Emerging Roles of Exosomes in Huntington's Disease
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
19-01747S
Grantová Agentura České Republiky
LTC18079
Ministerstvo Školství, Mládeže a Tělovýchovy
CA16119
European Cooperation in Science and Technology (COST)
PubMed
33920936
PubMed Central
PMC8071291
DOI
10.3390/ijms22084085
PII: ijms22084085
Knihovny.cz E-zdroje
- Klíčová slova
- Huntington’s disease, biomarker, exosome, extracellular vesicle, huntingtin, neurodegeneration, polyQ, therapy,
- MeSH
- biologické modely MeSH
- exozómy metabolismus MeSH
- Huntingtonova nemoc metabolismus MeSH
- lidé MeSH
- protein huntingtin metabolismus MeSH
- sbalování proteinů MeSH
- systémy cílené aplikace léků MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- protein huntingtin MeSH
Huntington's disease (HD) is a rare hereditary autosomal dominant neurodegenerative disorder, which is caused by expression of mutant huntingtin protein (mHTT) with an abnormal number of glutamine repeats in its N terminus, and characterized by intracellular mHTT aggregates (inclusions) in the brain. Exosomes are small extracellular vesicles that are secreted generally by all cell types and can be isolated from almost all body fluids such as blood, urine, saliva, and cerebrospinal fluid. Exosomes may participate in the spreading of toxic misfolded proteins across the central nervous system in neurodegenerative diseases. In HD, such propagation of mHTT was observed both in vitro and in vivo. On the other hand, exosomes might carry molecules with neuroprotective effects. In addition, due to their capability to cross blood-brain barrier, exosomes hold great potential as sources of biomarkers available from periphery or carriers of therapeutics into the central nervous system. In this review, we discuss the emerging roles of exosomes in HD pathogenesis, diagnosis, and therapy.
Zobrazit více v PubMed
Théry C., Witwer K.W., Aikawa E., Alcaraz M.J., Anderson J.D., Andriantsitohaina R., Antoniou A., Arab T., Archer F., Atkin-Smith G.K., et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): A position statement of the international society for extracellular vesicles and update of the MISEV2014 guidelines. J. Extracell. Vesicles. 2018;7:1535750. doi: 10.1080/20013078.2018.1535750. PubMed DOI PMC
Yáñez-Mó M., Siljander P.R.-M., Andreu Z., Zavec A.B., Borràs F.E., Buzas E.I., Buzas K., Casal E., Cappello F., Carvalho J., et al. Biological properties of extracellular vesicles and their physiological functions. J. Extracell. Vesicles. 2015;4:27066. doi: 10.3402/jev.v4.27066. PubMed DOI PMC
Johnstone R.M., Adam M., Hammond J.R., Orr L., Turbide C. Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles (exosomes) J. Biol. Chem. 1987;262:9412–9420. doi: 10.1016/S0021-9258(18)48095-7. PubMed DOI
Van Niel G., D’Angelo G., Raposo G. Shedding light on the cell biology of extracellular vesicles. Nat. Rev. Mol. Cell Biol. 2018;19:213–228. doi: 10.1038/nrm.2017.125. PubMed DOI
Lakhal S., Wood M.J.A. Exosome nanotechnology: An emerging paradigm shift in drug delivery: Exploitation of exosome nanovesicles for systemic in vivo delivery of RNAi heralds new horizons for drug delivery across biological barriers. BioEssays. 2011;33:737–741. doi: 10.1002/bies.201100076. PubMed DOI
Zhang Z.G., Chopp M. Exosomes in stroke pathogenesis and therapy. J. Clin. Investig. 2016;126:1190–1197. doi: 10.1172/JCI81133. PubMed DOI PMC
Valadi H., Ekström K., Bossios A., Sjöstrand M., Lee J.J., Lötvall J.O. Exosome-mediated transfer of MRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat. Cell Biol. 2007;9:654–659. doi: 10.1038/ncb1596. PubMed DOI
Malm T., Loppi S., Kanninen K.M. Exosomes in Alzheimer’s disease. Neurochem. Int. 2016;97:193–199. doi: 10.1016/j.neuint.2016.04.011. PubMed DOI
Zhang Y., Liu Y., Liu H., Tang W.H. Exosomes: Biogenesis, biologic function and clinical potential. Cell Biosci. 2019;9:19. doi: 10.1186/s13578-019-0282-2. PubMed DOI PMC
Jan A., Rahman S., Khan S., Tasduq S., Choi I. Biology, pathophysiological role, and clinical implications of exosomes: A critical appraisal. Cells. 2019;8:99. doi: 10.3390/cells8020099. PubMed DOI PMC
Yue B., Yang H., Wang J., Ru W., Wu J., Huang Y., Lan X., Lei C., Chen H. Exosome biogenesis, secretion and function of exosomal MiRNAs in skeletal muscle myogenesis. Cell Prolif. 2020;53:e12857. doi: 10.1111/cpr.12857. PubMed DOI PMC
Lin J., Li J., Huang B., Liu J., Chen X., Chen X.-M., Xu Y.-M., Huang L.-F., Wang X.-Z. Exosomes: Novel biomarkers for clinical diagnosis. Sci. World J. 2015;2015:657086. doi: 10.1155/2015/657086. PubMed DOI PMC
Stuffers S., Sem Wegner C., Stenmark H., Brech A. Multivesicular endosome biogenesis in the absence of ESCRTs. Traffic Cph. Den. 2009;10:925–937. doi: 10.1111/j.1600-0854.2009.00920.x. PubMed DOI
Katzmann D.J., Babst M., Emr S.D. Ubiquitin-dependent sorting into the multivesicular body pathway requires the function of a conserved endosomal protein sorting complex, ESCRT-I. Cell. 2001;106:145–155. doi: 10.1016/S0092-8674(01)00434-2. PubMed DOI
