Power and Weakness of Repetition - Evaluating the Phylogenetic Signal From Repeatomes in the Family Rosaceae With Two Case Studies From Genera Prone to Polyploidy and Hybridization (Rosa and Fragaria)
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
34950159
PubMed Central
PMC8688825
DOI
10.3389/fpls.2021.738119
Knihovny.cz E-zdroje
- Klíčová slova
- Caninae, Fragaria, Rosaceae, graph-based clustering, high-throughput sequencing, phylogenetics, repeatome, repetitive DNA,
- Publikační typ
- časopisecké články MeSH
Plant genomes consist, to a considerable extent, of non-coding repetitive DNA. Several studies showed that phylogenetic signals can be extracted from such repeatome data by using among-species dissimilarities from the RepeatExplorer2 pipeline as distance measures. Here, we advanced this approach by adjusting the read input for comparative clustering indirectly proportional to genome size and by summarizing all clusters into a main distance matrix subjected to Neighbor Joining algorithms and Principal Coordinate Analyses. Thus, our multivariate statistical method works as a "repeatomic fingerprint," and we proved its power and limitations by exemplarily applying it to the family Rosaceae at intrafamilial and, in the genera Fragaria and Rosa, at the intrageneric level. Since both taxa are prone to hybridization events, we wanted to show whether repeatome data are suitable to unravel the origin of natural and synthetic hybrids. In addition, we compared the results based on complete repeatomes with those from ribosomal DNA clusters only, because they represent one of the most widely used barcoding markers. Our results demonstrated that repeatome data contained a clear phylogenetic signal supporting the current subfamilial classification within Rosaceae. Accordingly, the well-accepted major evolutionary lineages within Fragaria were distinguished, and hybrids showed intermediate positions between parental species in data sets retrieved from both complete repeatomes and rDNA clusters. Within the taxonomically more complicated and particularly frequently hybridizing genus Rosa, we detected rather weak phylogenetic signals but surprisingly found a geographic pattern at a population scale. In sum, our method revealed promising results at larger taxonomic scales as well as within taxa with manageable levels of reticulation, but success remained rather taxon specific. Since repeatomes can be technically easy and comparably inexpensively retrieved even from samples of rather poor DNA quality, our phylogenomic method serves as a valuable alternative when high-quality genomes are unavailable, for example, in the case of old museum specimens.
CF DNA Sequencing Leibniz Institute on Aging Fritz Lipmann Institute Jena Germany
Department of Botany Senckenberg Museum of Natural History Görlitz Görlitz Germany
Department of Experimental Biology Faculty of Science Masaryk University Brno Czechia
Hansabred GmbH and Co KG Dresden Germany
Institute of Botany Systematic Botany Group Justus Liebig University Gießen Germany
Institute of Botany Technische Universität Dresden Dresden Germany
Zobrazit více v PubMed
Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. (1990). Basic local alignment search tool. J. Mol. Biol. 215 403–410. 10.1016/S0022-2836(05)80360-2 PubMed DOI
Álvarez I., Wendel J. F. (2003). Ribosomal ITS sequences and plant phylogenetic inference. Mol. Phylogenet. Evol. 29 417–434. 10.1016/S1055-7903(03)00208-2 PubMed DOI
Belyayev A. (2014). Bursts of transposable elements as an evolutionary driving force. J. Evol. Biol. 27 2573–2584. 10.1111/jeb.12513 PubMed DOI
Bentley D. R., Balasubramanian S., Swerdlow H. P., Smith G. P., Milton J., Brown C. G., et al. (2008). Accurate whole human genome sequencing using reversible terminator chemistry. Nature 456 53–59. 10.1038/nature07517 PubMed DOI PMC
Biscotti M. A., Olmo E., Heslop-Harrison J. S. (2015). Repetitive DNA in eukaryotic genomes. Chromosom. Res. 23 415–420. 10.1007/s10577-015-9499-z PubMed DOI
Blackburn K. B., Harrison J. W. H. (1921). The status of the British rose forms as determined by their cytological behaviour. Ann. Bot. 35 159–188. 10.1093/oxfordjournals.aob.a089753 DOI
Blondel V. D., Guillaume J. L., Lambiotte R., Lefebvre E. (2008). Fast unfolding of communities in large networks. J. Stat. Mech. Theory Exp. 2008:10008. 10.1088/1742-5468/2008/10/P10008 DOI
Blumenstiel J. P. (2019). Birth, school, work, death, and resurrection: the life stages and dynamics of transposable element proliferation. Genes (Basel) 10:336. 10.3390/genes10050336 PubMed DOI PMC
Bolsheva N. L., Melnikova N. V., Kirov I. V., Dmitriev A. A., Krasnov G. S., Amosova A. V., et al. (2019). Characterization of repeated DNA sequences in genomes of blue-flowered flax. BMC Evol. Biol. 19:49. 10.1186/s12862-019-1375-6 PubMed DOI PMC
Bourque G., Burns K. H., Gehring M., Gorbunova V., Seluanov A., Hammell M., et al. (2018). Ten things you should know about transposable elements. Genome Biol. 19:199. 10.1186/s13059-018-1577-z PubMed DOI PMC
Brookfield J. F. Y. (2005). The ecology of the genome – Mobile DNA elements and their hosts. Nat. Rev. Genet. 6 128–136. 10.1038/nrg1524 PubMed DOI
Bruneau A., Starr J. R., Joly S. (2007). Phylogenetic relationships in the genus Rosa: new evidence from chloroplast DNA sequences and an appraisal of current knowledge. Syst. Bot. 32 366–378. 10.1600/036364407781179653 DOI
Charlesworth B., Sniegowski P., Stephan W. (1994). The evolutionary dynamics of repetitive DNA in eukaryotes. Nature 371 215–220. 10.1038/371215a0 PubMed DOI
Choi I. Y., Kwon E. C., Kim N. S. (2020). The C- and G-value paradox with polyploidy, repeatomes, introns, phenomes and cell economy. Genes Genomics 42 699–714. 10.1007/s13258-020-00941-9 PubMed DOI
De Cock K., Vander Mijnsbrugge K., Breyne P., Van Bockstaele E., Van Slycken J. (2008). Morphological and AFLP-based differentiation within the taxonomical complex section Caninae (subgenus Rosa). Ann. Bot. 102 685–697. 10.1093/aob/mcn151 PubMed DOI PMC
Debray K., Le Paslier M.-C., Bérard A., Thouroude T., Michel G., Marie-Magdelaine J., et al. (2021). Unveiling the patterns of reticulated evolutionary processes with phylogenomics: hybridization and polyploidy in the Genus Rosa. Syst. Biol. syab064. 10.1093/sysbio/syab064 PubMed DOI
Debray K., Marie-Magdelaine J., Ruttink T., Clotault J., Foucher F., Malécot V. (2019). Identification and assessment of variable single-copy orthologous (SCO) nuclear loci for low-level phylogenomics: a case study in the genus Rosa (Rosaceae). BMC Evol. Biol. 19:152. 10.1186/s12862-019-1479-z PubMed DOI PMC
Devos N., Oh S. H., Raspé O., Jacquemart A. L., Manos P. S. (2005). Nuclear ribosomal DNA sequence variation and evolution of spotted marsh-orchids (Dactylorhiza maculata group). Mol. Phylogenet. Evol. 36 568–580. 10.1016/j.ympev.2005.04.014 PubMed DOI
Dickinson T. A. (2018). Sex and Rosaceae apomicts. Taxon 67 1093–1107. 10.12705/676.7 DOI
DiMeglio L. M., Staudt G., Yu H., Davis T. M. (2014). A phylogenetic analysis of the genus Fragaria (strawberry) using intron-containing sequence from the ADH-1 gene. PLoS One 9:e102237. 10.1371/journal.pone.0102237 PubMed DOI PMC
Dodsworth S., Chase M. W., Kelly L. J., Leitch I. J., Macas J., Novak P., et al. (2015). Genomic repeat abundances contain phylogenetic signal. Syst. Biol. 64 112–126. 10.1093/sysbio/syu080 PubMed DOI PMC
Dodsworth S., Jang T. S., Struebig M., Chase M. W., Weiss-Schneeweiss H., Leitch A. R. (2017). Genome-wide repeat dynamics reflect phylogenetic distance in closely related allotetraploid Nicotiana (Solanaceae). Plant Syst. Evol. 303 1013–1020. 10.1007/s00606-016-1356-9 PubMed DOI PMC
Dogan M., Pouch M., Mandáková T., Hloušková P., Guo X., Winter P., et al. (2021). Evolution of tandem repeats is mirroring post-polyploid cladogenesis in Heliophila (Brassicaceae). Front. Plant Sci. 11:1944. 10.3389/fpls.2020.607893 PubMed DOI PMC
Dumolin S., Demesure B., Petit R. J. (1995). Inheritance of chloroplast and mitochondrial genomes in pedunculate oak investigated with an efficient PCR method. Theor. Appl. Genet. 91 1253–1256. 10.1007/BF00220937 PubMed DOI
Eickbush T. H., Eickbush D. G. (2007). Finely orchestrated movements: evolution of the ribosomal RNA genes. Genetics 175 477–485. 10.1534/genetics.107.071399 PubMed DOI PMC
Fougère-Danezan M., Joly S., Bruneau A., Gao X. F., Zhang L. B. (2015). Phylogeny and biogeography of wild roses with specific attention to polyploids. Ann. Bot. 115 275–291. 10.1093/aob/mcu245 PubMed DOI PMC
Gilbert C., Feschotte C. (2018). Horizontal acquisition of transposable elements and viral sequences: patterns and consequences. Curr. Opin. Genet. Dev. 49 15–24. 10.1016/j.gde.2018.02.007 PubMed DOI PMC
Gower J. C. (1971). A general coefficient of similarity and some of its properties. Biometrics 27:857. 10.2307/2528823 DOI
Groffen F. (2021). html2text, GitHub Repository. Available online at: https://github.com/grobian/html2text (accessed November 22, 2021).
Herklotz V., Ritz C. M. (2014). Spontane hybridisierung von hundsrosen (Rosa L. sect. Caninae (DC). Ser.) an einem natürlichen vorkommen in der oberlausitz (Sachsen, Deutschland). Peckiana 9 119–131.
Herklotz V., Ritz C. M. (2017). Multiple and asymmetrical origin of polyploid dog rose hybrids (Rosa L. sect. Caninae (DC.) Ser.) involving unreduced gametes. Ann. Bot. 120, 209–220. 10.1093/aob/mcw217 PubMed DOI PMC
Herklotz V., Kovařík A., Lunerová J., Lippitsch S., Groth M., Ritz C. M. (2018). The fate of ribosomal RNA genes in spontaneous polyploid dogrose hybrids [Rosa L. sect. Caninae (DC.) Ser.] exhibiting non-symmetrical meiosis. Plant J. 94 77–90. 10.1111/tpj.13843 PubMed DOI
Herklotz V., Mieder N., Ritz C. M. (2017). Cytological, genetic and morphological variation in mixed stands of dogroses (Rosa section Caninae; Rosaceae) in Germany with a focus on the hybridogenic R. micrantha. Bot. J. Linn. Soc. 184 254–271. 10.1093/botlinnean/box025 DOI
Huang J., Liu Y., Zhu T., Yang Z. (2021). The asymptotic behavior of bootstrap support values in molecular phylogenetics. Syst. Biol. 70 774–785. 10.1093/sysbio/syaa100 PubMed DOI
Jürgens A. H., Seitz B., Kowarik I. (2011). Genetic differentiation of three endangered wild roses in northeastern Germany: Rosa inodora Fries, Rosa sherardii Davies and Rosa subcollina (H. Christ) Keller. Plant Biol. 13 524–533. 10.1111/j.1438-8677.2010.00406.x PubMed DOI
Kamneva O. K., Syring J., Liston A., Rosenberg N. A. (2017). Evaluating allopolyploid origins in strawberries (Fragaria) using haplotypes generated from target capture sequencing. BMC Evol. Biol. 17:180. 10.1186/s12862-017-1019-7 PubMed DOI PMC
Kovařík A., Matyášek R., Lim K. Y., Skalická K., Koukalová B., Knapp S., et al. (2004). Concerted evolution of 18-5.8-26S rDNA repeats in Nicotiana allotetraploids. Biol. J. Linn. Soc. 82 615–625. 10.1111/j.1095-8312.2004.00345.x DOI
