Genome diploidization associates with cladogenesis, trait disparity, and plastid gene evolution

. 2022 Aug 29 ; 190 (1) : 403-420.

Jazyk angličtina Země Spojené státy americké Médium print

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid35670733

Angiosperm genome evolution was marked by many clade-specific whole-genome duplication events. The Microlepidieae is one of the monophyletic clades in the mustard family (Brassicaceae) formed after an ancient allotetraploidization. Postpolyploid cladogenesis has resulted in the extant c. 17 genera and 60 species endemic to Australia and New Zealand (10 species). As postpolyploid genome diploidization is a trial-and-error process under natural selection, it may proceed with different intensity and be associated with speciation events. In Microlepidieae, different extents of homoeologous recombination between the two parental subgenomes generated clades marked by slow ("cold") versus fast ("hot") genome diploidization. To gain a deeper understanding of postpolyploid genome evolution in Microlepidieae, we analyzed phylogenetic relationships in this tribe using complete chloroplast sequences, entire 35S rDNA units, and abundant repetitive sequences. The four recovered intra-tribal clades mirror the varied diploidization of Microlepidieae genomes, suggesting that the intrinsic genomic features underlying the extent of diploidization are shared among genera and species within one clade. Nevertheless, even congeneric species may exert considerable morphological disparity (e.g. in fruit shape), whereas some species within different clades experience extensive morphological convergence despite the different pace of their genome diploidization. We showed that faster genome diploidization is positively associated with mean morphological disparity and evolution of chloroplast genes (plastid-nuclear genome coevolution). Higher speciation rates in perennials than in annual species were observed. Altogether, our results confirm the potential of Microlepidieae as a promising subject for the analysis of postpolyploid genome diploidization in Brassicaceae.

Zobrazit více v PubMed

Al-Shehbaz IA (2003) A synopsis of Tropidocarpum (Brassicaceae). Novon 13: 392–395

Al-Shehbaz IA (2012) A generic and tribal synopsis of the Brassicaceae (Cruciferae). Taxon 61: 931–954

Alexander-Webber D, Abbott RJ, Chapman MA (2016) Morphological convergence between an allopolyploid and one of its parental species correlates with biased gene expression and DNA loss. J Heredity 107: 445–454 PubMed

Andreasen K, Baldwin BG (2001) Unequal evolutionary rates between annual and perennial lineages of checker mallows (Sidalcea, Malvaceae): evidence from 18S-26S rDNA internal and external transcribed spacers. Mol Biol Evol 18: 936–944 PubMed

Arya GC, Tiwari R, Bisht NC (2021) A complex interplay of G beta and G gamma proteins regulates plant growth and defence traits in the allotetraploid Brassica juncea. Plant Mol Biol 106: 505–520 PubMed

Azani N, Bruneau A, Wojciechowski MF, Zarre S (2019) Miocene climate change as a driving force for multiple origins of annual species in Astragalus (Fabaceae, Papilionoideae). Mol Phylogenet Evol 137: 210–221 PubMed

Bagci C, Bryant D, Cetinkaya B, Huson DH (2021) Microbial phylogenetic context using phylogenetic outlines. Genome Biol Evol 13: evab213. PubMed PMC

Beaulieu JM, O’Meara BC (2016) Detecting hidden diversification shifts in models of trait-dependent speciation and extinction. Syst Biol 65: 583–601 PubMed

Becker M, Gruenheit N, Steel M, Voelckel C, Deusch O, Heenan PB, McLenachan PA, Kardailsky O, Leigh JW, Lockhart PJ (2013) Hybridization may facilitate in situ survival of endemic species through periods of climate change. Nat Climate Change 3: 1039–1043

Bena G, Lejeune B, Prosperi JM, Olivieri I (1998) Molecular phylogenetic approach for studying life-history evolution: the ambiguous example of the genus Medicago L. Proc Royal Soc B-Biol Sci 265: 1141–1151 PubMed PMC

Blischak PD, Chifman J, Wolfe AD, Kubatko LS (2018) HyDe: a Python package for genome-scale hybridization detection. Syst Biol 67: 821–829 PubMed PMC

Borges R, Machado JP, Gomes C, Rocha AP, Antunes A (2019) Measuring phylogenetic signal between categorical traits and phylogenies. Bioinformatics 35: 1862–1869 PubMed

