The in silico identification and characterization of a bread wheat/Triticum militinae introgression line
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
27510270
PubMed Central
PMC5259550
DOI
10.1111/pbi.12610
Knihovny.cz E-zdroje
- Klíčová slova
- GenomeZipper, alien introgression, chromosome rearrangement, chromosome translocation, comparative analysis, linkage drag,
- MeSH
- Ascomycota patogenita MeSH
- chléb MeSH
- chromozomy rostlin genetika metabolismus MeSH
- DNA rostlinná genetika MeSH
- genetické markery MeSH
- mapování chromozomů MeSH
- mikrosatelitní repetice MeSH
- nemoci rostlin genetika mikrobiologie MeSH
- odolnost vůči nemocem MeSH
- počítačová simulace MeSH
- pšenice genetika mikrobiologie MeSH
- rostlinné geny MeSH
- sekvence nukleotidů MeSH
- translokace genetická MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- DNA rostlinná MeSH
- genetické markery MeSH
The capacity of the bread wheat (Triticum aestivum) genome to tolerate introgression from related genomes can be exploited for wheat improvement. A resistance to powdery mildew expressed by a derivative of the cross-bread wheat cv. Tähti × T. militinae (Tm) is known to be due to the incorporation of a Tm segment into the long arm of chromosome 4A. Here, a newly developed in silico method termed rearrangement identification and characterization (RICh) has been applied to characterize the introgression. A virtual gene order, assembled using the GenomeZipper approach, was obtained for the native copy of chromosome 4A; it incorporated 570 4A DArTseq markers to produce a zipper comprising 2132 loci. A comparison between the native and introgressed forms of the 4AL chromosome arm showed that the introgressed region is located at the distal part of the arm. The Tm segment, derived from chromosome 7G, harbours 131 homoeologs of the 357 genes present on the corresponding region of Chinese Spring 4AL. The estimated number of Tm genes transferred along with the disease resistance gene was 169. Characterizing the introgression's position, gene content and internal gene order should not only facilitate gene isolation, but may also be informative with respect to chromatin structure and behaviour studies.
Department of Gene Technology Tallinn University of Technology Tallinn Estonia
Zobrazit více v PubMed
Aflitos, S.A. , Sanchez‐Perez, G. , de Ridder, D. , Fransz, P. , Schranz, M.E. , de Jong, H. and Peters, S.A. (2015) Introgression browser: high‐throughput whole‐genome SNP visualization. Plant J. 82, 174–182. PubMed
Altschul, S.F. , Gish, W. , Miller, W. , Myers, E.W. and Lipman, D.J. (1990) Basic local alignment search tool. J. Mol. Biol. 215, 403–410. PubMed
Badaeva, E.D. , Budashkina, E.B. , Bilinskaya, E.N. and Pukhalskiy, V.A. (2010) Intergenomic chromosome substitutions in wheat interspecific hybrids and their use in the development of a genetic nomenclature of Triticum timopheevii chromosomes. Russian Journal of Genetics, 46, 769‐785. PubMed
Bellucci, A. , Torp, A.M. , Bruun, S. , Magid, J. , Andersen, S.B. and Rasmussen, S.K. (2015) Association mapping in Scandinavian winter wheat for yield, plant height, and traits important for second‐generation bioethanol production. Front. Plant Sci. 6, 1046. PubMed PMC
Chapman, J.A. , Mascher, M. , Buluc, A. , Barry, K. , Georganas, E. , Session, A. , Strnadova, V. et al. (2015) A whole‐genome shotgun approach for assembling and anchoring the hexaploid bread wheat genome. Genome Biol. 16, 26. PubMed PMC
Choulet, F. , Alberti, A. , Theil, S. , Glover, N. , Barbe, V. , Daron, J. , Pingault, L. et al. (2014) Structural and functional partitioning of bread wheat chromosome 3B. Science, 345, 1249721. PubMed
Devos, K.M. , Dubcovsky, J. , Dvořák, J. , Chinoy, C.N. and Gale, M.D. (1995) Structural evolution of wheat chromosomes 4A, 5A, and 7B and its impact on recombination. Theor. Appl. Genet. 91, 282–288. PubMed
Doležel, J. , Vrána, J. , Cápal, P. , Kubaláková, M. , Burešová, V. and Simková, H. (2014) Advances in plant chromosome genomics. Biotechnol. Adv. 32, 122–136. PubMed
Endo, T. and Gill, B. (1996) The deletion stocks of common wheat. J. Hered. 87, 295–307.