Kumar S., Stecher G., Li M., Knyaz C., Tamura K. (2018). MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35 1547–1549. 10.1093/molbev/msy096 PubMed DOI PMC
Leitch A. R., Leitch I. J. (2008). Genomic plasticity and the diversity of polyploid plants. Science 320 481–483. 10.1126/science.1153585 PubMed DOI
Lim K. Y., Werlemark G., Matyášek R., Bringloe J. B., Sieber V., El Mokadem H., et al. (2005). Evolutionary implications of permanent odd polyploidy in the stable sexual, pentaploid of Rosa canina L. Heredity (Edinb) 94 501–506. 10.1038/sj.hdy.6800648 PubMed DOI
Lin J., Davis T. M. (2000). S1 analysis of long PCR heteroduplexes: detection of chloroplast indel polymorphisms in Fragaria. Theor. Appl. Genet. 101 415–420. 10.1007/s001220051498 DOI
Liston A., Cronn R., Ashman T.-L. (2014). Fragaria: a genus with deep historical roots and ripe for evolutionary and ecological insights. Am. J. Bot. 101 1686–1699. 10.3732/ajb.1400140 PubMed DOI
Liu B., Davis T. M. (2011). Conservation and loss of ribosomal RNA gene sites in diploid and polyploid Fragaria (Rosaceae). BMC Plant Biol. 11:157. 10.1186/1471-2229-11-157 PubMed DOI PMC
Lo E. Y. Y., Donoghue M. J. (2012). Expanded phylogenetic and dating analyses of the apples and their relatives (Pyreae, Rosaceae). Mol. Phylogenet. Evol. 63 230–243. 10.1016/J.YMPEV.2011.10.005 PubMed DOI
Lunerová J., Herklotz V., Laudien M., Vozárová R., Groth M., Kovařík A., et al. (2020). Asymmetrical canina meiosis is accompanied by the expansion of a pericentromeric satellite in non-recombining univalent chromosomes in the genus Rosa. Ann. Bot. 125 1025–1038. 10.1093/aob/mcaa028 PubMed DOI PMC
Ma Y., Islam-Faridi M. N., Crane C. F., Ji Y., Stelly D. M., Price H. J., et al. (1997). In situ hybridization of ribosomal DNA to rose chromosomes. J. Hered. 88 158–161. 10.1093/oxfordjournals.jhered.a023078 DOI
Martín-Peciña M., Ruiz-Ruano F. J., Camacho J. P. M., Dodsworth S. (2019). Phylogenetic signal of genomic repeat abundances can be distorted by random homoplasy: a case study from hominid primates. Zool. J. Linn. Soc. 185 543–554. 10.1093/zoolinnean/zly077 DOI
Matsumoto S., Kouchi M., Fukui H., Ueda Y. (2000). Phylogenetic analyses of the subgenus Eurosa using the its nrDNA sequence. Acta Hortic. Int. Soc. Hortic. Sci. 521 193–202. 10.17660/ActaHortic.2000.521.21 DOI
Mlinarec J., Šatović Z., Malenica N., Ivančić-Baće I., Besendorfer V. (2012). Evolution of the tetraploid Anemone multifida (2n = 32) and hexaploid A. baldensis (2n = 48) (Ranunculaceae) was accompanied by rDNA loci loss and intergenomic translocation: evidence for their common genome origin. Ann. Bot. 110 703–712. 10.1093/aob/mcs128 PubMed DOI PMC
Nabhan A. R., Sarkar I. N. (2012). The impact of taxon sampling on phylogenetic inference: a review of two decades of controversy. Brief. Bioinform. 13 122–134. 10.1093/bib/bbr014 PubMed DOI PMC
Negm S., Greenberg A., Larracuente A. M., Sproul J. S. (2020). RepeatProfiler: a pipeline for visualization and comparative analysis of repetitive DNA profiles. Mol. Ecol. Resour. 21 969–981. 10.1111/1755-0998.13305 PubMed DOI PMC
Njuguna W., Liston A., Cronn R., Ashman T. L., Bassil N. (2013). Insights into phylogeny, sex function and age of Fragaria based on whole chloroplast genome sequencing. Mol. Phylogenet. Evol. 66 17–29. 10.1016/j.ympev.2012.08.026 PubMed DOI
Novák P. (2019). bitbucket/RepeatExplorer2 with TAREAN (Tandem Repeat Analyzer)/ create_annotation.R. Available online at: https://bitbucket.org/petrnovak/repex_tarean/src/devel/lib/create_annotation.R (accessed October 12, 2021).
