Bloch Surface Wave Resonance Based Sensors as an Alternative to Surface Plasmon Resonance Sensors
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
PubMed
32911784
PubMed Central
PMC7570763
DOI
10.3390/s20185119
PII: s20185119
Knihovny.cz E-resources
- Keywords
- Bloch surface wave resonance, Kretschmann configuration, figure of merit, moist air, multilayer dielectric structure, multilayer plasmonic structure, sensitivity, spectral interference, surface plasmon resonance,
- Publication type
- Journal Article MeSH
We report on a highly sensitive measurement of the relative humidity (RH) of moist air using both the surface plasmon resonance (SPR) and Bloch surface wave resonance (BSWR). Both resonances are resolved in the Kretschmann configuration when the wavelength interrogation method is utilized. The SPR is revealed for a multilayer plasmonic structure of SF10/Cr/Au, while the BSWR is resolved for a multilayer dielectric structure (MDS) comprising four bilayers of TiO2/SiO2 with a rough termination layer of TiO2. The SPR effect is manifested by a dip in the reflectance of a p-polarized wave, and a shift of the dip with the change in the RH, or equivalently with the change in the refractive index of moist air is revealed, giving a sensitivity in a range of 0.042-0.072 nm/%RH. The BSWR effect is manifested by a dip in the reflectance of the spectral interference of s- and p-polarized waves, which represents an effective approach in resolving the resonance with maximum depth. For the MDS under study, the BSWRs were resolved within two band gaps, and for moist air we obtained sensitivities of 0.021-0.038 nm/%RH and 0.046-0.065 nm/%RH, respectively. We also revealed that the SPR based RH measurement is with the figure of merit (FOM) up to 4.7 × 10-4 %RH-1, while BSWR based measurements have FOMs as high as 3.0 × 10-3 %RH-1 and 1.1 × 10-3 %RH-1, respectively. The obtained spectral interferometry based results demonstrate that the BSWR based sensor employing the available MDS has a similar sensitivity as the SPR based sensor, but outperforms it in the FOM. BSW based sensors employing dielectrics thus represent an effective alternative with a number of advantages, including better mechanical and chemical stability than metal films used in SPR sensing.
See more in PubMed
Kretschmann E., Raether H. Radiative decay of nonradiative surface plasmons excited by light. Z. Naturforsch. 1968;A23:2135–2136. doi: 10.1515/zna-1968-1247. DOI
Raether H. Surface Plasmons on Smooth and Rough Surfaces and on Gratings. Springer; New York, NY, USA: 1988.
Manuel M., Vidal B., Lopéz R., Alegret S., Alonso-Chamarro J., Garces I., Mateo J. Determination of probable alcohol yield in musts by means of an SPR optical sensor. Sens. Actuators B Chem. 1993;11:455–459. doi: 10.1016/0925-4005(93)85287-K. DOI
Homola J. Surface Plasmon Resonance Based Sensors. Springer; New York, NY, USA: 2006.