Bouckaert R, Vaughan TG, Barido-Sottani J, Duchene S, Fourment M, Gavryushkina A, Heled J, Jones G, Kuhnert D, De Maio N, et al. (2019) BEAST 2.5: an advanced software platform for Bayesian evolutionary analysis. PLOS Comput Biol 15: e1006650. PubMed PMC

Bowers JE, Chapman BA, Rong JK, Paterson AH (2003) Unravelling angiosperm genome evolution by phylogenetic analysis of chromosomal duplication events. Nature 422: 433–438 PubMed

Burton RS, Pereira RJ, Barreto FS (2013) Cytonuclear genomic interactions and hybrid breakdown. Ann Rev Ecol Evol Syst 44: 281–302

Castresana J (2000) Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 17: 540–552 PubMed

Chartier M, Lofstrand S, von Balthazar M, Gerber S, Jabbour F, Sauquet H, Schonenberger J (2017) How (much) do flowers vary? Unbalanced disparity among flower functional modules and a mosaic pattern of morphospace occupation in the order Ericales. Proc Royal Soc B Biol Sci 284: 20170066 PubMed PMC

Chartier M, von Balthazar M, Sontag S, Lofstrand S, Palme T, Jabbour F, Sauquet H, Schonenberger J (2021) Global patterns and a latitudinal gradient of flower disparity: perspectives from the angiosperm order Ericales. New Phytol 230: 821–831 PubMed PMC

Chen S, Zhou Y, Chen Y, Gu J (2018) fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34: i884–i890 PubMed PMC

Cheng F, Sun RF, Hou XL, Zheng HK, Zhang FL, Zhang YY, Liu B, Liang JL, Zhuang M, Liu YX, et al. (2016) Subgenome parallel selection is associated with morphotype diversification and convergent crop domestication in Brassica rapa and Brassica oleracea. Nat Genet 48: 1218–1224 PubMed

Clark JW, Donoghue PCJ (2018) Whole-genome duplication and plant macroevolution. Trend Plant Sci 23: 933–945 PubMed

Datson PM, Murray BG, Steiner KE (2008) Climate and the evolution of annual/perennial life-histories in Nemesia (Scrophulariaceae). Plant Syst Evol 270: 39–57

Dierckxsens N, Mardulyn P, Smits G (2017) NOVOPlasty: de novo assembly of organelle genomes from whole genome data. Nucleic Acids Res 45: e18. PubMed PMC

Dong Y, Ostergaard L (2019) Fruit development and diversification. Curr Biol 29: R781–R785 PubMed

Dong W, Xu C, Wen J, Zhou S (2020) Evolutionary directions of single nucleotide substitutions and structural mutations in the chloroplast genomes of the family Calycanthaceae. BMC Evol Biol 20: 1–12 PubMed PMC

Dos Reis M, Zhu TQ, Yang ZH (2014) The impact of the rate prior on Bayesian estimation of divergence times with multiple loci. Syst Biol 63: 555–565 PubMed PMC

Drummond CS, Eastwood RJ, Miotto STS, Hughes CE (2012) Multiple continental radiations and correlates of diversification in Lupinus (Leguminosae): testing for key innovation with incomplete taxon sampling. Syst Biol 61: 443–460 PubMed PMC

Eldridge T, Langowski L, Stacey N, Jantzen F, Moubayidin L, Sicard A, Southam P, Kennaway R, Lenhard M, Coen ES, et al. (2016) Fruit shape diversity in the Brassicaceae is generated by varying patterns of anisotropy. Development 143: 3394–3406 PubMed PMC

Ferreira de Carvalho J, Lucas J, Deniot G, Falentin C, Filangi O, Gilet M, Legeai F, Lode M, Morice J, Trotoux G, et al. (2019) Cytonuclear interactions remain stable during allopolyploid evolution despite repeated whole-genome duplications in Brassica. Plant J 98: 434–447 PubMed

Finke A, Mandáková T, Nawaz K, Vu GTH, Novak P, Macas J, Lysak MA, Pecinka A (2019) Genome invasion by a hypomethylated satellite repeat in Australian crucifer Ballantinia antipoda. Plant J 99: 1066–1079 PubMed

