Introgression
Dotaz
Zobrazit nápovědu
How animals, particularly livestock, adapt to various climates and environments over short evolutionary time is of fundamental biological interest. Further, understanding the genetic mechanisms of adaptation in indigenous livestock populations is important for designing appropriate breeding programs to cope with the impacts of changing climate. Here, we conducted a comprehensive genomic analysis of diversity, interspecies introgression, and climate-mediated selective signatures in a global sample of sheep and their wild relatives. By examining 600K and 50K genome-wide single nucleotide polymorphism data from 3,447 samples representing 111 domestic sheep populations and 403 samples from all their seven wild relatives (argali, Asiatic mouflon, European mouflon, urial, snow sheep, bighorn, and thinhorn sheep), coupled with 88 whole-genome sequences, we detected clear signals of common introgression from wild relatives into sympatric domestic populations, thereby increasing their genomic diversities. The introgressions provided beneficial genetic variants in native populations, which were significantly associated with local climatic adaptation. We observed common introgression signals of alleles in olfactory-related genes (e.g., ADCY3 and TRPV1) and the PADI gene family including in particular PADI2, which is associated with antibacterial innate immunity. Further analyses of whole-genome sequences showed that the introgressed alleles in a specific region of PADI2 (chr2: 248,302,667-248,306,614) correlate with resistance to pneumonia. We conclude that wild introgression enhanced climatic adaptation and resistance to pneumonia in sheep. This has enabled them to adapt to varying climatic and environmental conditions after domestication.
- MeSH
- biologická adaptace genetika MeSH
- biologická evoluce MeSH
- fylogeografie MeSH
- genetická variace MeSH
- genová introgrese * MeSH
- klimatické změny MeSH
- odolnost vůči nemocem genetika MeSH
- ovce genetika imunologie MeSH
- pneumonie imunologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- srovnávací studie MeSH
Gene flow between species in the genus Arabidopsis occurs in significant amounts, but how exactly gene flow is achieved is not well understood. Polyploidization may be one avenue to explain gene flow between species. One problem, however, with polyploidization as a satisfying explanation is the occurrence of lethal genomic instabilities in neopolyploids as a result of genomic exchange, erratic meiotic behavior, and genomic shock. We have created an autoallohexaploid by pollinating naturally co-occurring diploid Arabidopsis thaliana with allotetraploid Arabidopsis suecica (an allotetraploid composed of A. thaliana and Arabidopsis arenosa). Its triploid offspring underwent spontaneous genome duplication and was used to generate a multigenerational pedigree. Using genome resequencing, we show that 2 major mechanisms promote stable genomic exchange in this population. Legitimate meiotic recombination and chromosome segregation between the autopolyploid chromosomes of the 2 A. thaliana genomes occur without any obvious bias for the parental origin and combine the A. thaliana haplotypes from the A. thaliana parent with the A. thaliana haplotypes from A. suecica similar to purely autopolyploid plants. In addition, we repeatedly observed that occasional exchanges between regions of the homoeologous chromosomes are tolerated. The combination of these mechanisms may result in gene flow leading to stable introgression in natural populations. Unlike the previously reported resynthesized neoallotetraploid A. suecica, this population of autoallohexaploids contains mostly vigorous, and genetically, cytotypically, and phenotypically variable individuals. We propose that naturally formed autoallohexaploid populations might serve as an intermediate bridge between diploid and polyploid species, which can facilitate gene flow rapidly and efficiently.
KEY MESSAGE: Lr76 and Yr70 have been fine mapped using the sequence of flow-sorted recombinant 5D chromosome from wheat-Ae. umbellulata introgression line. The alien introgression has been delineated to 9.47-Mb region on short arm of wheat chromosome 5D. Leaf rust and stripe rust are among the most damaging diseases of wheat worldwide. Wheat cultivation based on limited number of rust resistance genes deployed over vast areas expedites the emergence of new pathotypes warranting a continuous deployment of new resistance genes. In this paper, fine mapping of Aegilops umbellulata-derived leaf rust and stripe rust resistance genes Lr76 and Yr70 is being reported. We flow sorted and paired-end sequenced 5U chromosome of Ae. umbellulata, recombinant chromosome 5D (5DIL) from wheat-Ae. umbellulata introgression line pau16057 and 5DRP of recurrent parent WL711. Chromosome 5U reads were mapped against the reference Chinese Spring chromosome 5D sequence, and alien-specific SNPs were identified. Chromosome 5DIL and 5DRP sequences were de novo assembled, and alien introgression-specific markers were designed by selecting 5U- and 5D-specific SNPs. Overall, 27 KASP markers were mapped in high-resolution population consisting of 1404 F5 RILs. The mapping population segregated for single gene each for leaf rust and stripe rust resistance. The physical order of the SNPs in pau16057 was defined by projecting the 27 SNPs against the IWGSC RefSeq v1.0 sequence. Based on this physical map, the size of Ae. umbellulata introgression was determined to be 9.47 Mb on the distal most end of the short arm of chromosome 5D. This non-recombining alien segment carries six NB-LRR encoding genes based on NLR annotation of assembled chromosome 5DIL sequence and IWGSC RefSeq v1.1 gene models. The presence of SNPs and other sequence variations in these genes between pau16057 and WL711 suggested that they are candidates for Lr76 and Yr70.