Abdulhalim I., Zourob M., Lakhtakia A. Surface plasmon resonance sensors—A mini review. Electromagnetics. 2008;28:213–242. doi: 10.1080/02726340801921650. DOI
Gwon H.R., Lee S.H. Spectral and angular responses of surface plasmon resonance based on the Kretschmann prism configuration. Mater. Trans. 2010;51:1150–1155. doi: 10.2320/matertrans.M2010003. DOI
Watad I., Abdulhalimn I. Spectropolarimetric surface plasmon resonance sensor and the selection of the best polarimetric function. IEEE J. Sel. Top. Quant. Electron. 2017;23:4600609. doi: 10.1109/JSTQE.2016.2575543. DOI
Pitarke J.M., Silkin V.M., Chulkov E.V., Echenique P.M. Theory of surface plasmons and surface-plasmon polaritons. Rep. Prog. Phys. 2007;70:1–87. doi: 10.1088/0034-4885/70/1/R01. DOI
Homola J., Yee S., Gauglitz G. Surface plasmon resonance sensors: Review. Sens. Actuators B. 1999;54:3–15. doi: 10.1016/S0925-4005(98)00321-9. DOI
Nikitin P., Beloglazov A., Kochergin V., Valeiko M., Ksenevich T. Surface plasmon resonance interferometry for biological and chemical sensing. Sens. Actuators B Chem. 1999;54:43–50. doi: 10.1016/S0925-4005(98)00325-6. DOI
Deng S., Wang P., Yu X. Phase-sensitive surface plasmon resonance sensors: Recent progress and future prospects. Sensors. 2017;17:2819. doi: 10.3390/s17122819. PubMed DOI PMC
Liedberg B., Nylander C., Lundström I. Principles of biosensing with an extended coupling matrix and surface plasmon resonance. Sens. Actuators B Chem. 1993;11:63–72. doi: 10.1016/0925-4005(93)85239-7. DOI
Chiang H., Yeh H., Chen C., Wu J., Su S., Chang R., Wu Y., Tsai D., Jen S., Leung P. Surface plasmon resonance monitoring of temperature via phase measurement. Opt. Commun. 2004;241:409–418. doi: 10.1016/j.optcom.2004.07.045. DOI
Ho H., Law W., Wu S., Liu X., Wong S., Lin C., Kong S.K. Phase-sensitive surface plasmon resonance biosensor using the photoelastic modulation technique. Sens. Actuators B Chem. 2006;114:80–84. doi: 10.1016/j.snb.2005.04.007. DOI
Dostálek J., Vaisocherova H., Homola J. Multichannel surface plasmon resonance biosensor with wavelength division multiplexing. Sens. Actuators B Chem. 2005;108:758–764. doi: 10.1016/j.snb.2004.12.096. DOI
Yu X., Ding X., Liu F., Wei X., Wang D. A surface plasmon resonance interferometer based on spatial phase modulation for protein array detection. Meas. Sci. Technol. 2008;19:015301. doi: 10.1088/0957-0233/19/1/015301. DOI
Kabashin A., Patskovsky S., Grigorenko A. Phase and amplitude sensitivities in surface plasmon resonance bio and chemical sensing. Opt. Express. 2009;17:21191–21204. doi: 10.1364/OE.17.021191. PubMed DOI
Hsu S.H., Lin Y.Y., Lu S.H., Tsai I.F., Lu Y.T., Ho H.T. Mycobacterium tuberculosis DNA detection dsing durface plasmon resonance modulated by telecommunication wavelength. Sensors. 2014;14:458–467. doi: 10.3390/s140100458. PubMed DOI PMC
Ng S., Wu C., Wu S., Ho H. White-light spectral interferometry for surface plasmon resonance sensing applications. Opt. Express. 2011;19:4521–4527. doi: 10.1364/OE.19.004521. PubMed DOI
Shalabney A., Abdulhalim I. Figure-of-merit enhancement of surface plasmon resonance sensors in the spectral interrogation. Opt. Lett. 2012;37:1175–1177. doi: 10.1364/OL.37.001175. PubMed DOI
Hlubina P., Duliakova M., Kadulova M., Ciprian D. Spectral interferometry-based surface plasmon resonance sensor. Opt. Commun. 2015;354:240–245. doi: 10.1016/j.optcom.2015.06.011. DOI
Hlubina P., Ciprian D. Spectral phase shift of surface plasmon resonance in the Kretschmann configuration: Theory and experiment. Plasmonics. 2017;12:1071–1078. doi: 10.1007/s11468-016-0360-9. DOI