Hong Y., Zhao T., Li X.-J., Li S. Mutant huntingtin inhibits AB-crystallin expression and impairs exosome secretion from astrocytes. J. Neurosci. 2017;37:9550–9563. doi: 10.1523/JNEUROSCI.1418-17.2017. PubMed DOI PMC
Properzi F., Ferroni E., Poleggi A., Vinci R. The regulation of exosome function in the CNS: Implications for neurodegeneration. Swiss Med. Wkly. 2015;145:w14204. doi: 10.4414/smw.2015.14204. PubMed DOI
Zebrowska A., Skowronek A., Wojakowska A., Widlak P., Pietrowska M. Metabolome of exosomes: Focus on vesicles released by cancer cells and present in human body fluids. Int. J. Mol. Sci. 2019;20:3461. doi: 10.3390/ijms20143461. PubMed DOI PMC
Van Dommelen S.M., Vader P., Lakhal S., Kooijmans S.A.A., van Solinge W.W., Wood M.J.A., Schiffelers R.M. Microvesicles and exosomes: Opportunities for cell-derived membrane vesicles in drug delivery. J. Control. Release. 2012;161:635–644. doi: 10.1016/j.jconrel.2011.11.021. PubMed DOI
Théry C., Zitvogel L., Amigorena S. Exosomes: Composition, biogenesis and function. Nat. Rev. Immunol. 2002;2:569–579. doi: 10.1038/nri855. PubMed DOI
Beach A., Zhang H.-G., Ratajczak M.Z., Kakar S.S. Exosomes: An overview of biogenesis, composition and role in ovarian cancer. J. Ovarian Res. 2014;7:14. doi: 10.1186/1757-2215-7-14. PubMed DOI PMC
Babst M. MVB vesicle formation: ESCRT-dependent, ESCRT-independent and everything in between. Curr. Opin. Cell Biol. 2011;23:452–457. doi: 10.1016/j.ceb.2011.04.008. PubMed DOI PMC
Fevrier B., Vilette D., Archer F., Loew D., Faigle W., Vidal M., Laude H., Raposo G. Cells release prions in association with exosomes. Proc. Natl. Acad. Sci. USA. 2004;101:9683–9688. doi: 10.1073/pnas.0308413101. PubMed DOI PMC
Kalluri R. The biology and function of exosomes in cancer. J. Clin. Investig. 2016;126:1208–1215. doi: 10.1172/JCI81135. PubMed DOI PMC
Statello L., Maugeri M., Garre E., Nawaz M., Wahlgren J., Papadimitriou A., Lundqvist C., Lindfors L., Collén A., Sunnerhagen P., et al. Identification of RNA-binding proteins in exosomes capable of interacting with different types of RNA: RBP-facilitated transport of RNAs into exosomes. PLoS ONE. 2018;13:e0195969. doi: 10.1371/journal.pone.0195969. PubMed DOI PMC
Xia X., Wang Y., Huang Y., Zhang H., Lu H., Zheng J.C. Exosomal MiRNAs in central nervous system diseases: Biomarkers, pathological mediators, protective factors and therapeutic agents. Prog. Neurobiol. 2019;183:101694. doi: 10.1016/j.pneurobio.2019.101694. PubMed DOI PMC
Wang L., Zhang L. Circulating exosomal MiRNA as diagnostic biomarkers of neurodegenerative diseases. Front. Mol. Neurosci. 2020;13:53. doi: 10.3389/fnmol.2020.00053. PubMed DOI PMC
Manna I., De Benedittis S., Quattrone A., Maisano D., Iaccino E., Quattrone A. Exosomal MiRNAs as potential diagnostic biomarkers in Alzheimer’s disease. Pharmaceuticals. 2020;13:243. doi: 10.3390/ph13090243. PubMed DOI PMC
Helder D.I., Kaptein A.A., van Kempen G.M.J., van Houwelingen J.C., Roos R.A.C. Impact of Huntington’s disease on quality of life. Mov. Disord. 2001;16:325–330. doi: 10.1002/mds.1056. PubMed DOI
Coulson N.S., Buchanan H., Aubeeluck A. Social support in cyberspace: A content analysis of communication within a Huntington’s disease online support group. Patient Educ. Couns. 2007;68:173–178. doi: 10.1016/j.pec.2007.06.002. PubMed DOI
Dayalu P., Albin R.L. Huntington disease. Neurol. Clin. 2015;33:101–114. doi: 10.1016/j.ncl.2014.09.003. PubMed DOI
Wynford-Thomas R., Robertson N.P. The economic burden of chronic neurological disease. J. Neurol. 2017;264:2345–2347. doi: 10.1007/s00415-017-8632-7. PubMed DOI PMC
McColgan P., Tabrizi S.J. Huntington’s disease: A clinical review. Eur. J. Neurol. 2018;25:24–34. doi: 10.1111/ene.13413. PubMed DOI
Rawlins M.D., Wexler N.S., Wexler A.R., Tabrizi S.J., Douglas I., Evans S.J.W., Smeeth L. The prevalence of Huntington’s disease. Neuroepidemiology. 2016;46:144–153. doi: 10.1159/000443738. PubMed DOI
Arrasate M., Finkbeiner S. Protein aggregates in Huntington’s disease. Exp. Neurol. 2012;238:1–11. doi: 10.1016/j.expneurol.2011.12.013. PubMed DOI PMC
Ha A.D., Jankovic J. Exploring the correlates of intermediate CAG repeats in huntington disease. Postgrad. Med. 2011;123:116–121. doi: 10.3810/pgm.2011.09.2466. PubMed DOI
Schneider S.A., Bird T. Huntington’s disease, Huntington’s disease look-alikes, and benign hereditary chorea: What’s new? Mov. Disord. Clin. Pract. 2016;3:342–354. doi: 10.1002/mdc3.12312. PubMed DOI PMC
Capiluppi E., Romano L., Rebora P., Nanetti L., Castaldo A., Gellera C., Mariotti C., Macerollo A., Cislaghi M.G. Late-onset Huntington’s disease with 40–42 CAG expansion. Neurol. Sci. 2020;41:869–876. doi: 10.1007/s10072-019-04177-8. PubMed DOI PMC
Testa C.M., Jankovic J. Huntington disease: A quarter century of progress since the gene discovery. J. Neurol. Sci. 2019;396:52–68. doi: 10.1016/j.jns.2018.09.022. PubMed DOI
Craufurd D., MacLeod R., Frontali M., Quarrell O., Bijlsma E.K., Davis M., Hjermind L.E., Lahiri N., Mandich P., Martinez A., et al. Diagnostic genetic testing for Huntington’s disease. Pract. Neurol. 2015;15:80–84. doi: 10.1136/practneurol-2013-000790. PubMed DOI