Feuillet, C. , Langridge, P. and Waugh, R. (2008) Cereal breeding takes a walk on the wild side. Trends Genet. 24, 24–32. PubMed
Gill, B.S. and Chen, P.D. (1987) Role of cytoplasm‐specific introgression in the evolution of the polyploid wheats. Proc. Natl Acad. Sci. USA, 84, 6800–6804. PubMed PMC
Gill, B.S. , Friebe, B.R. and White, F.F. (2011) Alien introgressions represent a rich source of genes for crop improvement. Proc. Natl Acad. Sci. USA, 108, 7657–7658. PubMed PMC
Giorgi, D. , Farina, A. , Grosso, V. , Gennaro, A. , Ceoloni, C. and Lucretti, S. (2013) FISHIS: fluorescence in situ hybridization in suspension and chromosome flow sorting made easy. PLoS ONE, 8, e57994. PubMed PMC
Hernandez, P. , Martis, M. , Dorado, G. , Pfeifer, M. , Gálvez, S. , Schaaf, S. , Jouve, N. et al. (2012) Next‐generation sequencing and syntenic integration of flow‐sorted arms of wheat chromosome 4A exposes the chromosome structure and gene content. Plant J. 69, 377–386. PubMed
IRGSP . (2005) The map‐based sequence of the rice genome. Nature, 436, 793–800. PubMed
IWGSC . (2014) A chromosome‐based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome. Science, 345, 1251788. PubMed
Jakobson, I. , Peusha, H. , Timofejeva, L. and Järve, K. (2006) Adult plant and seedling resistance to powdery mildew in a Triticum aestivum x Triticum militinae hybrid line. Theor. Appl. Genet. 112, 760–769. PubMed
Jakobson, I. , Reis, D. , Tiidema, A. , Peusha, H. , Timofejeva, L. , Valárik, M. , Kladivová, M. et al. (2012) Fine mapping, phenotypic characterization and validation of non‐race‐specific resistance to powdery mildew in a wheat‐Triticum militinae introgression line. Theor. Appl. Genet. 125, 609–623. PubMed
Jiang, J. , Friebe, B. and Gill, B. (1993) Recent advances in alien gene transfer in wheat. Euphytica, 73, 199–212.
Killick, R. and Eckley, I.A. (2014) changepoint: an R package for changepoint analysis. J. Stat. Softw. 58, 1–19.
Kubaláková, M. , Valárik, M. , Bartoš, J. , Vrána, J. , Číhalíková, J. , Molnár‐Láng, M. and Doležel, J. (2003) Analysis and sorting of rye (Secale cereale L.) chromosomes using flow cytometry. Genome, 46, 893–905. PubMed
Li, H. , Vikram, P. , Singh, R. , Kilian, A. , Carling, J. , Song, J. , Burgueno‐Ferreira, J. et al. (2015) A high density GBS map of bread wheat and its application for dissecting complex disease resistance traits. BMC Genom. 16, 216. PubMed PMC
Ma, J. , Stiller, J. , Berkman, P.J. , Wei, Y. , Rogers, J. , Feuillet, C. , Doležel, J. et al. (2013) Sequence‐based analysis of translocations and inversions in bread wheat (Triticum aestivum L.). PLoS ONE, 8, e79329. PubMed PMC
Mayer, K. , Martis, M. , Hedley, P. , Simkova, H. , Liu, H. and Morris, J. (2011) Unlocking the barley genome by chromosomal and comparative genomics. Plant Cell, 23, 1249–1263. PubMed PMC
Miftahudin, Ross, K. , Ma, X.‐F. , Mahmoud, A.A. , Layton, J. , Milla, M.A.R. , Chikmawati, T. et al. (2004) Analysis of expressed sequence tag loci on wheat chromosome group 4. Genetics, 168, 651–663. PubMed PMC