Rifat A.A., Rahmani M., Xu L., Miroshnichenko A.E. Hybrid Metasurface Based Tunable Near-Perfect Absorber and Plasmonic Sensor. Materials. 2018;11:1091. doi: 10.3390/ma11071091. PubMed DOI PMC
Chlebus R., Chylek J., Ciprian D., Hlubina P. Surface plasmon resonance based measurement of the dielectric function of a thin metal film. Sensors. 2018;18:3693. doi: 10.3390/s18113693. PubMed DOI PMC
Wang D., Loo J.F.C., Chen J., Yam Y., Chen S.C., He H., Kong S.K., Ho H.P. Recent advances in surface plasmon resonance imaging sensors. Sensors. 2019;19:1266. doi: 10.3390/s19061266. PubMed DOI PMC
Hlubina P., Urbancova P., Pudis D., Goraus M., Jandura D., Ciprian D. Ultrahigh-sensitive plasmonic sensing of gas using a two-dimensional dielectric grating. Opt. Lett. 2019;44:5602–5605. doi: 10.1364/OL.44.005602. PubMed DOI
Roh S., Chung T., Lee B. Overview of the characteristics of micro- and nanostructured surface plasmon resonance sensors. Sensors. 2011;11:1565–1588. doi: 10.3390/s110201565. PubMed DOI PMC
Klantsataya E., Jia P., Ebendorff-Heidepriem H., Monro T.M., François A. Plasmonic Fiber Optic Refractometric Sensors: From Conventional Architectures to Recent Design Trends. Sensors. 2017;17:12. doi: 10.3390/s17010012. PubMed DOI PMC
Sharma A.K., Pandey A.K., Kaur B. A Review of advancements (2007–2017) in plasmonics-based optical fiber sensors. Opt. Fiber Technol. 2018;43:20–34. doi: 10.1016/j.yofte.2018.03.008. DOI
Xu Y., Bai P., Zhou X., Akimov Y., Png C.E., Ang L.K., Knoll W., Wu L. Optical Refractive Index Sensors with Plasmonic and Photonic Structures: Promising and Inconvenient Truth. Adv. Opt. Mater. 2019;7:1801433. doi: 10.1002/adom.201801433. DOI
Ciprian D., Hlubina P. Theoretical model of the influence of oxide overlayer thickness on the performance of a surface plasmon fibre-optic sensor. Meas. Sci. Technol. 2013;24:025105. doi: 10.1088/0957-0233/24/2/025105. DOI
Hlubina P., Kadulova M., Ciprian D., Sobota J. Reflection-based fibre-optic refractive index sensor using surface plasmon resonance. J. Europ. Opt. Soc. Rap. Publ. 2014;9:14033. doi: 10.2971/jeos.2014.14033. DOI
Yeh P., Yariv A., Cho A.Y. Optical surface waves in periodic layered media. Appl. Phys. Lett. 1978;32:104–105. doi: 10.1063/1.89953. DOI
Meade R.D., Brommer K.D., Rappe A.M., Joannopoulos J.D. Electromagnetic Bloch waves at the surface of a photonic crystal. Phys. Rev. B. 1991;44:10961–10964. doi: 10.1103/PhysRevB.44.10961. PubMed DOI
Robertson W.M., Arjavalingam G., Meade R.D., Brommer K.D., Rappe A.M., Joannopoulos J.D. Observation of surface photons on periodic dielectric arrays. Opt. Lett. 1993;18:528–530. doi: 10.1364/OL.18.000528. PubMed DOI
Robertson W.M., May M.S. Surface electromagnetic wave excitation on one-dimensional photonic band-gap arrays. Appl. Phys. Lett. 1999;74:1800–1802. doi: 10.1063/1.123090. DOI
Ma J., Kang X.B., Wang Z.G. Sensing performance optimization of the Bloch surface wave biosensor based on the Bloch impedance-matching method. Opt. Lett. 2019;43:5375–5378. doi: 10.1364/OL.43.005375. PubMed DOI
Guillermain E., Lysenko V., Orobtchouk R., Benyattou T., Roux S., Pillonnet A., Perriat P. Bragg surface wave device based on porous silicon and its application for sensing. Appl. Phys. Lett. 2007;90:241116. doi: 10.1063/1.2747671. DOI
Konopsky V.N., Alieva E.V. Photonic crystal surface waves for optical biosensors. Anal. Chem. 2007;79:4729–4735. doi: 10.1021/ac070275y. PubMed DOI
