Analysis of 5S rDNA Genomic Organization Through the RepeatExplorer2 Pipeline: A Simplified Protocol

Jazyk angličtina Země Spojené státy americké Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37335496

The ribosomal RNA genes (rDNA) are universal genome components with a housekeeping function, given the crucial role of ribosomal RNA in the synthesis of ribosomes and thus for life-on-Earth. Therefore, their genomic organization is of considerable interest for biologists, in general. Ribosomal RNA genes have also been largely used to establish phylogenetic relationships, and to identify allopolyploid or homoploid hybridization.Here, we demonstrate how high-throughput sequencing data, through graph clustering implemented in RepeatExplorer2 pipeline ( https://repeatexplorer-elixir.cerit-sc.cz/galaxy/ ), can be helpful to decipher the genomic organization of 5S rRNA genes. We show that the linear shapes of cluster graphs are reminiscent to the linked organization of 5S and 35S rDNA (L-type arrangement) while the circular graphs correspond to their separate arrangement (S-type). We further present a simplified protocol based on the paper by (Garcia et al., Front Plant Sci 11:41, 2020) about the use of graph clustering of 5S rDNA homoeologs (S-type) to identify hybridization events in the species history. We found that the graph complexity (i.e., graph circularity in this case) is related to ploidy and genome complexity, with diploids typically showing circular-shaped graphs while allopolyploids and other interspecific hybrids display more complex graphs, with usually two or more interconnected loops representing intergenic spacers. When a three-genomic comparative clustering analysis from a given hybrid (homoploid/allopolyploid) and its putative progenitor species (diploids) is performed, it is possible to identify the corresponding homoeologous 5S rRNA gene families, and to elucidate the contribution of each putative parental genome to the 5S rDNA pool of the hybrid. Thus, the analysis of 5S rDNA cluster graphs by RepeatExplorer, together with information coming from other sources (e.g., morphology, cytogenetics) is a complementary approach for the determination of allopolyploid or homoploid hybridization and even ancient introgression events.

Zobrazit více v PubMed

Van De Peer Y, Mizrachi E, Marchal K (2017) The evolutionary significance of polyploidy. Nat Rev Genet 18(7):411–424 PubMed DOI

Feliner GN, Casacuberta J, Wendel JF (2020) Genomics of evolutionary novelty in hybrids and polyploids. Front Genet 11:792 DOI

Pedrosa-Harand A, de Almeida CCS, Mosiolek M, Blair M, Schweizer D, Guerra M (2006) Extensive ribosomal DNA amplification during Andean common bean (Phaseolus vulgaris L.) evolution. Theor Appl Genet 112(5):924–933 PubMed DOI

Mason AS, Wendel JF (2020) Homoelogous exchanges, segmental allopolyploidy, and polyploid genome evolution. Front Genet 11:1014 PubMed DOI PMC

Fehrer J, Slavikova R, Pastova L, Josefiova J, Mraz P, Chrtek J et al (2021) Molecular evolution and organization of ribosomal DNA in the Hawkweed Tribe (Cichorieae, Asteraceae). Front Plant Sci 12:647375 PubMed DOI PMC

Eilam T, Anikster Y, Millet E, Manisterski J, Feldman M (2008) Nuclear DNA amount and genome downsizing in natural and synthetic allopolyploids of the genera Aegilops and Triticum. Genome 51(8):616–627 PubMed DOI

Leitch IJ, Hanson L, Lim KY, Kovarik A, Chase MW, Clarkson JJ et al (2008) The ups and downs of genome size evolution in polyploid species of Nicotiana (Solanaceae). Ann Bot 101(6):805–814 PubMed DOI PMC

Rieseberg LH, Ellstrand NC, Arnold M (1993) What can molecular and morphological markers tell us about plant hybridization? Crc Cr Rev Plant Sci 12(3):213–241

Twyford AD, Ennos RA (2012) Next-generation hybridization and introgression. Heredity 108(3):179–189 PubMed DOI

Alvarez I, Wendel JW (2003) Ribosomal ITS sequences and plant phylogenetic inference. Mol Phylogenet Evol 29:417–434 PubMed DOI

Feliner GN, Rosello JA (2007) Better the devil you know? Guidelines for insightful utilization of nrDNA ITS in species-level evolutionary studies in plants. Mol Phylogenet Evol 44(2):911–919 DOI

Poczai P, Hyvonen J (2010) Nuclear ribosomal spacer regions in plant phylogenetics: problems and prospects. Mol Biol Rep 37(4):1897–1912 PubMed DOI

Cronn RC, Zhao X, Paterson AH, Wendel JF (1996) Polymorphism and concerted evolution in a tandemly repeated gene family: 5S ribosomal DNA in diploid and allopolyploid cottons. J Mol Evol 42(6):685–705 PubMed DOI