Novák P., Neumann P., Macas J. (2010). Graph-based clustering and characterization of repetitive sequences in next-generation sequencing data. BMC Bioinformatics 11:378. 10.1186/1471-2105-11-378 PubMed DOI PMC
Novák P., Neumann P., Macas J. (2020). Global analysis of repetitive DNA from unassembled sequence reads using RepeatExplorer2. Nat. Protoc. 15 3745–3776. 10.1038/s41596-020-0400-y PubMed DOI
Novák P., Neumann P., Pech J., Steinhaisl J., Macas J. (2013). RepeatExplorer: a Galaxy-based web server for genome-wide characterization of eukaryotic repetitive elements from next-generation sequence reads. Bioinformatics 29 792–793. 10.1093/bioinformatics/btt054 PubMed DOI
Nybom H., Carlson-Nilsson U., Werlemark G., Uggla M. (1997). Different levels of morphometric variation in three heterogamous dogrose species (Rosa sect. Caninae, Rosaceae). Plant Syst. Evol. 204 207–224. 10.1007/BF00989206 DOI
Oksanen J., Blanchet F. G., Kindt R., Legendre P., Minchin P. R., O’Hara R. B., et al. (2020). vegan: Community Ecology Package. R package version, 2.5-7. Available online at: https://CRAN.R-project.org/package=vegan
Olbricht K., Kallweit L., Mannicke F., Drewes-Alvarez R., Vogt R. (2014). The Fragaria herbarium of Professor Günter Staudt. Acta Hortic. 1049 305–308. 10.17660/ActaHortic.2014.1049.40 DOI
Paradis E., Schliep K. (2019). ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35 526–528. 10.1093/bioinformatics/bty633 PubMed DOI
Parisod C., Senerchia N. (2012). Responses of transposable elements to polyploidy. Top. Curr. Genet. 24 147–168. 10.1007/978-3-642-31842-9_9 DOI
Poczai P., Hyvönen J. (2010). Nuclear ribosomal spacer regions in plant phylogenetics: problems and prospects. Mol. Biol. Rep. 37 1897–1912. 10.1007/s11033-009-9630-3 PubMed DOI
Potter D., Eriksson T., Evans R. C., Oh S., Smedmark J. E. E., Morgan D. R., et al. (2007). Phylogeny and classification of Rosaceae. Plant Syst. Evol. 266 5–43. 10.1007/s00606-007-0539-9 DOI
R Core Team (2020). R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing.