Giorgis F., Descrovi E., Summonte C., Dominici L., Michelotti F. Experimental determination of the sensitivity of Bloch Surface Waves based sensors. Opt. Express. 2010;18:8087–8093. doi: 10.1364/OE.18.008087. PubMed DOI
Danz N., Sinibaldi A., Michelotti F., Descrovi E., Munzert P., Schulz U., Sonntag F. Improving the sensitivity of optical biosensors by means of Bloch surface waves. Biomed. Tech. 2012;57:584–587. doi: 10.1515/bmt-2012-4246. DOI
Konopsky V.N., Karakouza T., Alieva E.V., Vicario C., Sekatskii S.K., Dietler G. Plasmonic Fiber Optic Refractometric Sensors: From Conventional Architectures to Recent Design Trends. Sensors. 2013;13:2566–2578. doi: 10.3390/s130202566. PubMed DOI PMC
Sinibaldi A., Danz N., Descrovi E., Munzert P., Schulz U., Sonntag F., Dominici L., Michelotti F. Direct comparison of the performance of Bloch surface wave and surface plasmon polariton sensors. Sens. Actuators B Chem. 2012;174:292–298. doi: 10.1016/j.snb.2012.07.015. DOI
Chen J., Zhang D., Wang P., Ming H., Lakowicz J.R. Strong Polarization Transformation of Bloch Surface Waves. Phys. Rev. Appl. 2018;9:024008. doi: 10.1103/PhysRevApplied.9.024008. PubMed DOI PMC
Liscidini M., Sipe J.E. Analysis of Bloch-surface-wave assisted diffraction-based biosensors. J. Opt. Soc. Am. B. 2009;26:279–289. doi: 10.1364/JOSAB.26.000279. DOI
Li Y., Yang T., Song S., Pang Z., Du G. Phase properties of Bloch surface waves and their sensing applications. Appl. Phys. Lett. 2013;103:041116. doi: 10.1063/1.4816810. DOI
Sinibaldi A., Rizzo R., Figliozzi G., Descrovi E., Danz N., Munzert P., Anopchenko A., Michelotti F. A full ellipsometric approach to optical sensing with Bloch surface waves on photonic crystals. Opt. Express. 2013;21:23331–23344. doi: 10.1364/OE.21.023331. PubMed DOI
Li Y., Yang T., Pang Z., Du G., Song S. Phase-sensitive Bloch surface wave sensor based on variable angle spectroscopic ellipsometry. Opt. Express. 2014;22:21403–21410. doi: 10.1364/OE.22.021403. PubMed DOI
Wan Y., Zheng Z., Cheng M., Kong W., Liu K. Polarimetric-Phase-Enhanced Intensity Interrogation Scheme for Surface Wave Optical Sensors with Low Optical Loss. Sensors. 2018;18:3262. doi: 10.3390/s18103262. PubMed DOI PMC
Farmer A., Friedli A.C., Wright S.M., Robertson W.M. Biosensing using surface electromagnetic waves in photonic band gap multilayers. Sens. Actuators B Chem. 2012;173:79–84. doi: 10.1016/j.snb.2012.06.015. DOI
Kong W., Zheng Z., Wan Y., Li S., Liu J. High-sensitivity sensing based on intensity-interrogated Bloch surface wave sensors. Sens. Actuators B Chem. 2014;193:467–471. doi: 10.1016/j.snb.2013.11.101. DOI
Kanga X.B., Wen L., Wang Z.G. Design of guided Bloch surface wave resonance bio-sensors with high sensitivity. Opt. Commun. 2017;383:531–536. doi: 10.1016/j.optcom.2016.10.004. DOI
Kovalevich T., Belharet D., Robert L., Ulliac G., Kim M.S., Herzig H.P., Grosjean T., Bernal M.P. Bloch surface waves at the telecommunicationwavelength with Lithium Niobate as top layer forintegrated optics. Appl. Opt. 2019;58:1757–1762. doi: 10.1364/AO.58.001757. PubMed DOI
Kaliteevski M., Iorsh I., Brand S., Abram R.A., Chamberlain J.M., Kavokin A.V., Shelykh I.A. Tamm plasmon-polaritons: Possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror. Phys. Rev. B. 2007;76:165415. doi: 10.1103/PhysRevB.76.165415. DOI
Zhang X.L., Song J.F., Li X.B., Feng J., Sun H.B. Optical Tamm states enhanced broad-band absorption of organic solar cells. Appl. Phys. Lett. 2012;101:243901. doi: 10.1063/1.4770316. DOI
Auguié B., Fuertes M.C., Angelomié P.C., Abdala N.L., Illia G.J.A.A.S., Fainstein A. Tamm Plasmon Resonance in Mesoporous Multilayers: Toward a Sensing Application. ACS Photonics. 2014;9:775–780. doi: 10.1021/ph5001549. DOI
Zhang C., Wu K., Giannini V., Li X. Planar Hot-Electron Photodetection with Tamm Plasmons. ACS Nano. 2017;19:1719–1727. doi: 10.1021/acsnano.6b07578. PubMed DOI
Lereu A.L., Zerrad M., Passian A., Amra C. Surface plasmons and Bloch surface waves: Towards optimized ultra-sensitive optical sensors. Appl. Phys. Lett. 2017;111:011107. doi: 10.1063/1.4991358. DOI
Qiao H., Guan B., Gooding J.J., Reece P.J. Protease detection using a porous silicon based Bloch surface wave optical biosensor. Opt. Express. 2010;18:15174–15182. doi: 10.1364/OE.18.015174. PubMed DOI
Rodriguez G.A., Ryckman J.D., Jiao Y., Weiss S.M. A size selective porous silicon grating-coupled Bloch surface and sub-surface wave biosensor. Biosens. Bioelectron. 2014;53:486–493. doi: 10.1016/j.bios.2013.10.028. PubMed DOI
Gryga M., Vala D., Kolejak P., Gembalova L., Ciprian D., Hlubina P. One-dimensional photonic crystal for Bloch surface waves and radiation modes based sensing. Opt. Mater. Express. 2019;9:4009–4022. doi: 10.1364/OME.9.004009. DOI
Deng C.Z., Ho Y.L., Lee Y.C., Wang Z., Tai Y.H., Zyskowski M., Daiguji H., Delaunay J.J. Two-pair multilayer Bloch surface wave platform in the near- and mid-infrared regions. Appl. Phys. Lett. 2019;115:091102. doi: 10.1063/1.5101008. DOI
Gryga M., Ciprian D., Hlubina P. Sensing concept based on Bloch surface waves and wavelength interrogation. Opt. Lett. 2020;45:1096–1099. doi: 10.1364/OL.387593. PubMed DOI
Gan S., Wang H., Liang J., Dai X., Xiang Y. Ultra-Sensitive Refractive Index Sensors Based on Bloch Surface Waves with Transition Metal Dichalcogenides. IEEE Sens. J. 2019;19:8675–8680. doi: 10.1109/JSEN.2019.2922966. DOI
Balevicius Z., Baskys A. Optical Dispersions of Bloch Surface Waves and Surface Plasmon Polaritons: Towards Advanced Biosensors. Materials. 2019;12:3147. doi: 10.3390/ma12193147. PubMed DOI PMC
Liu G.S., Xiong X., Hu S., Shi W., Chen Y., Zhu W., Zheng H., Yu J., Azeman N.H., Luo Y., et al. Photonic cavity enhanced high-performance surface plasmon resonance biosensor. Photonics Res. 2020;8:448–456. doi: 10.1364/PRJ.382567. DOI
Tu T., Panf F., Zhu S., Cheng J., Liu H., Wen J., Wang T. Excitation of Bloch surface wave on tapered fiber coated with one-dimensional photonic crystal for refractive index sensing. Opt. Express. 2017;25:9019–9027. doi: 10.1364/OE.25.009019. PubMed DOI
Tan X.J., Zhu X.S. Optical fiber sensor based on Bloch surface wave in photonic crystals. Opt. Express. 2016;24:16016–16026. doi: 10.1364/OE.24.016016. PubMed DOI
Scaravilli M., Micco A., Castaldi G., Coppola G., Gioffre M., Iodice M., Ferrara V.L., Galdi V., Cusano A. Excitation of Bloch Surface Waves on an Optical Fiber Tip. Adv. Opt. Mater. 2018;2018:1800477. doi: 10.1002/adom.201800477. DOI
Gonzalez-Valencia E., Herrera R.A., Torres P. Bloch surface wave resonance in photonic crystal fibers: Towards ultra-wide range refractive index sensors. Opt. Express. 2019;27:8236–8545. doi: 10.1364/OE.27.008236. PubMed DOI
Bethune D.S. Optical harmonic generation and mixing in multilayer media: Analysis using optical transfer matrix techniques. J. Opt. Soc. Am. B. 1989;6:910–916. doi: 10.1364/JOSAB.6.000910. DOI
Pettersson L.A.A., Roman L.S., Inganäs O. Modeling photocurrent action spectra of photovoltaic devices based on organic thin films. J. Appl. Phys. 1999;86:487–496. doi: 10.1063/1.370757. DOI
Yeh P. Optical Waves in Layered Media. John Wiley and Sons; Somerset, NJ, USA: 2005.
Di Palma P., Sansone L., Taddei C., Campopiano S., Iadiciccoi A. Fiber optic probe based on self-assembled photonic crystal for relative humidity sensing. J. Lightwave Technol. 2019;37:4610–4618. doi: 10.1109/JLT.2019.2914354. DOI
Kolpakov S.A., Gordon N.T., Mou C., Zhou K. Toward a New Generation of Photonic Humidity Sensors. Sensors. 2014;14:3986–4013. doi: 10.3390/s140303986. PubMed DOI PMC
Ascorbe J., Corres J.M., Arregu F.J., Matias I.R. Recent developments in fiber optics humidity sensors. Sensors. 2017;17:893. doi: 10.3390/s17040893. PubMed DOI PMC
Mehrabani S., Kwong P., Gupta M., Arman A. Hybrid microcavity humidity sensor. Appl. Phys. Lett. 2013;102:241101. doi: 10.1063/1.4811265. DOI
Lee K.J., Wawro D., Priambodo P.S., Magnusson R. Agarose-gel based guided-mode resonance humidity sensor. IEEE Sens. J. 2007;7:409–414. doi: 10.1109/JSEN.2006.890129. DOI
Peng J., Wang W., Qu Y., Sun T., Lv D., Dai J., Yang M. Thin films based one-dimensional photonic crystal for humidity detection. Sens. Actuators A Phys. 2017;263:209–215. doi: 10.1016/j.sna.2017.06.011. DOI
Fuentes O., Corres J.M., Matias I.R., Villar I. Generation of Lossy Mode Resonances in Planar Waveguides Toward Development of Humidity Sensors. J. Lightwave Technol. 2019;37:2300–2306. doi: 10.1109/JLT.2019.2902045. DOI
Bohorquez D.L., Villar I., Corres J.M., Matias I.R. Thin films based one-dimensional photonic crystal for humidity detection. Sens. Actuators B Chem. 2020;325:128795.
Bönsch G., Potulski E. Measurement of the refractive index of air and comparison with modified Edlén’s formulae. Metrologia. 1998;35:133–139. doi: 10.1088/0026-1394/35/2/8. DOI
Mathar R.J. Refractive Index of Humid Air in the Infrared: Model Fits. J. Opt. A Pure Appl. Opt. 2007;9:470–477. doi: 10.1088/1464-4258/9/5/008. DOI
Alvarez-Herrero A., Fort A., Guerrero H., Bernabeu E. Ellipsometric characterization and influence of relative humidity on TiO2 layers optical properties. Thin Solid Film. 1999;349:212–219. doi: 10.1016/S0040-6090(99)00145-5. DOI
Robertson W.M., Wright S.M., Friedli A., Summers J., Kaszynski A. Design and characterization of an ultra- low-cost 3D-printed optical sensor based on Bloch surface wave resonance. Biosens. Bioelectron. 2020;5:100049. doi: 10.1016/j.biosx.2020.100049. DOI
Guided-Mode Resonance-Based Relative Humidity Sensing Employing a Planar Waveguide Structure