Dickey A.S., La Spada A.R. Therapy development in Huntington disease: From current strategies to emerging opportunities. Am. J. Med. Genet. A. 2018;176:842–861. doi: 10.1002/ajmg.a.38494. PubMed DOI PMC
Pan L., Feigin A. Huntington’s disease: New frontiers in therapeutics. Curr. Neurol. Neurosci. Rep. 2021;21:10. doi: 10.1007/s11910-021-01093-3. PubMed DOI
Wild E.J., Tabrizi S. Therapies targeting DNA and RNA in Huntington’s disease. Lancet Neurol. 2017;16:837–847. doi: 10.1016/S1474-4422(17)30280-6. PubMed DOI PMC
Tabrizi S.J., Ghosh R., Leavitt B.R. Huntingtin lowering strategies for disease modification in Huntington’s disease. Neuron. 2019;101:801–819. doi: 10.1016/j.neuron.2019.01.039. PubMed DOI
Shannon K.M. Recent advances in the treatment of Huntington’s disease: Targeting DNA and RNA. CNS Drugs. 2020;34:219–228. doi: 10.1007/s40263-019-00695-3. PubMed DOI
Tabrizi S.J., Flower M.D., Ross C.A., Wild E.J. Huntington disease: New insights into molecular pathogenesis and therapeutic opportunities. Nat. Rev. Neurol. 2020;16:529–546. doi: 10.1038/s41582-020-0389-4. PubMed DOI
Bashir H. Emerging therapies in Huntington’s disease. Expert Rev. Neurother. 2019;19:983–995. doi: 10.1080/14737175.2019.1631161. PubMed DOI
Przybyl L., Wozna-Wysocka M., Kozlowska E., Fiszer A. What, when and how to measure—Peripheral biomarkers in therapy of Huntington’s disease. Int. J. Mol. Sci. 2021;22:1561. doi: 10.3390/ijms22041561. PubMed DOI PMC
Schulte J., Littleton J.T. The biological function of the Huntingtin protein and its relevance to Huntington’s disease pathology. Curr. Trends Neurol. 2011;5:65–78. PubMed PMC
Tourette C., Li B., Bell R., O’Hare S., Kaltenbach L.S., Mooney S.D., Hughes R.E. A large scale Huntingtin protein interaction network implicates Rho GTPase signaling pathways in Huntington disease. J. Biol. Chem. 2014;289:6709–6726. doi: 10.1074/jbc.M113.523696. PubMed DOI PMC
Arndt J.R., Chaibva M., Legleiter J. The emerging role of the first 17 amino acids of huntingtin in Huntington’s disease. Biomol. Concepts. 2015;6:33–46. doi: 10.1515/bmc-2015-0001. PubMed DOI PMC
Tabrizi S.J., Leavitt B.R., Landwehrmeyer G.B., Wild E.J., Saft C., Barker R.A., Blair N.F., Craufurd D., Priller J., Rickards H., et al. Targeting huntingtin expression in patients with Huntington’s disease. N. Engl. J. Med. 2019;380:2307–2316. doi: 10.1056/NEJMoa1900907. PubMed DOI
Datson N.A., González-Barriga A., Kourkouta E., Weij R., van de Giessen J., Mulders S., Kontkanen O., Heikkinen T., Lehtimäki K., van Deutekom J.C.T. The expanded CAG repeat in the huntingtin gene as target for therapeutic RNA modulation throughout the HD mouse brain. PLoS ONE. 2017;12:e0171127. doi: 10.1371/journal.pone.0171127. PubMed DOI PMC
Alterman J.F., Hall L.M., Coles A.H., Hassler M.R., Didiot M.-C., Chase K., Abraham J., Sottosanti E., Johnson E., Sapp E., et al. Hydrophobically modified SiRNAs silence huntingtin MRNA in primary neurons and mouse brain. Mol. Ther. Nucleic Acids. 2015;4:e266. doi: 10.1038/mtna.2015.38. PubMed DOI PMC
Didiot M.-C., Hall L.M., Coles A.H., Haraszti R.A., Godinho B.M., Chase K., Sapp E., Ly S., Alterman J.F., Hassler M.R., et al. Exosome-mediated delivery of hydrophobically modified SiRNA for huntingtin MRNA silencing. Mol. Ther. 2016;24:1836–1847. doi: 10.1038/mt.2016.126. PubMed DOI PMC
Biscans A., Haraszti R.A., Echeverria D., Miller R., Didiot M.-C., Nikan M., Roux L., Aronin N., Khvorova A. Hydrophobicity of lipid-conjugated SiRNAs predicts productive loading to small extracellular vesicles. Mol. Ther. 2018;26:1520–1528. doi: 10.1016/j.ymthe.2018.03.019. PubMed DOI PMC
Wu T., Yu M., Zhang L., Chen X., Pei Z. I02 Systemic injection of exosomal sirna significantly reduced huntingtin expression in transgenic mice of Huntington’s disease. J. Neurol. Neurosurg. Psychiatry. 2018;89:A88–A89. doi: 10.1136/jnnp-2018-EHDN.238. DOI
Lee S.-T., Im W., Ban J.-J., Lee M., Jung K.-H., Lee S.K., Chu K., Kim M. Exosome-based delivery of MiR-124 in a Huntington’s disease model. J. Mov. Disord. 2017;10:45–52. doi: 10.14802/jmd.16054. PubMed DOI PMC
Miniarikova J., Zanella I., Huseinovic A., van der Zon T., Hanemaaijer E., Martier R., Koornneef A., Southwell A.L., Hayden M.R., van Deventer S.J., et al. Design, characterization, and lead selection of therapeutic MiRNAs targeting huntingtin for development of gene therapy for Huntington’s disease. Mol. Ther. Nucleic Acids. 2016;5:e297. doi: 10.1038/mtna.2016.7. PubMed DOI PMC
Evers M.M., Miniarikova J., Juhas S., Vallès A., Bohuslavova B., Juhasova J., Skalnikova H.K., Vodicka P., Valekova I., Brouwers C., et al. AAV5-MiHTT gene therapy demonstrates broad distribution and strong human mutant huntingtin lowering in a Huntington’s disease minipig model. Mol. Ther. 2018;26:2163–2177. doi: 10.1016/j.ymthe.2018.06.021. PubMed DOI PMC
Miniarikova J., Zimmer V., Martier R., Brouwers C.C., Pythoud C., Richetin K., Rey M., Lubelski J., Evers M.M., van Deventer S.J., et al. AAV5-MiHTT gene therapy demonstrates suppression of mutant huntingtin aggregation and neuronal dysfunction in a rat model of Huntington’s disease. Gene Ther. 2017;24:630–639. doi: 10.1038/gt.2017.71. PubMed DOI PMC
