Efficient Optical Sensing Based on Phase Shift of Waves Supported by a One-Dimensional Photonic Crystal
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
34640853
PubMed Central
PMC8512066
DOI
10.3390/s21196535
PII: s21196535
Knihovny.cz E-zdroje
- Klíčová slova
- Bloch surface waves, Kretschmann configuration, guided waves, interferometry, photonic crystal, relative humidity of air, spatial domain, spectral domain,
- Publikační typ
- časopisecké články MeSH
Interferometric methods of optical sensing based on the phase shift of the Bloch surface waves (BSWs) and guided waves (GWs) supported by a one-dimensional photonic crystal are presented. The photonic crystal, composed of six SiO2/TiO2 bilayers with a termination layer of TiO2, is employed in the Kretschmann configuration. Under resonance condition, an abrupt phase change is revealed, and the corresponding phase shift is measured by interferometric techniques applied in both the spectral and spatial domains. The spectral interferometric technique employing a birefringent quartz crystal is used to obtain interference of projections of p- and s-polarized light waves reflected from the photonic crystal. The phase shifts are retrieved by processing the spectral interferograms recorded for various values of relative humidity (RH) of air, giving the sensitivity to the RH as high as 0.029 rad/%RH and 0.012 rad/%RH for the BSW and GW, respectively. The spatial interferometric technique employs a Wollaston prism and an analyzer to generate an interference pattern, which is processed to retrieve the phase difference, and results are in good agreement with those obtained by sensing the phase shift in the spectral domain. In addition, from the derivative of the spectral phase shifts, the peak positions are obtained, and their changes with the RH give the sensitivities of 0.094 nm/%RH and 0.061 nm/%RH for the BSW and GW, respectively. These experimental results demonstrate an efficient optical sensing with a lot of applications in various research areas.
Zobrazit více v PubMed
Meade R.D., Brommer K.D., Rappe A.M., Joannopoulos J.D. Electromagnetic Bloch waves at the surface of a photonic crystal. Phys. Rev. B. 1991;44:10961–10964. doi: 10.1103/PhysRevB.44.10961. PubMed DOI
Robertson W.M., Arjavalingam G., Meade R.D., Brommer K.D., Rappe A.M., Joannopoulos J.D. Observation of surface photons on periodic dielectric arrays. Opt. Lett. 1993;18:528–530. doi: 10.1364/OL.18.000528. PubMed DOI
MacLeod H. Thin-Film Optical Filters. CRC Press; Boca Raton, FL, USA: 2010.
Lee K.J., Wawro D., Priambodo P.S., Magnusson R. Agarose-gel based guided-mode resonance humidity sensor. IEEE Sens. J. 2007;7:409–414. doi: 10.1109/JSEN.2006.890129. DOI
We Z., Huang J., Li J., Li J., Liu X., Ni X. A compact double-folded substrate integrated waveguide re-entrant cavity for highly sensitive humidity sensing. Sensors. 2019;19:3308. doi: 10.3390/s19153308. PubMed DOI PMC
Di Palma P., Sansone L., Taddei C., Campopiano S., Iadiciccoi A. Fiber optic probe based on self-assembled photonic crystal for relative humidity sensing. J. Light. Technol. 2019;37:4610–4618. doi: 10.1109/JLT.2019.2914354. DOI
Gryga M., Ciprian D., Hlubina P. Guided-mode resonance based humidity sensing using a multilayer dielectric structure. Opt. Express. 2020;28:28954–28960. doi: 10.1364/OE.399816. PubMed DOI
Guillermain E., Lysenko V., Orobtchouk R., Benyattou T., Roux S., Pillonnet A., Perriat P. Bragg surface wave device based on porous silicon and its application for sensing. Appl. Phys. Lett. 2007;90:241116. doi: 10.1063/1.2747671. DOI
Farmer A., Friedli A.C., Wright S.M., Robertson W.M. Biosensing using surface electromagnetic waves in photonic band gap multilayers. Sens. Actuators B Chem. 2012;173:79–84. doi: 10.1016/j.snb.2012.06.015. DOI
Kang X.B., Wen L., Wang Z.G. Design of guided Bloch surface wave resonance bio-sensors with high sensitivity. Opt. Commun. 2017;383:531–536. doi: 10.1016/j.optcom.2016.10.004. DOI