Franzke A, Koch MA, Mummenhoff K (2016) Turnip time travels: age estimates in Brassicaceae. Trend Plant Sci 21: 554–561 PubMed

Friedman J (2020) The evolution of annual and perennial plant life histories: ecological correlates and genetic mechanisms. Ann Rev Ecol Evol Syst 51: 461–481

Garcia S, Wendel JF, Borowska-Zuchowska N, Ainouche M, Kuderova A, Kovarik A (2020) The utility of graph clustering of 5S ribosomal DNA homoeologs in plant allopolyploids, homoploid hybrids, and cryptic introgressants. Front Plant Sci 11: 41. PubMed PMC

Gómez JM, Perfectti F, Armas C, Narbona E, Gonzalez-Megias A, Navarro L, DeSoto L, Torices R (2020) Within-individual phenotypic plasticity in flowers fosters pollination niche shift. Nat Commun 11: 1–12 PubMed PMC

Gómez JM, Gonzalez-Megias A, Narbona E, Navarro L, Perfectti F, Armas C (2021) Phenotypic plasticity guides Moricandia arvensis divergence and convergence across the Brassicaceae floral morphospace. New Phytol 233: 1479–1493 PubMed

Gong L, Salmon A, Yoo MJ, Grupp KK, Wang ZN, Paterson AH, Wendel JF (2012) The cytonuclear dimension of allopolyploid evolution: an example from cotton using rubisco. Mol Biol Evol 29: 3023–3036 PubMed

Gong L, Olson M, Wendel JF (2014) Cytonuclear evolution of rubisco in four allopolyploid lineages. Mol Biol Evol 31: 2624–2636 PubMed PMC

Guo X, Liu J, Hao G, Zhang L, Mao K, Wang X, Zhang D, Ma T, Hu Q, Al-Shehbaz IA, et al. (2017) Plastome phylogeny and early diversification of Brassicaceae. BMC Genomics 18: 1–9 PubMed PMC

Guo X, Mandáková T, Trachtova K, Ozudogru B, Liu J, Lysak MA (2021) Linked by ancestral bonds: multiple whole-genome duplications and reticulate evolution in a Brassicaceae tribe. Mol Biol Evol 38: 1695–1714 PubMed PMC

Gyorfy MF, Miller ER, Conover JL, Grover CE, Wendel JF, Sloan DB, Sharbrough J (2021) Nuclear-cytoplasmic balance: whole genome duplications induce elevated organellar genome copy number. Plant J 108: 219–230 PubMed

Hall JC, Tisdale TE, Donohue K, Wheeler A, Al-Yahya MA, Kramer EM (2011) Convergent evolution of a complex fruit structure in the tribe Brassiceae (Brassicaceae). Am J Bot 98: 1989–2003 PubMed

Hao GQ, Al-Shehbaz IA, Ahani H, Liang QL, Mao KS, Wang Q, Liu JQ (2017) An integrative study of evolutionary diversification of Eutrema (Eutremeae, Brassicaceae). Bot J Linn Soc 184: 204–223

Heenan PB (2017) A taxonomic revision of Cardamine L. (Brassicaceae) in New Zealand. Phytotaxa 330: 1–154

Heenan PB, Goeke DF, Houliston GJ, Lysak MA (2012) Phylogenetic analyses of ITS and rbcL DNA sequences for sixteen genera of Australian and New Zealand Brassicaceae result in the expansion of the tribe Microlepidieae. Taxon 61: 970–979

Heidel AJ, Kiefer C, Coupland G, Rose LE (2016) Pinpointing genes underlying annual/perennial transitions with comparative genomics. BMC Genomics 17: 1–9 PubMed PMC

Hewson HJ (1982) Brassicaceae (Cruciferae). In AS George, ed, Flora of Australia, Vol. 8. Australian Government Publishing Service, Canberra, pp 231–357

Hohmann N, Wolf EM, Lysak MA, Koch MA (2015) A time-calibrated road map of Brassicaceae species radiation and evolutionary history. Plant Cell 27: 2770–2784 PubMed PMC

Hu S, Sablok G, Wang B, Qu D, Barbaro E, Viola R, Li M, Varotto C (2015) Plastome organization and evolution of chloroplast genes in Cardamine species adapted to contrasting habitats. BMC Genomics 16: 1–14 PubMed PMC

