Fast diploidization in close mesopolyploid relatives of Arabidopsis
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
20639445
PubMed Central
PMC2929090
DOI
10.1105/tpc.110.074526
PII: tpc.110.074526
Knihovny.cz E-zdroje
- MeSH
- Arabidopsis genetika MeSH
- chromozomy rostlin MeSH
- diploidie * MeSH
- fylogeneze MeSH
- karyotypizace MeSH
- molekulární sekvence - údaje MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Mesopolyploid whole-genome duplication (WGD) was revealed in the ancestry of Australian Brassicaceae species with diploid-like chromosome numbers (n = 4 to 6). Multicolor comparative chromosome painting was used to reconstruct complete cytogenetic maps of the cryptic ancient polyploids. Cytogenetic analysis showed that the karyotype of the Australian Camelineae species descended from the eight ancestral chromosomes (n = 8) through allopolyploid WGD followed by the extensive reduction of chromosome number. Nuclear and maternal gene phylogenies corroborated the hybrid origin of the mesotetraploid ancestor and suggest that the hybridization event occurred approximately 6 to 9 million years ago. The four, five, and six fusion chromosome pairs of the analyzed close relatives of Arabidopsis thaliana represent complex mosaics of duplicated ancestral genomic blocks reshuffled by numerous chromosome rearrangements. Unequal reciprocal translocations with or without preceeding pericentric inversions and purported end-to-end chromosome fusions accompanied by inactivation and/or loss of centromeres are hypothesized to be the main pathways for the observed chromosome number reduction. Our results underline the significance of multiple rounds of WGD in the angiosperm genome evolution and demonstrate that chromosome number per se is not a reliable indicator of ploidy level.
Zobrazit více v PubMed
Al-Shehbaz I.A., Beilstein M.A., Kellogg E.A. (2006). Systematics and phylogeny of the Brassicaceae (Cruciferae): An overview. Plant Syst. Evol. 259: 89–120
Arabidopsis Genome Initiative (2000). Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408: 796–815 PubMed
Barker M.S., Kane N.C., Matvienko M., Kozik A., Michelmore R.W., Knap S.J., Rieseberg L.H. (2008). Multiple paleopolyploidizations during the evolution of the Compositae reveal parallel patterns of duplicate gene retention after millions of years. Mol. Biol. Evol. 25: 2445–2455 PubMed PMC
Barker M.S., Vogel H., Schranz M.E. (2009). Paleopolyploidy in the Brassicales: Analyses of the Cleome transcriptome elucidate the history of genome duplications in Arabidopsis and other Brassicales. Genome Biol. Evol. 1: 1–9 PubMed PMC
Birchler J.A., Veitia R.A. (2007). The gene balance hypothesis: from classical genetics to modern genomics. Plant Cell 19: 395–402 PubMed PMC
Bowers J.E., Chapman B.A., Rong J., Paterson A.H. (2003). Unravelling angiosperm genome evolution by phylogenetic analysis of chromosomal duplication events. Nature 422: 433–438 PubMed
Caputo P., Cozzolino S., Gaudio L., Moretti A., Stevenson D.W. (1996). Karyology and phylogeny of some Mesoamerican species of Zamia (Zamiaceae). Am. J. Bot. 83: 1513–1520
Carlsen T., Bleeker W., Hurka H., Elven R., Brochmann C. (2009). Biogeography and phylogeny of Cardamine (Brassicaceae). PLoS ONE 96: 215–236
Cronquist A. (1981). An Integrated System of Classification of Flowering Plants. (New York: Columbia University Press; ).