Volkov RA, Zanke C, Panchuk II, Hemleben V (2001) Molecular evolution of 5S rDNA of Solanum species (sect. Petota) application for molecular phylogeny and breeding. Theor Appl Genet 103(8):1273–1282 DOI

Jang TS, McCann J, Parker JS, Takayama K, Hong SP, Schneeweiss GM et al (2016) rDNA loci evolution in the genus Glechoma (Lamiaceae). PLoS One 11(11):e0167177 PubMed DOI PMC

Volkov RA, Panchuk II, Borisjuk NV, Hosiawa-Baranska M, Maluszynska J, Hemleben V (2017) Evolution dynamics of 45S and 5S ribosomal DNA in ancient allohexaploid Atropa belladonna. BMC Plant Biol 17(1):21 PubMed DOI PMC

Alexandrov OS, Razumova OV, Karlov GI (2021) A comparative study of 5S rDNA non-transcribed spacers in Elaeagnaceae species. Plants (Basel) 10(1):11

Cardoni S, Piredda R, Denk T, Grimm GW, Papageorgiou AC, Schulze ED et al (2022) 5S-IGS rDNA in wind-pollinated trees (Fagus L.) encapsulates 55 million years of reticulate evolution and hybrid origins of modern species. Plant J 109(4):909–926 PubMed DOI

Piredda R, Grimm GW, Schulze ED, Denk T, Simeone MC (2021) High-throughput sequencing of 5S-IGS in oaks: exploring intragenomic variation and algorithms to recognize target species in pure and mixed samples. Mol Ecol Resour 21(2):495–510 PubMed DOI

Volkov RA, Komarova NY, Hemleben V (2007) Ribosomal DNA in plant hybrids: inheritance, rearrangement, expression. Syst Biodivers 5(3):261–276 DOI

Wendel JF, Schnabel A, Seelanan T (1995) Bidirectional interlocus concerted evolution following allopolyploid speciation in cotton (Gossypium). Proc Natl Acad Sci U S A 92(1):280–284 PubMed DOI PMC

Fulnecek J, Lim KY, Leitch AR, Kovarik A, Matyasek R (2002) Evolution and structure of 5S rDNA loci in allotetraploid Nicotiana tabacum and its putative parental species. Heredity 88(1):19–25 PubMed DOI

Weiss-Schneeweiss H, Tremetsberg K, Schneeweis GM, Parker JS, Stuessy TF (2008) Karyoptype diversification and evolution in diploid and polyploid South American Hypochaeris (Asteraceae) inferred from rDNA localization and genetic fingerprint data. Ann Bot 101(7):909–918 PubMed DOI PMC

Vozarova R, Herklotz V, Kovarik A, Tynkevich YO, Volkov RA, Ritz CM et al (2021) Ancient origin of two 5S rDNA families dominating in the genus Rosa and their behavior in the Canina-type meiosis. Front Plant Sci 12:643548 PubMed DOI PMC

Novak P, Neumann P, Pech J, Steinhaisl J, Macas J (2013) RepeatExplorer: a galaxy-based web server for genome-wide characterization of eukaryotic repetitive elements from next-generation sequence reads. Bioinformatics 29(6):792–793 PubMed DOI

Novak P, Robledillo LA, Koblizkova A, Vrbobova I, Neumann P, Macas J (2017) TAREAN: a computational tool for identification and characterization of satellite DNA from unassembled short reads. Nucleic Acids Res 45(12):e111 PubMed DOI PMC

Garcia S, Wendel JF, Borowska-Zuchowska N, Ainouche M, Kuderova A, Kovarik A (2020) The utility of graph clustering of 5S ribosomal DNA homoeologs in plant allopolyploids, homoploid hybrids and cryptic introgressants. Front Plant Sci 11:41 PubMed DOI PMC

Ellis TH, Lee D, Thomas CM, Simpson PR, Cleary WG, Newman MA et al (1988) 5S rRNA genes in Pisum: sequence, long range and chromosomal organization. Mol Gen Genet 214(2):333–342 PubMed DOI

Scoles CJ, Gill BSZ, Xin Y, Clarke BC, McIntyre CL, Chapman C et al (1988) Frequent duplication and deletion events in the 5S RNA genes and the associated spacer regions of the Triticeae. Plant Syst Evol 160:105–122 DOI

Gottlobmchugh SG, Levesque M, Mackenzie K, Olson M, Yarosh O, Johnson DA (1990) Organization of the 5S ribosomal-RNA genes in the soybean Glycine max (L.) merill and conservation of the 5S rDNA repeat structure in higher-plants. Genome 33(4):486–494 PubMed DOI

Schmidt T, Schwarzacher T, Heslopharrison JS (1994) Physical mapping of ribosomal-RNA genes by fluorescent in-situ hybridization and structural-analysis of 5S ribosomal-RNA genes and interfenic spacer sequences in sugar beet (Beta vulgaris). Theor Appl Genet 88(6–7):629–636 PubMed DOI