Pfister E., Dinardo N., Mondo E., Borel F., Conroy F., Fraser C., Gernoux G., Han X., Hu D., Johnson E., et al. Artificial MiRNAs reduce human mutant huntingtin throughout the striatum in a transgenic sheep model of Huntington’s disease. Hum. Gene Ther. 2017;29:663–673. doi: 10.1089/hum.2017.199. PubMed DOI PMC
Agustín-Pavón C., Mielcarek M., Garriga-Canut M., Isalan M. Deimmunization for gene therapy: Host matching of synthetic zinc finger constructs enables long-term mutant huntingtin repression in mice. Mol. Neurodegener. 2016;11:64. doi: 10.1186/s13024-016-0128-x. PubMed DOI PMC
Zeitler B., Froelich S., Marlen K., Shivak D.A., Yu Q., Li D., Pearl J.R., Miller J.C., Zhang L., Paschon D.E., et al. Allele-selective transcriptional repression of mutant HTT for the treatment of Huntington’s disease. Nat. Med. 2019;25:1131–1142. doi: 10.1038/s41591-019-0478-3. PubMed DOI
Shin J.W., Kim K.-H., Chao M.J., Atwal R.S., Gillis T., MacDonald M.E., Gusella J.F., Lee J.-M. Permanent inactivation of Huntington’s disease mutation by personalized allele-specific CRISPR/Cas9. Hum. Mol. Genet. 2016;25:4566–4576. doi: 10.1093/hmg/ddw286. PubMed DOI PMC
Yang S., Chang R., Yang H., Zhao T., Hong Y., Kong H.E., Sun X., Qin Z., Jin P., Li S., et al. CRISPR/Cas9-mediated gene editing ameliorates neurotoxicity in mouse model of Huntington’s disease. J. Clin. Investig. 2017;127:2719–2724. doi: 10.1172/JCI92087. PubMed DOI PMC
Roche Provides Update on Tominersen Programme in Manifest Huntington’s Disease. [(accessed on 29 March 2021)]; Available online: https://www.roche.com/media/releases/med-cor-2021-03-22b.htm.
Saudou F., Humbert S. The biology of huntingtin. Neuron. 2016;89:910–926. doi: 10.1016/j.neuron.2016.02.003. PubMed DOI
Zheng Z., Diamond M.I. Huntington disease and the huntingtin protein. Prog. Mol. Biol. Transl. Sci. 2012;107:189–214. doi: 10.1016/B978-0-12-385883-2.00010-2. PubMed DOI
Warby S.C., Doty C.N., Graham R.K., Carroll J.B., Yang Y.-Z., Singaraja R.R., Overall C.M., Hayden M.R. Activated Caspase-6 and Caspase-6-Cleaved Fragments of Huntingtin Specifically Colocalize in the Nucleus. Hum. Mol. Genet. 2008;17:2390–2404. doi: 10.1093/hmg/ddn139. PubMed DOI
Tebbenkamp A.T.N., Crosby K.W., Siemienski Z.B., Brown H.H., Golde T.E., Borchelt D.R. Analysis of proteolytic processes and enzymatic activities in the generation of huntingtin N-terminal fragments in an HEK293 cell model. PLoS ONE. 2012;7:e50750. doi: 10.1371/journal.pone.0050750. PubMed DOI PMC
El-Daher M.-T., Hangen E., Bruyère J., Poizat G., Al-Ramahi I., Pardo R., Bourg N., Souquere S., Mayet C., Pierron G., et al. Huntingtin proteolysis releases non-PolyQ fragments that cause toxicity through dynamin 1 dysregulation. EMBO J. 2015;34:2255–2271. doi: 10.15252/embj.201490808. PubMed DOI PMC
Ehrnhoefer D.E., Sutton L., Hayden M.R. Small changes, big impact: Posttranslational modifications and function of huntingtin in huntington disease. Neurosci. Rev. J. Bringing Neurobiol. Neurol. Psychiatry. 2011;17:475–492. doi: 10.1177/1073858410390378. PubMed DOI PMC
Martin D.D.O., Schmidt M.E., Nguyen Y.T., Lazic N., Hayden M.R. Identification of a novel caspase cleavage site in huntingtin that regulates mutant huntingtin clearance. FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 2019;33:3190–3197. doi: 10.1096/fj.201701510RRR. PubMed DOI
Wang X.-J., Cao Q., Zhang Y., Su X.-D. Activation and regulation of caspase-6 and its role in neurodegenerative diseases. Annu. Rev. Pharmacol. Toxicol. 2015;55:553–572. doi: 10.1146/annurev-pharmtox-010814-124414. PubMed DOI
Ross C.A., Tabrizi S.J. Huntington’s disease: From molecular pathogenesis to clinical treatment. Lancet Neurol. 2011;10:83–98. doi: 10.1016/S1474-4422(10)70245-3. PubMed DOI
MacDonald M.E., Ambrose C.M., Duyao M.P., Myers R.H., Lin C., Srinidhi L., Barnes G., Taylor S.A., James M., Groot N., et al. A Novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell. 1993;72:971–983. doi: 10.1016/0092-8674(93)90585-E. PubMed DOI
Schaffert L.-N., Carter W.G. Do post-translational modifications influence protein aggregation in neurodegenerative diseases: A systematic review. Brain Sci. 2020;10:232. doi: 10.3390/brainsci10040232. PubMed DOI PMC
Nasir J., Floresco S.B., O’Kusky J.R., Diewert V.M., Richman J.M., Zeisler J., Borowski A., Marth J.D., Phillips A.G., Hayden M.R. Targeted disruption of the Huntington’s disease gene results in embryonic lethality and behavioral and morphological changes in heterozygotes. Cell. 1995;81:811–823. doi: 10.1016/0092-8674(95)90542-1. PubMed DOI
Duyao M.P., Auerbach A.B., Ryan A., Persichetti F., Barnes G.T., McNeil S.M., Ge P., Vonsattel J.P., Gusella J.F., Joyner A.L., et al. Inactivation of the mouse Huntington’s disease gene homolog Hdh. Science. 1995;269:407–410. doi: 10.1126/science.7618107. PubMed DOI
Parsons M.P., Raymond L.A. Neurobiology of Brain Disorders. Elsevier; Amsterdam, The Netherlands: 2015. Huntington disease; pp. 303–320.