Cui L., et al. (2006). Widespread genome duplications throughout the history of flowering plants. Genome Res. 16: 738–739 PubMed PMC
De Bodt S., Maere S., Van der Peer Y. (2005). Genome duplication and the origin of angiosperms. Trends Ecol. Evol. 20: 591–597 PubMed
Dierschke T., Mandáková T., Lysak M.A., Mummenhoff K. (2009). A bicontinental origin of polyploid Australian/New Zealand Lepidium species (Brassicaceae)? Evidence from genomic in situ hybridization. Ann. Bot. (Lond.) 104: 681–688 PubMed PMC
Drummond A.J., Rambaut A. (2007). BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol. Biol. 7: 214. PubMed PMC
Edgar R.C. (2004). MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32: 1792–1797 PubMed PMC
Edger P.P., Pires J.C. (2009). Gene and genome duplications: The impact of dosage-sensitivity of the fate of nuclear genes. Chromosome Res. 17: 699–717 PubMed
Favarger C. (1961). Sur l’emploi des nombres chromo-somiques en géographie botanique historique. Ber. Geobot. Inst. Rübel 32: 119–146
Fawcett J.A., Maere S., Van de Peer Y. (2009). Plants with double genomes might have had a better chance to survive the Cretaceous-Tertiary extinction event. Proc. Natl. Acad. Sci. USA 106: 5737–5742 PubMed PMC
Ferreri G.C., Liscinsky D.M., Mack J.A., Eldridge M.D.B., O’Neill R.J. (2005). Retention of latent centromeres in the mammalian genome. J. Hered. 96: 217–224 PubMed
Franzke A., German D., Al-Shehbaz I.A., Mummenhoff K. (2009). Arabidopsis family ties: Molecular phylogeny and age estimates in the Brassicaceae. Taxon 58: 425–437
Freeling M. (2008). The evolutionary position of subfunctionalization, downgraded. Genome Dyn. 4: 25–40 PubMed
Gaeta R.T., Pires J.C., Iniguez-Luy F., Leon E., Osborn T.C. (2007). Genomic changes in resynthesized Brassica napus and their effect on gene expression and phenotype. Plant Cell 19: 3403–3417 PubMed PMC
Gandolfo M.A., Nixon K.C., Crepet W.L. (1998). A new fossil flower from the Turonian of New Jersey: Dressiantha bicarpellata gen. et sp. nov. (Capparales). Am. J. Bot. 85: 964–974 PubMed
Goldman N., Yang Z. (1994). A codon-based model of nucleotide substitution for protein-coding DNA sequences. Mol. Biol. Evol. 11: 725–736 PubMed
Grant V. (1981). Plant Speciation. (New York: Columbia University Press; ).
Guerra M. (2008). Chromosome numbers in plant cytotaxonomy: Concepts and implications. Cytogenet. Genome Res. 120: 339–350 PubMed
Han F., Gao Z., Birchler J.A. (2009). Reactivation of an inactive centromere reveals epigenetic and structural components for centromere specification in maize. Plant Cell 21: 1929–1939 PubMed PMC
Han F., Lamb J.C., Birchler J.A. (2006). High frequency of centromere inactivation resulting in stable dicentric chromosomes of maize. Proc. Natl. Acad. Sci. USA 103: 3238–3243 PubMed PMC
Han Y., Zhang Z., Liu C., Liu J., Huang S., Jiang J., Lin W. (2009). Centromere repositioning in cucurbit species: Implication of the genomic impact from centromere activation and inactivation. Proc. Natl. Acad. Sci. USA 106: 14937–14941 PubMed PMC
Hegarty M.J., Hiscock S.J. (2008). Genomic clues to the evolutionary success of polyploid plants. Curr. Biol. 18: 435–444 PubMed
Ijdo J.W., Wells R.A., Baldini A., Reeders S.T. (1991a). Improved telomere detection using a telomere repeat probe (TTAGGG)n generated by PCR. Nucleic Acids Res. 19: 4780. PubMed PMC
Ijdo J.W., Wells R.A.W., Baldini A., Reeders S.T. (1991b). The origin of human chromosome 2: An ancestral telomere-telomere fusion. Proc. Natl. Acad. Sci. USA 88: 9051–9055 PubMed PMC
Imai H.T., Taylor R.W. (1989). Chromosomal polymorphisms ivolving telomere fusion, centromeric inactivation and centromere shift in the ant Myrmecia (pilosula) n = 1. Chromosoma 98: 456–460
Jaillon O., Aury J.M., Wincker P. (2009). “Changing by doubling”, the impact of whole genome duplications in the evolution of eukaryotes. C. R. Biol. 332: 241–253 PubMed
Joly S., Heenan P.B., Lockhart P.J. (2009). A Pleistocene inter-tribal allopolyploidization event precedes the species radiation of Pachycladon (Brassicaceae) in New Zealand. Mol. Phylogenet. Evol. 51: 365–372 PubMed
Kim S., Sultan S.E., Donoghue M.J. (2008). Allopolyploid speciation in Persicaria (Polygonaceae): Insights from a low-copy nuclear region. Proc. Natl. Acad. Sci. USA 105: 12370–12375 PubMed PMC
Kaczmarek M., Koczyk G., Ziolkowski P.A., Babula-Skowronska D., Sadowski J. (2009). Comparative analysis of the Brassica oleracea genetic map and the Arabidopsis thaliana genome. Genome 52: 620–633 PubMed
Koch M.A., Haubold B., Mitchell-Olds T. (2000). Comparative evolutionary analysis of chalcone synthase and alcohol dehydrogenase loci in Arabidopsis, Arabis, and related genera (Brassicaceae). Mol. Biol. Evol. 17: 1483–1498 PubMed
Kocsis E., Trus B.L., Steer C.J., Bisher M.E., Steven A.C. (1991). Image averaging of flexible fibrous macromolecules: The clathrin triskelion has an elastic proximal segment. J. Struct. Biol. 107: 6–14 PubMed
Kopecký D., Lukaszewski A.J., Doležel J. (2008). Cytogenetics of Festulolium (Festuca × Lolium hybrids). Cytogenet. Genome Res. 120: 370–383 PubMed
Krzywinski M., Schein J., Birol I., Connors J., Gascoyne R., Horsman D., Jones S.J., Marra M.A. (2009). Circos: An information aesthetic for comparative genomics. Genome Res. 19: 1639–1645 PubMed PMC
Lagercrantz U., Lydiate D. (1996). Comparative genome mapping in Brassica. Genetics 144: 1903–1910 PubMed PMC
Leitch I.J., Kahandawala I., Suda J., Hanson L., Ingrouille M.J., Chase M.W., Fay M.F. (2009). Genome size diversity in orchids: Consequences and evolution. Ann. Bot. (Lond.) 104: 469–481 PubMed PMC
Lim K.Y., Soltis D.E., Soltis P.S., Tate J., Matyasek R., Srubarova H., Kovarik A., Pires J.C., Xiong Z., Leitch A.R. (2008). Rapid chromosome evolution in recently formed polyploids in Tragopogon (Asteraceae). PLoS ONE 3: e3353. PubMed PMC
Luo M.C., et al. (2009). Genome comparisons reveal a dominant mechanism of chromosome number reduction in grasses and accelerated genome evolution in Triticeae. Proc. Natl. Acad. Sci. USA 106: 15780–15785 PubMed PMC
Lysak M.A., Berr A., Pecinka A., Schmidt R., McBreen K., Schubert I. (2006). Mechanisms of chromosome number reduction in Arabidopsis thaliana and related Brassicaceae species. Proc. Natl. Acad. Sci. USA 103: 5224–5229 PubMed PMC
Lysak M.A., Cheung K., Kitschke M., Bureš P. (2007). Ancestral chromosomal blocks are triplicated in Brassiceae species with varying chromosome number and genome size. Plant Physiol. 145: 402–410 PubMed PMC
Lysak M.A., Koch M.A., Pecinka A., Schubert I. (2005). Chromosome triplication found across the tribe Brassiceae. Genome Res. 15: 516–525 PubMed PMC
Mai D.H. (1995). Tertiäre vegetationsgeschichte Europas. (Jena, Stuttgart, New York: Gustav Fisher; ).
Mandáková T., Lysak M.A. (2008). Chromosomal phylogeny and karyotype evolution in x=7 crucifer species (Brassicaceae). Plant Cell 20: 2559–2570 PubMed PMC
Ming R., et al. (2008). The draft genome of the transgenic tropical fruit tree papaya (Carica papaya Linnaeus). Nature 452: 991–996 PubMed PMC
Mummenhoff K., Franzke A. (2007). Gone with the bird: Late Tertiary and Quaternary intercontinental long-distance dispersal and allopolyploidization in plants. Syst. Biodivers. 5: 255–260
Panjabi P., Jagannath A., Bisht N.C., Padmaja K.L., Sharma S., Gupta V., Pradhan A.K., Pental D. (2008). Comparative mapping of Brassica juncea and Arabidopsis thaliana using Intron Polymorphism (IP) markers: Homoeologous relationships, diversification and evolution of the A, B and C Brassica genomes. BMC Genomics 9: 113. PubMed PMC
Parkin I.A.P., Gulden S.M., Sharpe A.G., Lukens L., Trick M., Osborn T.C., Lydiate D.J. (2005). Segmental structure of the Brassica napus genome based on comparative analysis with Arabidopsis thaliana. Genetics 171: 765–781 PubMed PMC
Posada D., Crandall K.A. (1998). Modeltest: Testing the model of DNA substitution. Bioinformatics 14: 817–818 PubMed
Roosens N.H.C.J., Willems G., Gode C., Courseaux A., Saumitou-Laprade P. (2008). The use of comparative genome analysis and syntenic relationships allows extrapolating the position of Zn tolerance QTL regions from Arabidopsis halleri into Arabidopsis thaliana. Plant Soil 306: 105–116
Salse J., Bolot S., Throude M., Jouffe V., Piegu B., Quraishi U.M., Calcagno T., Cooke R., Delseny M., Feuillet C. (2008). Identification and characterization of shared duplications between rice and wheat provide new insight into grass genome evolution. Plant Cell 20: 11–24 PubMed PMC
Schlueter J.A., Dixon P., Granger C., Grant D., Clark L., Doyle J.J., Schoemaker R.C. (2004). Mining EST databases to resolve evolutionary events in major crop species. Genome 47: 868–876 PubMed
Schranz M.E., Lysak M.A., Mitchell-Olds T. (2006). The ABC’s of comparative genomics in the Brassicaceae: Building blocks of crucifer genomes. Trends Plant Sci. 11: 535–542 PubMed
Schranz M.E., Mitchell-Olds T. (2006). Independent ancient polyploidy events in the sister families Brassicaceae and Cleomaceae. Plant Cell 18: 1152–1165 PubMed PMC
Schranz M.E., Windsor A.J., Song B.-H., Lawton-Rauh A., Mitchell-Olds T. (2007). Comparative genetic mapping in Boechera stricta, a close relative of Arabidopsis. Plant Physiol. 144: 286–298 PubMed PMC
Schubert I. (2007). Chromosome evolution. Curr. Opin. Plant Biol. 10: 109–115 PubMed
Schwarzbach A.E., Rieseberg L.H. (2002). Likely multiple origins of a diploid hybrid sunflower species. Mol. Ecol. 11: 1703–1715 PubMed
Sears E.R., Camara A. (1952). A transmissible dicentric chromosome. Genetics 37: 125–135 PubMed PMC
Sémon M., Wolfe K.H. (2007). Rearrangement rate following the whole-genome duplication in teleosts. Mol. Biol. Evol. 24: 860–867 PubMed
Shimizu-Inatsugi R., Lihova J., Iwanaga H., Kudoh H., Marhold K., Savolainen O., Watanabe K., Yakubov V.V., Shimizu K.K. (2009). The allopolyploid Arabidopsis kamchatica originated from multiple individuals of Arabidopsis lyrata and Arabidopsis halleri. Mol. Ecol. 18: 4024–4048 PubMed
Soltis D.E., Albert V.A., Leebens-Mack J., Bell C.D., Paterson A.H., Zheng C., Sankoff D., dePamphilis C.W., Wall P.K., Soltis P.S. (2009). Polyploidy and angiosperm diversification. Am. J. Bot. 96: 336–348 PubMed
Soltis D.E., Soltis P.S., Schemske D.W., Hancock J.F., Thompson J.N., Husband B.C., Judd W.S. (2007). Autopolyploidy in angiosperms: Have we grossly underestimated the number of species? Taxon 56: 13–30
Tang H., Bowers J.E., Wang X., Ming X., Alam M., Paterson A.H. (2008). Synteny and collinearity in plant genomes. Science 320: 486–488 PubMed
Thomas B.C., Pedersen B., Freeling M. (2006). Following tetraploidy in an Arabidopsis ancestor, genes were removed preferentially from one homeolog leaving clusters enriched in dose-sensitive genes. Genome Res. 16: 934–946 PubMed PMC
Town C.D., et al. (2006). Comparative genomics of Brassica oleracea and Arabidopsis thaliana reveal gene loss, fragmentation, and dispersal after polyploidy. Plant Cell 18: 1348–1359 PubMed PMC
Veitia R.A., Bottani S., Birchler J.A. (2008). Cellular reactions to gene dosage imbalance: Genomic, transcriptomic and proteomic effects. Trends Genet. 24: 390–397 PubMed
Ventura M., Antonacci F., Cardone M.F., Stanyon R., D’Addabbo P., Cellamare A., Sprague L.J., Eichler E.E., Archidiacono N., Rocchi M. (2007). Evolutionary formation of new centromeres in macaque. Science 316: 243–246 PubMed
Ventura M., et al. (2004). Recurrent sites for new centromere seeding. Genome Res. 14: 1696–1703 PubMed PMC
Wood T.E., Takebayashi N., Barker M.S., Mayrose I., Greenspoond P.B., Rieseberg L.H. (2009). The frequency of polyploid speciation in vascular plants. Proc. Natl. Acad. Sci. USA 106: 13875–13879 PubMed PMC
Yang T.J., et al. (2006). Sequence-level analysis of the diploidization process in the triplicated FLOWERING LOCUS C region of Brassica rapa. Plant Cell 18: 1339–1347 PubMed PMC
Yang Z. (1997). PAML: A program package for phylogenetic analysis by maximum likelihood. Comput. Appl. Biosci. 13: 555–556 PubMed
Ziolkowski P.A., Kaczmarek M., Babula D., Sadowski J. (2006). Genome evolution in Arabidopsis/Brassica: Conservation and divergence of ancient rearranged segments and their breakpoints. Plant J. 47: 63–74 PubMed
Genome diploidization associates with cladogenesis, trait disparity, and plastid gene evolution
Polyploid evolution: The ultimate way to grasp the nettle
Chromosome identification for the carnivorous plant Genlisea margaretae
chromDraw: an R package for visualization of linear and circular karyotypes
A Time-Calibrated Road Map of Brassicaceae Species Radiation and Evolutionary History
Chromatin features of plant telomeric sequences at terminal vs. internal positions
The more the merrier: recent hybridization and polyploidy in cardamine
Island species radiation and karyotypic stasis in Pachycladon allopolyploids
GENBANK
GQ926501, GQ926502, GQ926503, GQ926504, GQ926505, GQ926506, GQ926507, GQ926508, GQ926509, GQ926510, GQ926511, GQ926512, GQ926513, GQ926514, GQ926515, GQ926516, GQ926517, GQ926518, GQ926519, GQ926520, GQ926521, GQ926522, GQ926523, GQ926524, GQ926525, GQ926526, GQ926527, GQ926528, GQ926529, GQ926530, GQ926531, GQ926532, GQ926533, GQ926534, GQ926535, GQ926536, GQ926537, GQ926538, GQ926539, GQ926540, GQ926541, GQ926542, GQ926543, GQ926544, GQ926545, GQ926546, GQ926547, GQ926548, GQ926549, GQ926550, GQ926551, GQ926552, GQ926553, GQ926554, GQ926555, GQ926556, GQ926557, GQ926558, GQ926559, GQ926560, GQ926561, GQ926562, GQ926563, GQ926564, GQ926565, GQ926566, GQ926567, GQ926568