Kovalevich T., Belharet D., Robert L., Ulliac G., Kim M.S., Herzig H.P., Grosjean T., Bernal M.P. Bloch surface waves at the telecommunicationwavelength with Lithium Niobate as top layer for integrated optics. Appl. Opt. 2019;58:1757–1762. doi: 10.1364/AO.58.001757. PubMed DOI
Kong W., Zheng Z., Wan Y., Li S., Liu J. High-sensitivity sensing based on intensity-interrogated Bloch surface wave sensors. Sens. Actuators B Chem. 2014;193:467–471. doi: 10.1016/j.snb.2013.11.101. DOI
Deng C.Z., Ho Y.L., Lee Y.C., Wang Z., Tai Y.H., Zyskowski M., Daiguji H., Delaunay J.J. Two-pair multilayer Bloch surface wave platform in the near- and mid-infrared regions. Appl. Phys. Lett. 2019;115:091102. doi: 10.1063/1.5101008. DOI
Gan S., Wang H., Liang J., Dai X., Xiang Y. Ultra-Sensitive Refractive Index Sensors Based on Bloch Surface Waves With Transition Metal Dichalcogenides. IEEE Sens. J. 2019;19:8675–8680. doi: 10.1109/JSEN.2019.2922966. DOI
Gryga M., Vala D., Kolejak P., Gembalova L., Ciprian D., Hlubina P. One-dimensional photonic crystal for Bloch surface waves and radiation modes based sensing. Opt. Mater. Express. 2019;9:4009–4022. doi: 10.1364/OME.9.004009. DOI
Gryga M., Ciprian D., Hlubina P. Bloch surface wave resonance based sensors as an alternative to surface plasmon resonance sensors. Sensors. 2020;20:5119. doi: 10.3390/s20185119. PubMed DOI PMC
Gryga M., Ciprian D., Gembalova L., Hlubina P. Sensing based on Bloch surface wave and self-referenced guided mode resonances employing a one-dimensional photonic crystal. Opt. Express. 2021;29:12996–13010. doi: 10.1364/OE.421162. PubMed DOI
Xu Y., Bai P., Zhou X., Akimov Y., Png C.E., Ang L.K., Knoll W., Wu L. Optical Refractive Index Sensors with Plasmonic and Photonic Structures: Promising and Inconvenient Truth. Adv. Opt. Mater. 2019;7:1801433. doi: 10.1002/adom.201801433. DOI
Arafat M.M., Dinan B., Akba S.A., Haseeb A.S.M.A. Gas Sensors Based on One Dimensional Nanostructured Metal-Oxides: A Review. Sensors. 2012;12:7207–7258. doi: 10.3390/s120607207. PubMed DOI PMC
Sharma A., Tomar M., Gupta V. Room temperature trace level detection of NO2 gas using SnO2 modified carbon nanotubes based sensor. J. Mater. Chem. 2012;22:23608–23616. doi: 10.1039/c2jm35172b. DOI
Tyagi P., Sharma A., Tomar M., Gupta V. Metal oxide catalyst assisted SnO2 thin film based SO2 gas sensor. Sens. Actuators B Chem. 2016;224:282–289. doi: 10.1016/j.snb.2015.10.050. DOI
Sinibaldi A., Rizzo R., Figliozzi G., Descrovi E., Danz N., Munzert P., Anopchenko A., Michelotti F. A full ellipsometric approach to optical sensing with Bloch surface waves on photonic crystals. Opt. Express. 2013;21:23331–23344. doi: 10.1364/OE.21.023331. PubMed DOI
Li Y., Yang T., Song S., Pang Z., Du G. Phase properties of Bloch surface waves and their sensing applications. Appl. Phys. Lett. 2013;103:041116. doi: 10.1063/1.4816810. DOI
Li Y., Yang T., Pang Z., Du G., Song S. Phase-sensitive Bloch surface wave sensor based on variable angle spectroscopic ellipsometry. Opt. Express. 2014;22:21403–21410. doi: 10.1364/OE.22.021403. PubMed DOI
Watad I., Jabalee M.A., Aizen A., Abdulhalim I. Critical angle based sensor with improved figure of merit using dip detection. Opt. Lett. 2015;40:4388–4391. doi: 10.1364/OL.40.004388. PubMed DOI
Wan Y., Zheng Z., Cheng M., Kong W., Liu K. Polarimetric-Phase-Enhanced Intensity Interrogation Scheme for Surface Wave Optical Sensors with Low Optical Loss. Sensors. 2018;18:3262. doi: 10.3390/s18103262. PubMed DOI PMC
Hlubina P., Gryga M., Ciprian D., Pokorny P., Gembalova L., Sobota J. High performance liquid analyte sensing based on Bloch surface wave resonances in the spectral domain. Opt. Laser Technol. 2022;145:107492. doi: 10.1016/j.optlastec.2021.107492. DOI
Mehrabani S., Kwong P., Gupta M., Arman A. Hybrid microcavity humidity sensor. Appl. Phys. Lett. 2013;102:241101. doi: 10.1063/1.4811265. DOI
Urbancova P., Chylek J., Hlubina P., Pudis D. Guided-Mode Resonance-Based Relative Humidity Sensing Employing a Planar Waveguide Structure. Sensors. 2020;20:6788. doi: 10.3390/s20236788. PubMed DOI PMC