Harding R.J., Tong Y.-F. Proteostasis in Huntington’s disease: Disease mechanisms and therapeutic opportunities. Acta Pharmacol. Sin. 2018;39:754–769. doi: 10.1038/aps.2018.11. PubMed DOI PMC
Taylor J.P. Toxic proteins in neurodegenerative disease. Science. 2002;296:1991–1995. doi: 10.1126/science.1067122. PubMed DOI
Thakur A.K., Jayaraman M., Mishra R., Thakur M., Chellgren V.M., Byeon I.-J.L., Anjum D.H., Kodali R., Creamer T.P., Conway J.F., et al. Polyglutamine disruption of the huntingtin exon 1 N terminus triggers a complex aggregation mechanism. Nat. Struct. Mol. Biol. 2009;16:380–389. doi: 10.1038/nsmb.1570. PubMed DOI PMC
Li S., Li X.-J. Multiple pathways contribute to the pathogenesis of huntington disease found. Mol. Neurodegener. 2006;1:19. doi: 10.1186/1750-1326-1-19. PubMed DOI PMC
Koyuncu S., Fatima A., Gutierrez-Garcia R., Vilchez D. Proteostasis of huntingtin in health and disease. Int. J. Mol. Sci. 2017;18:1568. doi: 10.3390/ijms18071568. PubMed DOI PMC
Li H., Luo Y., Zhu L., Hua W., Zhang Y., Zhang H., Zhang L., Li Z., Xing P., Zhang Y., et al. Glia-derived exosomes: Promising therapeutic targets. Life Sci. 2019;239:116951. doi: 10.1016/j.lfs.2019.116951. PubMed DOI
Zhang G., Yang P. A novel cell-cell communication mechanism in the nervous system: Exosomes. J. Neurosci. Res. 2018;96:45–52. doi: 10.1002/jnr.24113. PubMed DOI
Caruso Bavisotto C., Scalia F., Marino Gammazza A., Carlisi D., Bucchieri F., Conway de Macario E., Macario A.J.L., Cappello F., Campanella C. Extracellular vesicle-mediated cell−cell communication in the nervous system: Focus on neurological diseases. Int. J. Mol. Sci. 2019;20:434. doi: 10.3390/ijms20020434. PubMed DOI PMC
Gunawardena S., Her L.-S., Brusch R.G., Laymon R.A., Niesman I.R., Gordesky-Gold B., Sintasath L., Bonini N.M., Goldstein L.S.B. Disruption of axonal transport by loss of huntingtin or expression of pathogenic PolyQ proteins in drosophila. Neuron. 2003;40:25–40. doi: 10.1016/S0896-6273(03)00594-4. PubMed DOI
Rossetti G., Magistrato A. Molecular mechanism of Huntington’s disease—A computational perspective. In: Ersoy Tunal N., editor. Huntington’s Disease—Core Concepts and Current Advances. InTech; London, UK: 2012.
Wyttenbach A., Carmichael J., Swartz J., Furlong R.A., Narain Y., Rankin J., Rubinsztein D.C. Effects of heat shock, heat shock protein 40 (HDJ-2), and proteasome inhibition on protein aggregation in cellular models of Huntington’s disease. Proc. Natl. Acad. Sci. USA. 2000;97:2898–2903. doi: 10.1073/pnas.97.6.2898. PubMed DOI PMC
Rajendran L., Bali J., Barr M.M., Court F.A., Krämer-Albers E.-M., Picou F., Raposo G., van der Vos K.E., van Niel G., Wang J., et al. Emerging roles of extracellular vesicles in the nervous system. J. Neurosci. 2014;34:15482–15489. doi: 10.1523/JNEUROSCI.3258-14.2014. PubMed DOI PMC
Yuyama K., Igarashi Y. Physiological and pathological roles of exosomes in the nervous system. Biomol. Concepts. 2016;7:53–68. doi: 10.1515/bmc-2015-0033. PubMed DOI
Schneider A., Simons M. Exosomes: Vesicular carriers for intercellular communication in neurodegenerative disorders. Cell Tissue Res. 2013;352:33–47. doi: 10.1007/s00441-012-1428-2. PubMed DOI PMC
Vella L.J., Sharples R.A., Nisbet R.M., Cappai R., Hill A.F. The role of exosomes in the processing of proteins associated with neurodegenerative diseases. Eur. Biophys. J. EBJ. 2008;37:323–332. doi: 10.1007/s00249-007-0246-z. PubMed DOI
Antonucci F., Turola E., Riganti L., Caleo M., Gabrielli M., Perrotta C., Novellino L., Clementi E., Giussani P., Viani P., et al. Microvesicles released from microglia stimulate synaptic activity via enhanced sphingolipid metabolism: Microglial MVs increase sphingolipid metabolism in neurons. EMBO J. 2012;31:1231–1240. doi: 10.1038/emboj.2011.489. PubMed DOI PMC
Wang S., Cesca F., Loers G., Schweizer M., Buck F., Benfenati F., Schachner M., Kleene R. Synapsin I Is an oligomannose-carrying glycoprotein, acts as an oligomannose-binding lectin, and promotes neurite outgrowth and neuronal survival when released via glia-derived exosomes. J. Neurosci. 2011;31:7275–7290. doi: 10.1523/JNEUROSCI.6476-10.2011. PubMed DOI PMC
Kanninen K.M., Bister N., Koistinaho J., Malm T. Exosomes as new diagnostic tools in CNS diseases. Biochim. Biophys. Acta BBA Mol. Basis Dis. 2016;1862:403–410. doi: 10.1016/j.bbadis.2015.09.020. PubMed DOI
Gharbi T., Zhang Z., Yang G.-Y. The function of astrocyte mediated extracellular vesicles in central nervous system diseases. Front. Cell Dev. Biol. 2020;8:568889. doi: 10.3389/fcell.2020.568889. PubMed DOI PMC
