscip. Rev. RNA. 2017;8 doi: 10.1002/wrna.1409. PubMed DOI

Sun Y., Luo Z.-M., Guo X.-M., Su D.-F., Liu X. An updated role of MicroRNA-124 in central nervous system disorders: A review. Front. Cell. Neurosci. 2015;9:193. doi: 10.3389/fncel.2015.00193. PubMed DOI PMC

Ridolfi B., Abdel-Haq H. Neurodegenerative disorders treatment: The MicroRNA role. Curr. Gene Ther. 2017;17:327–363. doi: 10.2174/1566523218666180119120726. PubMed DOI

Liu T., Im W., Mook-Jung I., Kim M. MicroRNA-124 slows down the progression of Huntington’s disease by promoting neurogenesis in the striatum. Neural Regen. Res. 2015;10:786–791. doi: 10.4103/1673-5374.156978. PubMed DOI PMC

Didiot M.-C., Haraszti R.A., Aronin N., Khvorova A. Loading of extracellular vesicles with hydrophobically modified SiRNAs. Methods Mol. Biol. Clifton NJ. 2018;1740:199–214. doi: 10.1007/978-1-4939-7652-2_16. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...