• Je něco špatně v tomto záznamu ?

The in silico identification and characterization of a bread wheat/Triticum militinae introgression line

M. Abrouk, B. Balcárková, H. Šimková, E. Komínkova, MM. Martis, I. Jakobson, L. Timofejeva, E. Rey, J. Vrána, A. Kilian, K. Järve, J. Doležel, M. Valárik,

. 2017 ; 15 (2) : 249-256. [pub] 20160916

Jazyk angličtina Země Anglie, Velká Británie

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc17031519

The capacity of the bread wheat (Triticum aestivum) genome to tolerate introgression from related genomes can be exploited for wheat improvement. A resistance to powdery mildew expressed by a derivative of the cross-bread wheat cv. Tähti × T. militinae (Tm) is known to be due to the incorporation of a Tm segment into the long arm of chromosome 4A. Here, a newly developed in silico method termed rearrangement identification and characterization (RICh) has been applied to characterize the introgression. A virtual gene order, assembled using the GenomeZipper approach, was obtained for the native copy of chromosome 4A; it incorporated 570 4A DArTseq markers to produce a zipper comprising 2132 loci. A comparison between the native and introgressed forms of the 4AL chromosome arm showed that the introgressed region is located at the distal part of the arm. The Tm segment, derived from chromosome 7G, harbours 131 homoeologs of the 357 genes present on the corresponding region of Chinese Spring 4AL. The estimated number of Tm genes transferred along with the disease resistance gene was 169. Characterizing the introgression's position, gene content and internal gene order should not only facilitate gene isolation, but may also be informative with respect to chromatin structure and behaviour studies.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc17031519
003      
CZ-PrNML
005      
20171103101539.0
007      
ta
008      
171025s2017 enk f 000 0|eng||
009      
AR
024    7_
$a 10.1111/pbi.12610 $2 doi
035    __
$a (PubMed)27510270
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a enk
100    1_
$a Abrouk, Michael $u Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic. $7 gn_A_00000848
245    14
$a The in silico identification and characterization of a bread wheat/Triticum militinae introgression line / $c M. Abrouk, B. Balcárková, H. Šimková, E. Komínkova, MM. Martis, I. Jakobson, L. Timofejeva, E. Rey, J. Vrána, A. Kilian, K. Järve, J. Doležel, M. Valárik,
520    9_
$a The capacity of the bread wheat (Triticum aestivum) genome to tolerate introgression from related genomes can be exploited for wheat improvement. A resistance to powdery mildew expressed by a derivative of the cross-bread wheat cv. Tähti × T. militinae (Tm) is known to be due to the incorporation of a Tm segment into the long arm of chromosome 4A. Here, a newly developed in silico method termed rearrangement identification and characterization (RICh) has been applied to characterize the introgression. A virtual gene order, assembled using the GenomeZipper approach, was obtained for the native copy of chromosome 4A; it incorporated 570 4A DArTseq markers to produce a zipper comprising 2132 loci. A comparison between the native and introgressed forms of the 4AL chromosome arm showed that the introgressed region is located at the distal part of the arm. The Tm segment, derived from chromosome 7G, harbours 131 homoeologs of the 357 genes present on the corresponding region of Chinese Spring 4AL. The estimated number of Tm genes transferred along with the disease resistance gene was 169. Characterizing the introgression's position, gene content and internal gene order should not only facilitate gene isolation, but may also be informative with respect to chromatin structure and behaviour studies.
650    _2
$a Ascomycota $x patogenita $7 D001203
650    _2
$a sekvence nukleotidů $7 D001483
650    _2
$a chléb $7 D001939
650    _2
$a mapování chromozomů $7 D002874
650    _2
$a chromozomy rostlin $x genetika $x metabolismus $7 D032461
650    _2
$a počítačová simulace $7 D003198
650    _2
$a DNA rostlinná $x genetika $7 D018744
650    _2
$a odolnost vůči nemocem $7 D060467
650    _2
$a rostlinné geny $7 D017343
650    _2
$a genetické markery $7 D005819
650    _2
$a mikrosatelitní repetice $7 D018895
650    _2
$a nemoci rostlin $x genetika $x mikrobiologie $7 D010935
650    _2
$a translokace genetická $7 D014178
650    _2
$a pšenice $x genetika $x mikrobiologie $7 D014908
655    _2
$a časopisecké články $7 D016428
700    1_
$a Balcárková, Barbora $u Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic.
700    1_
$a Šimková, Hana $u Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic.
700    1_
$a Komínkova, Eva $u Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic.
700    1_
$a Martis, Mihaela M $u Munich Information Center for Protein Sequences/Institute of Bioinformatics and Systems Biology, Institute for Bioinformatics and Systems Biology, Helmholtz Center Munich, Neuherberg, Germany. Division of Cell Biology, Department of Clinical and Experimental Medicine, Bioinformatics Infrastructure for Life Sciences, Linköping University, Linköping, Sweden.
700    1_
$a Jakobson, Irena $u Department of Gene Technology, Tallinn University of Technology, Tallinn, Estonia.
700    1_
$a Timofejeva, Ljudmilla $u Department of Gene Technology, Tallinn University of Technology, Tallinn, Estonia.
700    1_
$a Rey, Elodie $u Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic.
700    1_
$a Vrána, Jan $u Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic.
700    1_
$a Kilian, Andrzej $u Diversity Arrays Technology Pty Ltd, Canberra, ACT, Australia.
700    1_
$a Järve, Kadri $u Department of Gene Technology, Tallinn University of Technology, Tallinn, Estonia.
700    1_
$a Doležel, Jaroslav $u Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic.
700    1_
$a Valárik, Miroslav $u Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic.
773    0_
$w MED00007694 $t Plant biotechnology journal $x 1467-7652 $g Roč. 15, č. 2 (2017), s. 249-256
856    41
$u https://pubmed.ncbi.nlm.nih.gov/27510270 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20171025 $b ABA008
991    __
$a 20171103101633 $b ABA008
999    __
$a ok $b bmc $g 1255112 $s 992546
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2017 $b 15 $c 2 $d 249-256 $e 20160916 $i 1467-7652 $m Plant biotechnology journal $n Plant Biotechnol J $x MED00007694
LZP    __
$a Pubmed-20171025

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace