Guided-Mode Resonance-Based Relative Humidity Sensing Employing a Planar Waveguide Structure
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu dopisy
PubMed
33261084
PubMed Central
PMC7731120
DOI
10.3390/s20236788
PII: s20236788
Knihovny.cz E-zdroje
- Klíčová slova
- figure of merit, guided-mode resonance, humidity sensor, planar waveguide structure, resonance wavelength, sensitivity,
- Publikační typ
- dopisy MeSH
In this paper, we present a new type of guided-mode resonance (GMR)-based sensor that utilizes a planar waveguide structure (PWS). We employed a PWS with an asymmetric three-layer waveguide structure consisting of substrate/Au/photoresist. The ellipsometric characterization of the structure layers, the simulated reflectance spectra, and optical field distributions under GMR conditions showed that multiple waveguide modes can be excited in the PWS. These modes can be used for refractive index sensing, and the theoretical analysis of the designed PWS showed a sensitivity to the refractive index up to 6600 nm per refractive index unit (RIU) and a figure of merit (FOM) up to 224 RIU-1. In response to these promising theoretical results, the PWS was used to measure the relative humidity (RH) of moist air with a sensitivity up to 0.141 nm/%RH and a FOM reaching 3.7 × 10-3%RH-1. The results demonstrate that this highly-sensitive and hysteresis-free sensor based on GMR has the potential to be used in a wide range of applications.
Zobrazit více v PubMed
Chen L. Optical Devices Based on Symmetrical Metal Cladding Waveguides. In: Xi P., editor. Optical Devices in Communication and Computation. In Tech; Rijeka, Croatia: 2012. pp. 127–152.
Lan G., Zhang S., Zhang H., Zhu Y., Qing L., Li D., Nong J., Wang W., Chen L., Wei W. High-performance refractive index sensor based on guided-mode resonance in all-dielectric nano-slit array. Phys. Lett. A. 2019;383:1478–1482. doi: 10.1016/j.physleta.2019.01.057. DOI
Zhou Y., Wang B., Guo Z., Wu X. Guided Mode Resonance Sensors with Optimized Figure of Merit. Nanomaterials. 2019;9:837. doi: 10.3390/nano9060837. PubMed DOI PMC
Magnusson R., Wang S.S. New principle for optical filters. Appl. Phys. Lett. 1992;61:1022. doi: 10.1063/1.107703. DOI
Sakat E., Vincent G., Ghenuche P., Bardou N., Dupuis C., Collin S., Pardo F., Haïdar R., Pelouard J.-L. Free-standing guided-mode resonance band-pass filters: From 1D to 2D structures. Opt. Express. 2012;20:13082–13090. doi: 10.1364/OE.20.013082. PubMed DOI
Zheng G., Zou X., Xu L., Wang J. Single layer narrow bandwidth angle-insensitive guided-mode resonance badstop filters. Optik. 2017;130:19–23. doi: 10.1016/j.ijleo.2016.11.043. DOI
Katchalski T., Levy-Yurista G., Friesem A.A., Martin G., Hierle R., Zyss J. Ligh modulation with electro-optic polymer-based resonant grating waveguide structures. Opt. Express. 2015;13:4645–4650. doi: 10.1364/OPEX.13.004645. PubMed DOI
Forouzmand A., Mosallaei H. Electro-optical Amplitude and Phase Modulators Based on Tunable Guided-Mode Resonance Effect. ACS Photonics. 2019;11:2860–2869. doi: 10.1021/acsphotonics.9b00950. DOI
Li G., Yang J., Zhang Z., Wen K., Tao Y., Han Y., Zhang Z. Double Spectral Electromagnetically Induced Transparency Based on Double-Bar Dielectric Grating and Its Sensor Application. Appl. Sci. 2020;10:3033. doi: 10.3390/app10093033. DOI
Wei X., Weiss S.M. Guided mode biosensor based on grating coupled porous silicon waveguide. Opt. Express. 2011;19:11330–11339. doi: 10.1364/OE.19.011330. PubMed DOI
Lin Y.-C., Hsieh W.-H., Chau L.-K., Chang G.-E. Intensity-detection-based guided-mode-resonance optofluidic biosensing system for rapid, low-cost, label-free detection. Sens. Actuators B Chem. 2017;250:659–666. doi: 10.1016/j.snb.2017.04.187. DOI
Sahoo P.K., Sarkar S., Joseph J. High sensitivity guided-mode-resonance optical sensor employing phase detection. Sci. Rep. 2017;7:7607. doi: 10.1038/s41598-017-07843-z. PubMed DOI PMC
Wang X., Wu X., Chen Y., Bai X., Pang Z., Yang H., Qi Y., Wen X. Investigation of wide-range refractive index sensor based on asymmetric metal-cladding dielectric waveguide structure. AIP Adv. 2018;8:105029. doi: 10.1063/1.5043469. PubMed DOI PMC
Triggs G.J., Wang Y., Peardon C.P., Fischer M., Evans G.J.O., Krauss T.F. Chirped guided-mode resonance biosensors. Optica. 2017;4:229–234. doi: 10.1364/OPTICA.4.000229. PubMed DOI PMC
Shin J.H., Ok G. Terahertz Guided Mode Resonance Sensing Platform Based on Freestanding Dielectric Materials: High Q-Factor and Tunable Spectrum. Appl. Sci. 2020;10:1013. doi: 10.3390/app10031013. DOI
Taya S., Elwasife K. Guided modes in a metal-clad waveguide comprising a left-handed material as a guiding layer. IJRRAS. 2012;13:294–305.