Peng J., Wang W., Qu Y., Sun T., Lv D., Dai J., Yang M. Thin films based one-dimensional photonic crystal for humidity detection. Sens. Actuators A Phys. 2017;263:209–215. doi: 10.1016/j.sna.2017.06.011. DOI
Fuentes O., Corres J.M., Matias I.R., Villar I. Generation of Lossy Mode Resonances in Planar Waveguides Toward Development of Humidity Sensors. J. Light. Technol. 2019;37:2300–2306. doi: 10.1109/JLT.2019.2902045. DOI
Bohorquez D.L., Villar I., Corres J.M., Matias I.R. Generation of lossy mode resonances in a broadband range with multilayer coated coverslips optimized for humidity sensing. Sens. Actuators B Chem. 2020;325:128795. doi: 10.1016/j.snb.2020.128795. DOI
Deng S., Wang P., Yu X. Phase-sensitive surface plasmon resonance sensors: Recent progress and future prospects. Sensors. 2017;17:2819. doi: 10.3390/s17122819. PubMed DOI PMC
Watad I., Abdulhalim I. Spectropolarimetric surface plasmon resonance sensor and the selection of the best polarimetric function. IEEE J. Sel. Top. Quantum Electron. 2017;23:4600609. doi: 10.1109/JSTQE.2016.2575543. DOI
Yesilkoy F., Terborg R.A., Pello J., Belushkin A.A., Jahani Y., Pruneri V., Altug H. Phase-sensitive plasmonic biosensor using a portable and large field-of-view interferometric microarray imager. Light Sci. Appl. 2018;7:17152. doi: 10.1038/lsa.2017.152. PubMed DOI PMC
Wang D., Loo J.F.C., Chen J., Yam Y., Chen S.C., He H., Kong S.K., Ho H.P. Recent advances in surface plasmon resonance imaging sensors. Sensors. 2019;19:1266. doi: 10.3390/s19061266. PubMed DOI PMC
Watad I., Abdulhalim I. Phase-shifted polarimetric surface plasmon resonance sensor using a liquid crystal retarder and a diverging beam. Opt. Lett. 2019;44:1607–1610. doi: 10.1364/OL.44.001607. PubMed DOI
Barth I., Conteduca D., Reardon C., Johnson S., Krauss T.F. Common-path interferometric label-free protein sensing with resonant dielectric nanostructures. Light Sci. Appl. 2020;9:96. doi: 10.1038/s41377-020-0336-6. PubMed DOI PMC
Abutoama M., Abuleil M., Abdulhalim I. Resonant Subwavelength and Nano-Scale Grating Structures for Biosensing Application: A Comparative Study. Sensors. 2021;21:4523. doi: 10.3390/s21134523. PubMed DOI PMC
Polyanskiy M.N. Refractive Index Database. [(accessed on 27 September 2021)]. Available online: http://refractiveindex.info.
Ciddor P. Refractive index of air: New equations for the visible and near infrared. Appl. Opt. 1996;35:1566–1573. doi: 10.1364/AO.35.001566. PubMed DOI
Mouchet S., Deparis O., Vigneron J.P. Unexplained high sensitivity of the reectance of porous natural photonic structures to the presence of gases and vapours in the atmosphere. Proc. SPIE. 2012;8424:842425.
Du B., Yang D., Ruan Y., Jia P., Ebendorff-Heidepriem H. Compact plasmonic fiber tip for sensitive and fast humidity and human breath monitoring. Opt. Lett. 2020;45:985–988. doi: 10.1364/OL.381085. PubMed DOI
Daimon M., Masumura A. Measurement of the refractive index of distilled water from the near-infrared region to the ultraviolet region. Appl. Opt. 2007;46:3811–3820. doi: 10.1364/AO.46.003811. PubMed DOI
Yeh P. Optical Waves in Layered Media. John Wiley and Sons, Inc.; Somerset, NJ, USA: 2005.
Pettersson L.A.A., Roman L.S., Inganäs O. Modeling photocurrent action spectra of photovoltaic devices based on organic thin films. J. Appl. Phys. 1999;86:487–496. doi: 10.1063/1.370757. DOI
Kaňok R., Ciprian D., Hlubina P. Surface plasmon resonance-based sensing utilizing spatial phase modulation in an imaging interferometer. Sensors. 2020;20:1616. doi: 10.3390/s20061616. PubMed DOI PMC
Hlubina P., Duliakova M., Kadulova M., Ciprian D. Spectral interferometry-based surface plasmon resonance sensor. Opt. Commun. 2015;354:240–245. doi: 10.1016/j.optcom.2015.06.011. DOI
D’Amico A., Natale C.D. A contribution on some basic definitions of sensors properties. IEEE Sens. J. 2001;1:183–190. doi: 10.1109/JSEN.2001.954831. DOI