Mrowczynski O.D., Zacharia B.E., Connor J.R. Exosomes and their implications in central nervous system tumor biology. Prog. Neurobiol. 2019;172:71–83. doi: 10.1016/j.pneurobio.2018.06.006. PubMed DOI
Street J.M., Barran P.E., Mackay C.L., Weidt S., Balmforth C., Walsh T.S., Chalmers R.T.A., Webb D.J., Dear J.W. Identification and proteomic profiling of exosomes in human cerebrospinal fluid. J. Transl. Med. 2012;10:5. doi: 10.1186/1479-5876-10-5. PubMed DOI PMC
Banigan M.G., Kao P.F., Kozubek J.A., Winslow A.R., Medina J., Costa J., Schmitt A., Schneider A., Cabral H., Cagsal-Getkin O., et al. Differential expression of exosomal MicroRNAs in prefrontal cortices of schizophrenia and bipolar disorder patients. PLoS ONE. 2013;8:e48814. doi: 10.1371/journal.pone.0048814. PubMed DOI PMC
Lachenal G., Pernet-Gallay K., Chivet M., Hemming F.J., Belly A., Bodon G., Blot B., Haase G., Goldberg Y., Sadoul R. Release of exosomes from differentiated neurons and its regulation by synaptic glutamatergic activity. Mol. Cell. Neurosci. 2011;46:409–418. doi: 10.1016/j.mcn.2010.11.004. PubMed DOI
Fiandaca M.S., Kapogiannis D., Mapstone M., Boxer A., Eitan E., Schwartz J.B., Abner E.L., Petersen R.C., Federoff H.J., Miller B.L., et al. Identification of pre-clinical Alzheimer’s disease by a profile of pathogenic proteins in neurally-derived blood exosomes: A case-control study. Alzheimers Dement. J. Alzheimers Assoc. 2015;11:600–607.e1. doi: 10.1016/j.jalz.2014.06.008. PubMed DOI PMC
Gassama Y., Favereaux A. Emerging roles of extracellular vesicles in the central nervous system: Physiology, pathology, and therapeutic perspectives. Front. Cell. Neurosci. 2021;15:626043. doi: 10.3389/fncel.2021.626043. PubMed DOI PMC
Blandford S.N., Galloway D.A., Moore C.S. The roles of extracellular vesicle MicroRNAs in the central nervous system. Glia. 2018;66:2267–2278. doi: 10.1002/glia.23445. PubMed DOI
Paolicelli R.C., Bergamini G., Rajendran L. Cell-to-cell communication by extracellular vesicles: Focus on microglia. Neuroscience. 2019;405:148–157. doi: 10.1016/j.neuroscience.2018.04.003. PubMed DOI
Gupta A., Pulliam L. Exosomes as mediators of neuroinflammation. J. Neuroinflam. 2014;11:68. doi: 10.1186/1742-2094-11-68. PubMed DOI PMC
Ren P.-H., Lauckner J.E., Kachirskaia I., Heuser J.E., Melki R., Kopito R.R. Cytoplasmic penetration and persistent infection of mammalian cells by polyglutamine aggregates. Nat. Cell Biol. 2009;11:219–225. doi: 10.1038/ncb1830. PubMed DOI PMC
Costanzo M., Abounit S., Marzo L., Danckaert A., Chamoun Z., Roux P., Zurzolo C. Transfer of polyglutamine aggregates in neuronal cells occurs in tunneling nanotubes. J. Cell Sci. 2013;126:3678–3685. doi: 10.1242/jcs.126086. PubMed DOI
Herrera F., Tenreiro S., Miller-Fleming L., Outeiro T.F. Visualization of cell-to-cell transmission of mutant huntingtin oligomers. PLoS Curr. 2011;3:RRN1210. doi: 10.1371/currents.RRN1210. PubMed DOI PMC
Yang W., Dunlap J.R., Andrews R.B., Wetzel R. Aggregated polyglutamine peptides delivered to nuclei are toxic to mammalian cells. Hum. Mol. Genet. 2002;11:2905–2917. doi: 10.1093/hmg/11.23.2905. PubMed DOI
Pearce M.M.P., Spartz E.J., Hong W., Luo L., Kopito R.R. Prion-like transmission of neuronal huntingtin aggregates to phagocytic glia in the drosophila brain. Nat. Commun. 2015;6:6768. doi: 10.1038/ncomms7768. PubMed DOI PMC
Pecho-Vrieseling E., Rieker C., Fuchs S., Bleckmann D., Esposito M.S., Botta P., Goldstein C., Bernhard M., Galimberti I., Müller M., et al. Transneuronal propagation of mutant huntingtin contributes to non-cell autonomous pathology in neurons. Nat. Neurosci. 2014;17:1064–1072. doi: 10.1038/nn.3761. PubMed DOI
Cicchetti F., Lacroix S., Cisbani G., Vallières N., Saint-Pierre M., St-Amour I., Tolouei R., Skepper J.N., Hauser R.A., Mantovani D., et al. Mutant huntingtin is present in neuronal grafts in huntington disease patients: Transfer of mutant huntingtin to normal tissue. Ann. Neurol. 2014;76:31–42. doi: 10.1002/ana.24174. PubMed DOI
Jeon I., Cicchetti F., Cisbani G., Lee S., Li E., Bae J., Lee N., Li L., Im W., Kim M., et al. Human-to-mouse prion-like propagation of mutant huntingtin protein. Acta Neuropathol. 2016;132:577–592. doi: 10.1007/s00401-016-1582-9. PubMed DOI PMC
Zhang X., Abels E.R., Redzic J.S., Margulis J., Finkbeiner S., Breakefield X.O. Potential transfer of polyglutamine and CAG-repeat RNA in extracellular vesicles in Huntington’s disease: Background and evaluation in cell culture. Cell. Mol. Neurobiol. 2016;36:459–470. doi: 10.1007/s10571-016-0350-7. PubMed DOI PMC