- MeSH
- Aegilops genetika MeSH
- Basidiomycota růst a vývoj patogenita MeSH
- chromozomy rostlin MeSH
- fenotyp MeSH
- genetické markery MeSH
- genová introgrese MeSH
- jednonukleotidový polymorfismus MeSH
- listy rostlin genetika mikrobiologie MeSH
- mapování chromozomů MeSH
- nemoci rostlin genetika mikrobiologie MeSH
- odolnost vůči nemocem genetika MeSH
- pšenice genetika mikrobiologie MeSH
- rekombinace genetická MeSH
- rostlinné geny MeSH
- šlechtění rostlin MeSH
- telomery genetika MeSH
- vysoce účinné nukleotidové sekvenování MeSH
- Publikační typ
- časopisecké články MeSH
Multilocus hybrid zone (HZ) studies predate genomics by decades. The power of early methods is becoming apparent and now large datasets are commonplace. Relating introgression along a chromosome to evolutionary process is challenging: although reduced introgression regions may indicate speciation genes, this pattern may be obscured by asymmetric introgression of linked invasive genes. Further, HZ movement may form salients and leave islands in its wake. Barton's concordance was proposed 24 years ago for assessing introgression where geographic patterns are complex. The geographic axis of introgression is replaced with the hybrid index. We compare this, a recently proposed genomic clines approach, and two-dimensional (2D) geographic analyses, for 24 X chromosome loci of 2873 mice from the central-European house mouse HZ. In 2D, 14 loci show linear contact, seven precisely matching previous studies. Four show introgression islands to the east of the zone, suggesting past westward zone movement, two show westward salients. Barton's concordance both recovers and refines this information. A region of reduced introgression on the central X is supported, despite X centromere-proximal male-biased westward introgression matching a westward 2D geographic salient. Genomic clines results are consistent regarding introgression asymmetries, but otherwise more difficult to interpret. Evidence for genetic conflict is discussed.
- MeSH
- chromozom X genetika MeSH
- druhová specificita MeSH
- genetická variace MeSH
- hybridizace genetická MeSH
- myši genetika MeSH
- populační genetika MeSH
- rozmnožování MeSH
- savčí chromozomy genetika MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- myši genetika MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- hodnotící studie MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Česká republika MeSH
- Německo MeSH
The capacity of the bread wheat (Triticum aestivum) genome to tolerate introgression from related genomes can be exploited for wheat improvement. A resistance to powdery mildew expressed by a derivative of the cross-bread wheat cv. Tähti × T. militinae (Tm) is known to be due to the incorporation of a Tm segment into the long arm of chromosome 4A. Here, a newly developed in silico method termed rearrangement identification and characterization (RICh) has been applied to characterize the introgression. A virtual gene order, assembled using the GenomeZipper approach, was obtained for the native copy of chromosome 4A; it incorporated 570 4A DArTseq markers to produce a zipper comprising 2132 loci. A comparison between the native and introgressed forms of the 4AL chromosome arm showed that the introgressed region is located at the distal part of the arm. The Tm segment, derived from chromosome 7G, harbours 131 homoeologs of the 357 genes present on the corresponding region of Chinese Spring 4AL. The estimated number of Tm genes transferred along with the disease resistance gene was 169. Characterizing the introgression's position, gene content and internal gene order should not only facilitate gene isolation, but may also be informative with respect to chromatin structure and behaviour studies.
- MeSH
- Ascomycota patogenita MeSH
- chléb MeSH
- chromozomy rostlin genetika metabolismus MeSH
- DNA rostlinná genetika MeSH
- genetické markery MeSH
- mapování chromozomů MeSH
- mikrosatelitní repetice MeSH
- nemoci rostlin genetika mikrobiologie MeSH
- odolnost vůči nemocem MeSH
- počítačová simulace MeSH
- pšenice genetika mikrobiologie MeSH
- rostlinné geny MeSH
- sekvence nukleotidů MeSH
- translokace genetická MeSH
- Publikační typ
- časopisecké články MeSH
Diploid Alnus glutinosa s. str. and autotetraploid A. rohlenae form a narrow hybrid zone in a study area in southern Serbia, which results in triploid hybrid formation. The vast majority of previous studies have been focused on studies of maternal plants, but the offspring resulting from their crossing have not been much studied. Here, we use the variability of microsatellites and chloroplast DNA between these species and their putative hybrids to create an overall picture of the development of the hybrid zone and its predicted type. To elucidate the gene transfer within both species, the origins of individual ploidies and especially the role of triploid hybrids, a germination experiment was carried out linked with a flow cytometry study of the resulting seedlings. The tension zone model seems to offer the most adequate explanation of our observations, with selection against triploid hybrids and the spatial positioning of the hybrid zone. Despite selection against them, the triploid hybrids play an important role in the exchange of genes between the two species and therefore serve as a bridge for introgression. The presence of fertile triploids is essential for enriching the haplotype diversity between these species and for the development of new genetic lineages.