Capesius I (1997) Analysis of the ribosomal RNA gene repeat from the moss Funaria hygrometrica. Plant Mol Biol 33(3):559–564 PubMed DOI

Kawai H, Nakayama T, Inouye I, Kato A (1997) Linkage of 5S ribosomal DNA to other rDNAs in the chromophytic algae and related taxa. J Phycol 33(3):505–511 DOI

Sone T, Fujisawa M, Takenaka M, Nakagawa S, Yamaoka S, Sakaida M et al (1999) Bryophyte 5S rDNA was inserted into 45S rDNA repeat units after the divergence from higher land plants. Plant Mol Biol 41(5):679–685 PubMed DOI

Wicke S, Costa A, Muñoz J, Quandt D (2011) Restless 5S: the rearrangement(s) and evolution of the nuclear ribosomal DNA in land plants. Mol Phylogenet Evol 61(2):321–332 PubMed DOI

Matyasek R, Krumpolcova A, Lunerova J, Mikulaskova E, Rosello JA, Kovarik A (2019) Unique epigenetic features of ribosomal RNA genes (rDNA) in early diverging plant (Bryophytes). Front Plant Sci 10:3389 DOI

Sousa A, Bechteler J, Temsch EM, Renner SS (2020) Different from tracheophytes, liverworts commonly have mixed 35S and 5S arrays. Ann Bot 125(7):1057–1064 PubMed DOI PMC

Garcia S, Lim KY, Chester M, Garnatje T, Pellicer J, Valles J et al (2009) Linkage of 35S and 5S rRNA genes in Artemisia (family Asteraceae): first evidence from angiosperms. Chromosoma 118(1):85–97 PubMed DOI

Garcia S, Panero JL, Siroky J, Kovarik A (2010) Repeated reunions and splits feature the highly dynamic evolution of 5S and 35S ribosomal RNA genes (rDNA) in the Asteraceae family. BMC Plant Biol 10:176 PubMed DOI PMC

Mazzella C, Rodriguez M, Vaio M, Gaiero P, López-Carro B, Santinaque FF et al (2010) Karyological features of Achyrocline (Asteraceae, Gnaphalieae): stable karyotypes, low DNA content variation and linkage of rRNA genes. Cytogenet Genome Res 128:169–176 PubMed DOI

Galian JA, Rosato M, Rosello JA (2012) Early evolutionary colonization of the nuclear ribosomal 5S and 45S gene families in seed plants: evidence from the living fossil gymnosperm Ginkgo biloba. Heredity 108(6):640–646 PubMed DOI PMC

Garcia S, Kovarik A, Leitch AR, Garnatje T (2017) Cytogenetic features of rRNA genes across land plants: analysis of the Plant rDNA database. Plant J 89(5):1020–1030 PubMed DOI

Röser M, Winterfeld G, Grebenstein B, Hemleben V (2001) Molecular diversity and physical mapping of 5S rDNA in wild, and cultivated oat grasses (Poaceae: Aveneae). Mol Phylogenet Evol 21(2):198–217 PubMed DOI

Garcia S, Kovarik A (2013) Dancing together and separate again: gymnosperms exhibit frequent changes of fundamental 5S and 35S rRNA gene (rDNA) organisation. Heredity 111(1):23–33 PubMed DOI PMC

Wang W, Wan T, Becher H, Kuderova A, Leitch IJ, Garcia S et al (2019) Remarkable variation of ribosomal DNA organization and copy number in gnetophytes: a distinct lineage of gymnosperms. Ann Bot 123(5):767–781 PubMed DOI

Heitkam T, Petrasch S, Zakrzewski F, Kogler A, Wenke T, Wanke S et al (2015) Next-generation sequencing reveals differentially amplified tandem repeats as a major genome component of Northern Europe’s oldest Camellia japonica. Chromosom Res 23(4):791–806 DOI

Novak P, Neumann P, Macas J (2020) Global analysis of repetitive DNA from unassembled sequence reads using RepeatExplorer2. Nat Protoc 15:3745–3776 PubMed DOI

Vitales D, Garcia S, Dodsworth S (2020) Reconstructing phylogenetic relationships based on repeat sequences similarities. Mol Phylogenet Evol 147:106766 PubMed DOI

Herklotz V, Kovarik A, Wissemann V, Lunerova J, Vozarova R, Buschmann S et al (2021) Power and weakness of repetition – evaluating the phylogenetic signal from repeatomes in the family Rosaceae with two case studies from genera Prone to polyploidy and hybridization (Rosa and Fragaria). Front Plant Sci 12:738119 PubMed DOI PMC

Wang WC, Ma L, Becher H, Garcia S, Kovarikova A, Leitch IJ et al (2016) Astonishing 35S rDNA diversity in the gymnosperm species Cycas revolutiva Thunb. Chromosoma 125(4):683–699 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...