Raskina O., Barber J. C., Nevo E., Belyayev A. (2008). Repetitive DNA and chromosomal rearrangements: speciation-related events in plant genomes. Cytogenet. Genome Res. 120 351–357. 10.1159/000121084 PubMed DOI
Raymond O., Gouzy J., Just J., Badouin H., Verdenaud M., Lemainque A., et al. (2018). The Rosa genome provides new insights into the domestication of modern roses. Nat. Genet. 50 772–777. 10.1038/s41588-018-0110-3 PubMed DOI PMC
Ritz C. M., Wissemann V. (2011). Microsatellite analyses of artificial and spontaneous dogrose hybrids reveal the hybridogenic origin of Rosa micrantha by the contribution of unreduced gametes. J. Hered. 102 217–227. 10.1093/jhered/esq124 PubMed DOI
Ritz C. M., Schmuths H., Wissemann V. (2005). Evolution by reticulation: European dogroses originated by multiple hybridization across the genus Rosa. J. Hered. 96 4–14. 10.1093/jhered/esi011 PubMed DOI
Rousseau-Gueutin M., Gaston A., Aïnouche A., Aïnouche M. L., Olbricht K., Staudt G., et al. (2009). Tracking the evolutionary history of polyploidy in Fragaria L. (strawberry): new insights from phylogenetic analyses of low-copy nuclear genes. Mol. Phylogenet. Evol. 51 515–530. 10.1016/j.ympev.2008.12.024 PubMed DOI
RStudio Team (2021). RStudio: Integrated Development Environment for R. Boston, MA: RStudio, PBC.
Schliep K., Potts A. J., Morrison D. A., Grimm G. W. (2017). Intertwining phylogenetic trees and networks. Methods Ecol. Evol. 8 1212–1220. 10.1111/2041-210X.12760 DOI
Schwarzacher T., Heslop-Harrison P. (2000). Practical in Situ Hybridization. Pract. Situ Hybridization. Oxford: BIOS Scientific Publishers Ltd.
Staudt G. (1959). “Cytotaxonomy and phylogenetic relationships in the genus Fragaria,” in Proceedings of the Ninth International Botanical Congress, Montréal, QC, 377.
Staudt G. D., Davis T. M., Gerstberger P. (2003). Fragaria bifera Duch.: origin and taxonomy. Bot. Jahrb. Syst. Pflanzengesch. Pflanzengeogr. 125 53–72. 10.1127/0006-8152/2003/0125-0053 DOI
Stevens P. F. (2001). Angiosperm Phylogeny Website. Version 14, July 2017. Available online at: http://www.mobot.org/MOBOT/research/APweb/ (accessed August 20, 2021).
Sun J., Shi S., Li J., Yu J., Wang L., Yang X., et al. (2018). Phylogeny of Maleae (Rosaceae) Based on multiple chloroplast regions: implications to genera circumscription. Biomed Res. Int. 2018:7627191. 10.1155/2018/7627191 PubMed DOI PMC
Täckholm G. (1922). Zytologische Studien über die Gattung Rosa. Acta Horti Bergiani, Vol. 9 Uppsala: Almqvist & Wiksells boktr, 97–381
Tushabe D. (2019). Population Genetics of the Woodland Strawberry (Fragaria vesca L.; Rosaceae) in Germany and Adjacent Areas in the Czech Republic. Dresden: Technische Universität Dresden, International Institute (IHI) Zittau.
Unkrig A. (2004). html2text – an advanced HTML-to-text converter. Version 1.3.2a, GMRS Software GmbH, Unterschleissheim.