Huang CH, Sun R, Hu Y, Zeng L, Zhang N, Cai L, Zhang Q, Koch MA, Al-Shehbaz I, Edger PP, et al. (2016) Resolution of Brassicaceae phylogeny using nuclear genes uncovers nested radiations and supports convergent morphological evolution. Mol Biol Evol 33: 394–412 PubMed PMC

Huang DI, Cronk QC (2015) Plann: a command‐line application for annotating plastome sequences. Appl Plant Sci 3: apps.1500026. PubMed PMC

Huang XC, German DA, Koch MA (2020) Temporal patterns of diversification in Brassicaceae demonstrate decoupling of rate shifts and mesopolyploidization events. Ann Bot 125: 29–47 PubMed PMC

Jabbour F, Renner SS (2012) A phylogeny of Delphinieae (Ranunculaceae) shows that Aconitum is nested within Delphinium and that Late Miocene transitions to long life cycles in the Himalayas and Southwest China coincide with bursts in diversification. Mol Phylogenet Evol 62: 928–942 PubMed

Jin JJ, Yu WB, Yang JB, Song Y, dePamphilis CW, Yi TS, Li DZ (2020) GetOrganelle: a fast and versatile toolkit for accurate de novo assembly of organelle genomes. Genome Biol 21: 1–31 PubMed PMC

Joly S, Heenan PB, Lockhart PJ (2014) Species radiation by niche shifts in New Zealand's rockcresses (Pachycladon, Brassicaceae). Syst Biol 63: 192–202 PubMed

Kagale S, Robinson SJ, Nixon J, Xiao R, Huebert T, Condie J, Kessler D, Clarke WE, Edger PP, Links MG, et al. (2014) Polyploid evolution of the Brassicaceae during the Cenozoic era. Plant Cell 26: 2777–2791 PubMed PMC

Karl R, Koch MA (2013) A world-wide perspective on crucifer speciation and evolution: phylogenetics, biogeography and trait evolution in tribe Arabideae. Ann Bot 112: 983–1001 PubMed PMC

Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30: 772–780 PubMed PMC

Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, Markowitz S, Duran C, et al. (2012) Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28: 1647–1649 PubMed PMC

Landis JB, Soltis DE, Li Z, Marx HE, Barker MS, Tank DC, Soltis PS (2018) Impact of whole-genome duplication events on diversification rates in angiosperms. Am J Bot 105: 348–363 PubMed

Li D, Liu CM, Luo R, Sadakane K, Lam TW (2015) MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 31: 1674–1676 PubMed

Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25: 1754–1760 PubMed PMC

Loytynoja A, Goldman N (2008) Phylogeny-aware gap placement prevents errors in sequence alignment and evolutionary analysis. Science 320: 1632–1635 PubMed

Lundgren MR, Marais DLD (2020) Life history variation as a model for understanding trade-offs in plant–environment interactions. Curr Biol 30: R180–R189 PubMed

Lysak MA, Mandáková T (2013) Analysis of plant meiotic chromosomes by chromosome painting. Method Mol Biol 990: 13–24 PubMed

Lysak MA, Mandáková T, Schranz ME (2016) Comparative paleogenomics of crucifers: ancestral genomic blocks revisited. Curr Opin Plant Biol 30: 108–115 PubMed

Lysak MA, Edginton M, Zuo S, Guo X, Mandáková T, Al-Shehbaz IA (2022) Transfer of two Arabidella and two Cuphonotus species to the genus Lemphoria (Brassicaceae) and a description of the new species L. queenslandica. Phytotaxa  549: 235–240

Mandáková T, Joly S, Krzywinski M, Mummenhoff K, Lysak MA (2010a) Fast diploidization in close mesopolyploid relatives of Arabidopsis. Plant Cell 22: 2277–2290 PubMed PMC

Mandáková T, Heenan PB, Lysak MA (2010b) Island species radiation and karyotypic stasis in Pachycladon allopolyploids. BMC Evolut Biol 10: 1–14 PubMed PMC

Mandáková T, Li Z, Barker MS, Lysak MA (2017a) Diverse genome organization following 13 independent mesopolyploid events in Brassicaceae contrasts with convergent patterns of gene retention. Plant J 91: 3–21 PubMed

Mandáková T, Lysak MA (2016) Chromosome preparation for cytogenetic analyses in Arabidopsis. Curr Protocol Plant Biol 1: 43–51 PubMed