Lee M., Liu T., Im W., Kim M. Exosomes from adipose-derived stem cells ameliorate phenotype of Huntington’s disease in vitro model. Eur. J. Neurosci. 2016;44:2114–2119. doi: 10.1111/ejn.13275. PubMed DOI
Deng J., Koutras C., Donnelier J., Alshehri M., Fotouhi M., Girard M., Casha S., McPherson P.S., Robbins S.M., Braun J.E.A. Neurons export extracellular vesicles enriched in cysteine string protein and misfolded protein cargo. Sci. Rep. 2017;7 doi: 10.1038/s41598-017-01115-6. PubMed DOI PMC
Boukouris S., Mathivanan S. Exosomes in bodily fluids are a highly stable resource of disease biomarkers. Proteom. Clin. Appl. 2015;9:358–367. doi: 10.1002/prca.201400114. PubMed DOI PMC
Manterola L., Guruceaga E., Pérez-Larraya J.G., González-Huarriz M., Jauregui P., Tejada S., Diez-Valle R., Segura V., Samprón N., Barrena C., et al. A small noncoding RNA signature found in exosomes of GBM patient serum as a diagnostic tool. Neuro-oncology. 2014;16:520–527. doi: 10.1093/neuonc/not218. PubMed DOI PMC
Vingtdeux V., Sergeant N., Buée L. Potential contribution of exosomes to the prion-like propagation of lesions in Alzheimer’s disease. Front. Physiol. 2012;3 doi: 10.3389/fphys.2012.00229. PubMed DOI PMC
Winston C.N., Goetzl E.J., Akers J.C., Carter B.S., Rockenstein E.M., Galasko D., Masliah E., Rissman R.A. Prediction of conversion from mild cognitive impairment to dementia with neuronally derived blood exosome protein profile. Alzheimers Dement. Diagn. Assess. Dis. Monit. 2016;3:63–72. doi: 10.1016/j.dadm.2016.04.001. PubMed DOI PMC
Goetzl E.J., Boxer A., Schwartz J.B., Abner E.L., Petersen R.C., Miller B.L., Kapogiannis D. Altered lysosomal proteins in neural-derived plasma exosomes in preclinical Alzheimer disease. Neurology. 2015;85:40–47. doi: 10.1212/WNL.0000000000001702. PubMed DOI PMC
Tomlinson P.R., Zheng Y., Fischer R., Heidasch R., Gardiner C., Evetts S., Hu M., Wade-Martins R., Turner M.R., Morris J., et al. Identification of distinct circulating exosomes in Parkinson’s disease. Ann. Clin. Transl. Neurol. 2015;2:353–361. doi: 10.1002/acn3.175. PubMed DOI PMC
Vella L.J., Hill A.F., Cheng L. Focus on extracellular vesicles: Exosomes and their role in protein trafficking and biomarker potential in Alzheimer’s and Parkinson’s disease. Int. J. Mol. Sci. 2016;17:173. doi: 10.3390/ijms17020173. PubMed DOI PMC
Cao X.-Y., Lu J.-M., Zhao Z.-Q., Li M.-C., Lu T., An X.-S., Xue L.-J. MicroRNA biomarkers of Parkinson’s disease in serum exosome-like microvesicles. Neurosci. Lett. 2017;644:94–99. doi: 10.1016/j.neulet.2017.02.045. PubMed DOI
You Y., Ikezu T. Emerging roles of extracellular vesicles in neurodegenerative disorders. Neurobiol. Dis. 2019;130:104512. doi: 10.1016/j.nbd.2019.104512. PubMed DOI PMC
Shi M., Liu C., Cook T.J., Bullock K.M., Zhao Y., Ginghina C., Li Y., Aro P., Dator R., He C., et al. Plasma exosomal α-synuclein is likely CNS-derived and increased in Parkinson’s disease. Acta Neuropathol. 2014;128:639–650. doi: 10.1007/s00401-014-1314-y. PubMed DOI PMC
Foster B.P., Balassa T., Benen T.D., Dominovic M., Elmadjian G.K., Florova V., Fransolet M.D., Kestlerova A., Kmiecik G., Kostadinova I.A., et al. Extracellular vesicles in blood, milk and body fluids of the female and male urogenital tract and with special regard to reproduction. Crit. Rev. Clin. Lab. Sci. 2016;53:379–395. doi: 10.1080/10408363.2016.1190682. PubMed DOI
Espinosa-Parrilla Y., Gonzalez-Billault C., Fuentes E., Palomo I., Alarcón M. Decoding the role of platelets and related MicroRNAs in aging and neurodegenerative disorders. Front. Aging Neurosci. 2019;11 doi: 10.3389/fnagi.2019.00151. PubMed DOI PMC
Denis H.L., Lamontagne-Proulx J., St-Amour I., Mason S.L., Weiss A., Chouinard S., Barker R.A., Boilard E., Cicchetti F. Platelet-derived extracellular vesicles in Huntington’s disease. J. Neurol. 2018;265:2704–2712. doi: 10.1007/s00415-018-9022-5. PubMed DOI
Denis H.L., Lamontagne-Proulx J., St-Amour I., Mason S.L., Rowley J.W., Cloutier N., Tremblay M.-È., Vincent A.T., Gould P.V., Chouinard S., et al. Platelet abnormalities in Huntington’s disease. J. Neurol. Neurosurg. Psychiatry. 2019;90:272–283. doi: 10.1136/jnnp-2018-318854. PubMed DOI PMC
Quiroz-Baez R., Hernández-Ortega K., Martínez-Martínez E. Insights into the proteomic profiling of extracellular vesicles for the identification of early biomarkers of neurodegeneration. Front. Neurol. 2020;11:580030. doi: 10.3389/fneur.2020.580030. PubMed DOI PMC
Wang S., Kojima K., Mobley J.A., West A.B. Proteomic analysis of urinary extracellular vesicles reveal biomarkers for neurologic disease. EBioMedicine. 2019;45:351–361. doi: 10.1016/j.ebiom.2019.06.021. PubMed DOI PMC