Nesterenko D.V., Hayashi S., Sekkat Z. Extremely narrow resonances, giant sensitivity and field enhancement in low-loss waveguide sensors. J. Opt. 2016;18:065004. doi: 10.1088/2040-8978/18/6/065004. DOI
Anous N., Ramadan T., Abdallah M., Qaraqe K., Khalil D. Planar broad-band and wide-range hybrid plasmonic IMI filters with induced transmission for visible light applications. Appl. Opt. 2017;56:8751–8758. doi: 10.1364/AO.56.008751. PubMed DOI
Zhou H., Sang Q., Wang X., Chen X. Symmetrical Metal Cladding Waveguide for Absorption Sensing and its Sensitivity Analysis. IEEE Photon. J. 2017;9:6800509. doi: 10.1109/JPHOT.2016.2640660. DOI
Wang X., Wu X., Zhu J., Pang Z., Yang H., Qi Y. Theoretical Investigation of a Highly Sensitive Refractive-Index Sensor Based on TM0 Waveguide Mode Resonance Excited in an Asymmetric Metal-Cladding Dielectric Waveguide Structure. Sensors. 2019;19:1187. doi: 10.3390/s19051187. PubMed DOI PMC
Yang L., Wang J., Yang L., Hu Z.-D., Wu X., Zheng G. Characteristics of multiple Fano resonances in waveguide-coupled surface plasmon resonance sensors based on waveguide theory. Sci. Rep. 2018;8:2560. doi: 10.1038/s41598-018-20952-7. PubMed DOI PMC
Yeh P. Optical Waves in Layered Media. John Wiley and Sons; Somerset, NJ, USA: 2005.
Nabok A., Tsargorodskaya A. The method of total internal reflection ellipsometry for thin film characterization and sensing. Thin Solid Films. 2008;516:8993–9001. doi: 10.1016/j.tsf.2007.11.077. DOI
Azzam R.M.A., Bashara N.M. Ellipsometry and Polarized Light. North Holland Publishing Co.; Amsterdam, The Netherland: 1992. pp. 332–358.
Chlebus R., Chylek J., Ciprian D., Hlubina P. Surface plasmon resonance based measurement of the dielectric function of a thin metal film. Sensors. 2018;18:3693. doi: 10.3390/s18113693. PubMed DOI PMC
Gryga M., Ciprian D., Hlubina P. Bloch surface wave resonance based sensors as an alternative to surface plasmon resonance sensors. Sensors. 2020;20:5119. doi: 10.3390/s20185119. PubMed DOI PMC
Mehrabani S., Kwong P., Gupta M., Arman A. Hybrid microcavity humidity sensor. Appl. Phys. Lett. 2013;102:241101. doi: 10.1063/1.4811265. DOI
Lee K.J., Wawro D., Priambodo P.S., Magnusson R. Agarose-Gel Based Guided-Mode Resonance Humidity Sensor. IEEE Sens. J. 2007;7:409–414. doi: 10.1109/JSEN.2006.890129. DOI
Peng J., Wang W., Qu Y., Sun T., Lv D., Dai J., Yang M. Thin films based one-dimensional photonic crystal for humidity detection. Sens. Actuators A Phys. 2017;263:209–215. doi: 10.1016/j.sna.2017.06.011. DOI
Fuentes O., Corres J.M., Matias I.R., Villar I. Generation of Lossy Mode Resonances in Planar Waveguides Toward Development of Humidity Sensors. J. Lightwave Technol. 2019;37:2300–2306. doi: 10.1109/JLT.2019.2902045. DOI
Bohorquez D.L., Del Villar I., Corres J.M., Matias I.R. Generation of lossy mode resonances in a broadband range with multilayer coated coverslips optimized for humidity sensing. Sens. Actuators B Chem. 2020;325:128795. doi: 10.1016/j.snb.2020.128795. DOI
Kolpakov S.A., Gordon N.T., Mou C., Zhou K. Toward a new generation of photonic humidity sensors. Sensors. 2014;14:3986–4013. doi: 10.3390/s140303986. PubMed DOI PMC
Ascorbe J., Corres J.M., Arregu F.J., Matias I.R. Recent developments in fiber optics humidity sensors. Sensors. 2017;17:893. doi: 10.3390/s17040893. PubMed DOI PMC
Highly Sensitive Plasmonic Structures Utilizing a Silicon Dioxide Overlayer