Evolution has devised countless remarkable solutions to diverse challenges. Understanding the mechanistic basis of these solutions provides insights into how biological systems can be subtly tweaked without maladaptive consequences. The knowledge gained from illuminating these mechanisms is equally important to our understanding of fundamental evolutionary mechanisms as it is to our hopes of developing truly rational plant breeding and synthetic biology. In particular, modern population genomic approaches are proving very powerful in the detection of candidate alleles for mediating consequential adaptations that can be tested functionally. Especially striking are signals gained from contexts involving genetic transfers between populations, closely related species, or indeed between kingdoms. Here we discuss two major classes of these scenarios, adaptive introgression and horizontal gene flow, illustrating discoveries made across kingdoms.
Background and Aims: The genetic basis of increased rooting below the plough layer, post-anthesis in the field, of an elite wheat line (Triticum aestivum 'Shamrock') with recent introgression from wild emmer (T. dicoccoides), is investigated. Shamrock has a non-glaucous canopy phenotype mapped to the short arm of chromosome 2B (2BS), derived from the wild emmer. A secondary aim was to determine whether genetic effects found in the field could have been predicted by other assessment methods. Methods: Roots of doubled haploid (DH) lines from a winter wheat ('Shamrock' × 'Shango') population were assessed using a seedling screen in moist paper rolls, in rhizotrons to the end of tillering, and in the field post-anthesis. A linkage map was produced using single nucleotide polymorphism markers to identify quantitative trait loci (QTLs) for rooting traits. Key Results: Shamrock had greater root length density (RLD) at depth than Shango, in the field and within the rhizotrons. The DH population exhibited diversity for rooting traits within the three environments studied. QTLs were identified on chromosomes 5D, 6B and 7B, explaining variation in RLD post-anthesis in the field. Effects associated with the non-glaucous trait on RLD interacted significantly with depth in the field, and some of this interaction mapped to 2BS. The effect of genotype was strongly influenced by the method of root assessment, e.g. glaucousness expressed in the field was negatively associated with root length in the rhizotrons, but positively associated with length in the seedling screen. Conclusions: To our knowledge, this is the first study to identify QTLs for rooting at depth in field-grown wheat at mature growth stages. Within the population studied here, our results are consistent with the hypothesis that some of the variation in rooting is associated with recent introgression from wild emmer. The expression of genetic effects differed between the methods of root assessment.
Adaptive gene flow is a consequential phenomenon across all kingdoms. Although recognition is increasing, there is no study showing that bidirectional gene flow mediates adaptation at loci that manage core processes. We previously discovered concerted molecular changes among interacting members of the meiotic machinery controlling crossover number upon adaptation to whole-genome duplication (WGD) in Arabidopsis arenosa. Here we conduct a population genomic study to test the hypothesis that adaptation to WGD has been mediated by adaptive gene flow between A. arenosa and A. lyrata. We find that A. lyrata underwent WGD more recently than A. arenosa, suggesting that pre-adapted alleles have rescued nascent A. lyrata, but we also detect gene flow in the opposite direction at functionally interacting loci under the most extreme levels of selection. These data indicate that bidirectional gene flow allowed for survival after WGD, and that the merger of these species is greater than the sum of their parts.
Besides several exceptions, asexual metazoans are usually viewed as ephemeral sinks for genomes, which become 'frozen' in clonal lineages after their emergence from ancestral sexual species. Here, we investigated whether and at what rate the asexuals are able to introgress their genomes back into the parental sexual population, thus more or less importantly affecting the gene pools of sexual species. We focused on hybridogenetic hybrids of western Palaearctic water frogs (Pelophylax esculentus), which originate through hybridization between P. ridibundus and P. lessonae, but transmit only clonal ridibundus genome into their gametes. Although usually mating with P. lessonae, P. esculentus may upon mating with P. ridibundus or another hybrid produce sexually reproducing P. ridibundus offspring with the introgressed ex-clonal genome. We compared the rate of nuclear amplified fragment length polymorphism (AFLP) and mitochondrial introgression in two types of populations, that is, those where P. ridibundus occurs in isolation and those where it lives with the hybridogens. Although significant differentiation (Φpt) between sexual and clonal ridibundus genomes suggested limited gene flow between sexuals and hybridogens, a non-negligible (~5%) proportion of P. ridibundus bore introgressed mtDNA and AFLP markers. Whereas transfer of mtDNA was exclusively unidirectional, introgression of nuclear markers was bidirectional. The proportion of introgressed P. ridibundus was highest in syntopic populations with P. esculentus, proving an ongoing and site-specific interspecific genetic transfer mediated by hybridogenetic hybrids. It turns out that asexual hybrids are not just a sink for genes of sexual species, but may significantly influence the genetic architecture of their sexual counterparts.