Lugli G., Cohen A.M., Bennett D.A., Shah R.C., Fields C.J., Hernandez A.G., Smalheiser N.R. Plasma exosomal MiRNAs in persons with and without Alzheimer disease: Altered expression and prospects for biomarkers. PLoS ONE. 2015;10:e0139233. doi: 10.1371/journal.pone.0139233. PubMed DOI PMC
Palaniswamy R., Sevugan K., Sampathkumar Srisharnitha A. Molecular signatures in exosomes as diagnostic markers for neurodegenerative disorders. Ann. Alzheimers Dement. Care. 2020;4:12–17. doi: 10.17352/aadc.000012. DOI
Barbagallo C., Mostile G., Baglieri G., Giunta F., Luca A., Raciti L., Zappia M., Purrello M., Ragusa M., Nicoletti A. Specific signatures of serum MiRNAs as potential biomarkers to discriminate clinically similar neurodegenerative and vascular-related diseases. Cell. Mol. Neurobiol. 2020;40:531–546. doi: 10.1007/s10571-019-00751-y. PubMed DOI PMC
Yao Y.-F., Qu M.-W., Li G.-C., Zhang F.-B., Rui H.-C. Circulating exosomal MiRNAs as diagnostic biomarkers in Parkinson’s disease. Eur. Rev. Med. Pharmacol. Sci. 2018;22:5278–5283. doi: 10.26355/eurrev_201808_15727. PubMed DOI
Reed E.R., Latourelle J.C., Bockholt J.H., Bregu J., Smock J., Paulsen J.S., Myers R.H. MicroRNAs in CSF as prodromal biomarkers for huntington disease in the PREDICT-HD study. Neurology. 2018;90:e264–e272. doi: 10.1212/WNL.0000000000004844. PubMed DOI PMC
Díez-Planelles C., Sánchez-Lozano P., Crespo M.C., Gil-Zamorano J., Ribacoba R., González N., Suárez E., Martínez-Descals A., Martínez-Camblor P., Álvarez V., et al. Circulating MicroRNAs in Huntington’s disease: Emerging mediators in metabolic impairment. Pharmacol. Res. 2016;108:102–110. doi: 10.1016/j.phrs.2016.05.005. PubMed DOI
Johnson R., Zuccato C., Belyaev N.D., Guest D.J., Cattaneo E., Buckley N.J. A MicroRNA-based gene dysregulation pathway in Huntington’s disease. Neurobiol. Dis. 2008;29:438–445. doi: 10.1016/j.nbd.2007.11.001. PubMed DOI
Packer A.N., Xing Y., Harper S.Q., Jones L., Davidson B.L. The bifunctional MicroRNA MiR-9/MiR-9* regulates REST and CoREST and is downregulated in Huntington’s disease. J. Neurosci. Off. J. Soc. Neurosci. 2008;28:14341–14346. doi: 10.1523/JNEUROSCI.2390-08.2008. PubMed DOI PMC
Das E., Jana N.R., Bhattacharyya N.P. MicroRNA-124 targets CCNA2 and regulates cell cycle in STHdhQ111/HdhQ111 cells. Biochem. Biophys. Res. Commun. 2013;437:217–224. doi: 10.1016/j.bbrc.2013.06.041. PubMed DOI
Cao X., Pfaff S.L., Gage F.H. A functional study of MiR-124 in the developing neural tube. Genes Dev. 2007;21:531–536. doi: 10.1101/gad.1519207. PubMed DOI PMC
Matsumoto J., Stewart T., Banks W.A., Zhang J. The transport mechanism of extracellular vesicles at the blood-brain barrier. Curr. Pharm. Des. 2017;23:6206–6214. doi: 10.2174/1381612823666170913164738. PubMed DOI
Kumar A., Zhou L., Zhi K., Raji B., Pernell S., Tadrous E., Kodidela S., Nookala A., Kochat H., Kumar S. Challenges in biomaterial-based drug delivery approach for the treatment of neurodegenerative diseases: Opportunities for extracellular vesicles. Int. J. Mol. Sci. 2020;22:138. doi: 10.3390/ijms22010138. PubMed DOI PMC
Muhammad S.A. Are extracellular vesicles new hope in clinical drug delivery for neurological disorders? Neurochem. Int. 2021;144:104955. doi: 10.1016/j.neuint.2021.104955. PubMed DOI
Yu Y., Hou K., Ji T., Wang X., Liu Y., Zheng Y., Xu J., Hou Y., Chi G. The role of exosomal MicroRNAs in central nervous system diseases. Mol. Cell. Biochem. 2021 doi: 10.1007/s11010-021-04053-0. PubMed DOI
Pereira P., Queiroz J.A., Figueiras A., Sousa F. Current progress on MicroRNAs-based therapeutics in neurodegenerative diseases. Wiley Interdiscip. Rev. RNA. 2017;8 doi: 10.1002/wrna.1409. PubMed DOI
Sun Y., Luo Z.-M., Guo X.-M., Su D.-F., Liu X. An updated role of MicroRNA-124 in central nervous system disorders: A review. Front. Cell. Neurosci. 2015;9:193. doi: 10.3389/fncel.2015.00193. PubMed DOI PMC
Ridolfi B., Abdel-Haq H. Neurodegenerative disorders treatment: The MicroRNA role. Curr. Gene Ther. 2017;17:327–363. doi: 10.2174/1566523218666180119120726. PubMed DOI
Liu T., Im W., Mook-Jung I., Kim M. MicroRNA-124 slows down the progression of Huntington’s disease by promoting neurogenesis in the striatum. Neural Regen. Res. 2015;10:786–791. doi: 10.4103/1673-5374.156978. PubMed DOI PMC
Didiot M.-C., Haraszti R.A., Aronin N., Khvorova A. Loading of extracellular vesicles with hydrophobically modified SiRNAs. Methods Mol. Biol. Clifton NJ. 2018;1740:199–214. doi: 10.1007/978-1-4939-7652-2_16. PubMed DOI