Mandáková T, Pouch M, Harmanova K, Zhan SH, Mayrose I, Lysak MA (2017b) Multispeed genome diploidization and diversification after an ancient allopolyploidization. Mol Ecol 26: 6445–6462 PubMed

McCarthy EW, Chase MW, Knapp S, Litt A, Leitch AR, Le Comber SC (2016) Transgressive phenotypes and generalist pollination in the floral evolution of Nicotiana polyploids. Nat Plants 2: 1–9 PubMed

Muir G, Ruiz-Duarte P, Hohmann N, Mable BK, Novikova P, Schmickl R, Guggisberg A, Koch MA. (2015) Exogenous selection rather than cytonuclear incompatibilities shapes asymmetrical fitness of reciprocal A. rabidopsis hybrids. Ecol Evol 5: 1734–1745 PubMed PMC

Mummenhoff K, Bruggemann H, Bowman JL (2001) Chloroplast DNA phylogeny and biogeography of Lepidium (Brassicaceae). Am J Bot 88: 2051–2063 PubMed

Negm S, Greenberg A, Larracuente AM, Sproul JS (2021) RepeatProfiler: a pipeline for visualization and comparative analysis of repetitive DNA profiles. Mol Ecol Resource 21: 969–981 PubMed PMC

Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ (2015) IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 32: 268–274 PubMed PMC

Nikolov LA, Shushkov P, Nevado B, Gan X, Al-Shehbaz IA, Filatov D, Bailey CD, Tsiantis M (2019) Resolving the backbone of the Brassicaceae phylogeny for investigating trait diversity. New Phytologist 222: 1638–1651 PubMed

Novak P, Neumann P, Pech J, Steinhaisl J, Macas J (2013) RepeatExplorer: a Galaxy-based web server for genome-wide characterization of eukaryotic repetitive elements from next-generation sequence reads. Bioinformatics 29: 792–793 PubMed

Novak P, Neumann P, Macas J (2020) Global analysis of repetitive DNA from unassembled sequence reads using RepeatExplorer2. Nat Protoc 15: 3745–3776 PubMed

Ogburn RM, Edwards EJ (2015) Life history lability underlies rapid climate niche evolution in the angiosperm clade Montiaceae. Mol Phylogenet Evol 92: 181–192 PubMed

Oyston JW, Hughes M, Gerber S, Wills MA (2016) Why should we investigate the morphological disparity of plant clades? Ann Bot 117: 859–879 PubMed PMC

Parins-Fukuchi C, Stull GW, Smith SA (2021) Phylogenomic conflict coincides with rapid morphological innovation. Proc Natl Acad Sci USA 118: e2023058118. PubMed PMC

Plummer M, Best N, Cowles K, Vines K (2006) CODA: convergence diagnosis and output analysis for MCMC. R News 6: 7–11

Rabosky DL, Grundler M, Anderson C, Title P, Shi JJ, Brown JW, Huang H, Larson JG (2014) BAMMtools: an R package for the analysis of evolutionary dynamics on phylogenetic trees. Methods Ecol Evol 5: 701–707

Rabosky DL, Mitchell JS, Chang J (2017) Is BAMM flawed? Theoretical and practical concerns in the analysis of multi-rate diversification models. Syst Biol 66: 477–498 PubMed PMC

Rannala B, Yang Z (2007) Inferring speciation times under an episodic molecular clock. Syst Biol 56: 453–466 PubMed

Rollins R, Rüdenberg L (1971) Chromosome numbers of Cruciferae. II. Contribut Gray Herbarium Harvard Univ 201: 117–133

Sehrish T, Symonds VV, Soltis DE, Soltis PS, Tate JA (2015) Cytonuclear coordination is not immediate upon allopolyploid formation in Tragopogon miscellus (Asteraceae) allopolyploids. PLoS One 10: e0144339. PubMed PMC

Sharbrough J, Conover JL, Tate JA, Wendel JF, Sloan DB (2017) Cytonuclear responses to genome doubling. Am J Bot 104: 1277–1280 PubMed

Sharbrough J, Conover JL, Gyorfy MF, Grover CE, Miller ER, Wendel .JF, Sloan DB (2021) Global patterns of subgenome evolution in organelle-targeted genes of six allotetraploid angiosperms. Mol Biol Evol 39: msac074 PubMed PMC

Shaw EA (1965) Taxonomic revision of some Australian endemic genera of Cruciferae. Trans Royal Soc South Australia 89: 145–253

Shaw EA (1974) Revisions of some genera of Cruciferae native to Australia. Contribut Gray Herbarium Harvard Univ 205: 147–162

Sims D, Sudbery I, Ilott NE, Heger A, Ponting CP (2014) Sequencing depth and coverage: key considerations in genomic analyses. Nat Rev Genet 15: 121–132 PubMed

Smith SA, Brown JW, Yang Y, Bruenn R, Drummond CP, Brockington SF, Walker JF, Last N, Douglas NA, Moore MJ (2018) Disparity, diversity, and duplications in the Caryophyllales. New Phytologist 217: 836–854 PubMed

Stitzer MC, Ross-Ibarra J (2018) Maize domestication and gene interaction. New Phytologist 220: 395–408 PubMed

Stull GW, Qu XJ, Parins-Fukuchi C, Yang YY, Yang JB, Yang ZY, Hu Y, Ma H, Soltis PS, Soltis DE, et al. (2021) Gene duplications and phylogenomic conflict underlie major pulses of phenotypic evolution in gymnosperms. Nat Plants 7: 1015–1025 PubMed

Tank DC, Eastman JM, Pennell MW, Soltis PS, Soltis DE, Hinchliff CE, Brown JW, Sessa EB, Harmon LJ (2015) Nested radiations and the pulse of angiosperm diversification: increased diversification rates often follow whole genome duplications. New Phytologist 207: 454–467 PubMed

Tate JA, Simpson BB (2003) Paraphyly of Tarasa (Malvaceae) and diverse origins of the polyploid species. Syst Bot 28: 723–737

Thomas BC, Pedersen B, Freeling M (2006) Following tetraploidy in an Arabidopsis ancestor, genes were removed preferentially from one homeolog leaving clusters enriched in dose-sensitive genes. Genome Res 16: 934–946 PubMed PMC

Vitales D, Garcia S, Dodsworth S (2020) Reconstructing phylogenetic relationships based on repeat sequence similarities. Mol Phylogenet Evol 147: 106766. PubMed

Walden N, German DA, Wolf EM, Kiefer M, Rigault P, Huang XC, Kiefer C, Schmickl R, Franzke A, Neuffer B, et al. (2020) Nested whole-genome duplications coincide with diversification and high morphological disparity in Brassicaceae. Nat Commun 11: 1–12 PubMed PMC

Warwick SI, Mummenhoff K, Sauder CA, Koch MA, Al-Shehbaz IA (2010) Closing the gaps: phylogenetic relationships in the Brassicaceae based on DNA sequence data of nuclear ribosomal ITS region. Plant Syst Evol 285: 209–232

Wege J, Lepschi B (2007) A new species of Arabidella (Brassicaceae) from Western Australia. Nuytsia 17: 453–458

Wicke S, Schneeweiss GM, dePamphilis CW, Muller KF, Quandt D (2011) The evolution of the plastid chromosome in land plants: gene content, gene order, gene function. Plant Mol Biol 76: 273–297 PubMed PMC

Wozniak NJ, Kappel C, Marona C, Altschmied L, Neuffer B, Sicard A (2020) A similar genetic architecture underlies the convergent evolution of the Selfing Syndrome in Capsella. Plant Cell 32: 935–949 PubMed PMC

Wu S, Zhang B, Keyhaninejad N, Rodriguez GR, Kim HJ, Chakrabarti M, Illa-Berenguer E, Taitano NK, Gonzalo MJ, Diaz A, et al. (2018) A common genetic mechanism underlies morphological diversity in fruits and other plant organs. Nat Commun 9: 1–12 PubMed PMC

Yang Z (2007) PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol 24: 1586–1591 PubMed

Zerbino DR, Birney E (2008) Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 18: 821–829 PubMed PMC

Zhu Z, Chen G, Guo X, Yin W, Yu X, Hu J, Hu Z (2017) Overexpression of SlPRE2, an atypical bHLH transcription factor, affects plant morphology and fruit pigment accumulation in tomato. Sci Rep 7: 1–11 PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...