Venner S., Feschotte C., Biémont C. (2009). Dynamics of transposable elements: towards a community ecology of the genome. Trends Genet. 25 317–323. 10.1016/j.tig.2009.05.003 PubMed DOI PMC
Vicient C. M., Casacuberta J. M. (2017). Impact of transposable elements on polyploid plant genomes. Ann. Bot. 120 195–207. 10.1093/aob/mcx078 PubMed DOI PMC
Vitales D., Garcia S., Dodsworth S. (2020). Reconstructing phylogenetic relationships based on repeat sequence similarities. Mol. Phylogenet. Evol. 147:106766. 10.1016/j.ympev.2020.106766 PubMed DOI
Vozárová R., Herklotz V., Kovařík A., Tynkevich Y. O., Volkov R. A., Ritz C. M., et al. (2021). ancient origin of two 5S rDNA families dominating in the genus Rosa and their behavior in the Canina-type meiosis. Front. Plant Sci. 12:643548. 10.3389/fpls.2021.643548 PubMed DOI PMC
Wallau G. L., Vieira C., Loreto ÉL. S. (2018). Genetic exchange in eukaryotes through horizontal transfer: connected by the mobilome. Mob. DNA 9 1–16. 10.1186/s13100-018-0112-9 PubMed DOI PMC
Weitemier K., Straub S. C. K., Fishbein M., Liston A. (2015). Intragenomic polymorphisms among high-copy loci: a genus-wide study of nuclear ribosomal DNA in Asclepias (Apocynaceae). PeerJ 3:e718. 10.7717/peerj.718 PubMed DOI PMC
Wendel J. F., Jackson S. A., Meyers B. C., Wing R. A. (2016). Evolution of plant genome architecture. Genome Biol. 17:37. 10.1186/s13059-016-0908-1 PubMed DOI PMC
Werlemark G., Nybom H., Olsson A., Uggla M. (2000). Variation and inheritance in hemisexual dogroses, Rosa section Caninae. Biotechnol. Biotechnol. Equip. 14 28–31. 10.1080/13102818.2000.10819083 DOI
Wickham H. (2016). ggplot2: Elegant Graphics for Data Analysis. New York, NY: Springer-Verlag.
Wissemann V. (1999). Genetic constitution of Rosa sect. Caninae (R. canina, R. jundzilli) and sect. Gallicanae (R. gallica). Angew. Bot. 73 191–196.
Wissemann V. (2000). Molekulargenetische und morphologisch-anatomische Untersuchungen zur Evolution und Genomzusammensetzung von Wildrosen der Sektion Caninae (DC.), Ser. Bot. Jahrb. Syst. 122 347–429.
Wissemann V. (2002). Molecular evidence for allopolyploid origin of the Rosa canina -complex (Rosaceae, Rosoideae). J. Appl. Bot. 76 176–178.
Wissemann V. (2003). “Hybridization and the evolution of the nrITS spacerregion,” in Plant Genome, Biodiversity and Evolution, Part A: Phanerogams, Vol. 1 eds Sharma A. K., Sharma A. (Enfield, NH: Science Publishers Inc.), 57–71.
Wissemann V., Hellwig F. H. (1997). Reproduction and hybridisation in the Genus Rosa, section caninae (Ser.) Rehd. Bot. Acta 110 251–256. 10.1111/j.1438-8677.1997.tb00637.x DOI
Wissemann V., Ritz C. M. (2005). The genus Rosa (Rosoideae, Rosaceae) revisited: molecular analysis of nrITS-1 and atpB-rbcL intergenic spacer (IGS) versus conventional taxonomy. Bot. J. Linn. Soc. 147 275–290. 10.1111/j.1095-8339.2005.00368.x DOI
Wu S., Ueda Y., Nishihara S., Matsumoto S. (2001). Phylogenetic analysis of Japanese Rosa species using DNA sequences of nuclear ribosomal internal transcribed spacers (ITS). J. Hortic. Sci. Biotechnol. 76 127–132. 10.1080/14620316.2001.11511338 DOI
Xiang Y., Huang C.-H., Hu Y., Wen J., Li S., Yi T., et al. (2016). Evolution of Rosaceae fruit types based on nuclear phylogeny in the context of geological times and genome duplication. Mol. Biol. Evol. 34 262–281. 10.1093/molbev/msw242 PubMed DOI PMC
Yang Y., Davis T. M. (2017). a new perspective on polyploid Fragaria (strawberry) genome composition based on large-scale, multi-locus phylogenetic analysis. Genome Biol. Evol. 9 3433–3448. 10.1093/gbe/evx214 PubMed DOI PMC
Yu G., Chen Y., Guo Y. (2009). Design of integrated system for heterogeneous network query terminal. J. Comput. Appl. 29 2191–2193. 10.3724/sp.j.1087.2009.02191 DOI
Zhang S.-D., Jin J.-J., Chen S.-Y., Chase M. W., Soltis D. E., Li H.-T., et al. (2017). Diversification of Rosaceae since the Late Cretaceous based on plastid phylogenomics. New Phytol. 214 1355–1367. 10.1111/nph.14461 PubMed DOI