Niu, Z. , Klindworth, D.L. , Friesen, T.L. , Chao, S. , Jin, Y. , Cai, X. and Xu, S.S. (2011) Targeted introgression of a wheat stem rust resistance gene by DNA marker‐assisted chromosome engineering. Genetics, 187, 1011–1021. PubMed PMC
Nussbaumer, T. , Kugler, K.G. , Schweiger, W. , Bader, K.C. , Gundlach, H. , Spannagl, M. , Poursarebani, N. et al. (2014) chromoWIZ: a web tool to query and visualize chromosome‐anchored genes from cereal and model genomes. BMC Plant Biol. 14, 348. PubMed PMC
Paterson, A.H. , Bowers, J.E. , Bruggmann, R. , Dubchak, I. , Grimwood, J. , Gundlach, H. , Haberer, G. et al. (2009) The Sorghum bicolor genome and the diversification of grasses. Nature, 457, 551–556. PubMed
Petroli, C. , Sansaloni, C. , Carling, J. , Steane, D. , Vaillancourt, R. and Myburg, A. (2012) Genomic characterization of DArT markers based on high‐density linkage analysis and physical mapping to the eucalyptus genome. PLoS ONE, 7, e44684. PubMed PMC
Qi, L. , Friebe, B. , Zhang, P. and Gill, B.S. (2007) Homoeologous recombination, chromosome engineering and crop improvement. Chromosome Res. 15, 3–19. PubMed
Raman, H. , Raman, R. , Kilian, A. , Detering, F. , Carling, J. and Coombes, N. (2014) Genome‐wide delineation of natural variation for pod shatter resistance in Brassica napus . PLoS ONE, 9, e101673. PubMed PMC
Rey, E. , Molnár, I. and Doležel, J. (2015) Genomics of wild relatives and alien introgressions. In Alien Introgression in Wheat: Cytogenetics, Molecular Biology, and Genomics ( Molnár‐Láng, M. , Ceoloni, C. and Doležel, J. , eds), pp. 347–381. Cham: Springer International Publishing.
Roder, M.S. , Korzun, V. , Wendehake, K. , Plaschke, J. , Tixier, M.H. , Leroy, P. and Ganal, M.W. (1998) A microsatellite map of wheat. Genetics, 149, 2007–2023. PubMed PMC
Šafář, J. , Šimková, H. , Kubaláková, M. , Číhalíková, J. , Suchánková, P. , Bartoš, J. and Doležel, J. (2010) Development of chromosome‐specific BAC resources for genomics of bread wheat. Cytogenet Genome Res. 129, 211–223. PubMed
Sears, E.R. and Sears, L.M.S. (1978) The telocentric chromosomes of common wheat. In Proc 5th Int Wheat Genet Symp ( Ramanujam, S. , ed), pp. 389‐407. New Delhi: Indian Soc of Genet Plant Breed.
Šimková, H. , Svensson, J.T. , Condamine, P. , Hřibová, E. , Suchánková, P. , Bhat, P.R. , Bartoš, J. et al. (2008) Coupling amplified DNA from flow‐sorted chromosomes to high‐density SNP mapping in barley. BMC Genom. 9, 294. PubMed PMC
Sorrells, M.E. , Gustafson, J.P. , Somers, D. , Chao, S.M. , Benscher, D. , Guedira‐Brown, G. , Huttner, E. et al. (2011) Reconstruction of the synthetic W7984 x Opata M85 wheat reference population. Genome, 54, 875–882. PubMed
Tiwari, V.K. , Wang, S. , Danilova, T. , Koo, D.H. , Vrana, J. , Kubalakova, M. , Hribova, E. et al. (2015) Exploring the tertiary gene pool of bread wheat: sequence assembly and analysis of chromosome 5M(g) of Aegilops geniculata . Plant J. 84, 733–746. PubMed
Tsõmbalova, J. , Karafiátová, M. , Vrána, J. , Kubaláková, M. , Peuša, H. , Jakobson, I. , Järve, M. et al. (2016) A haplotype specific to North European wheat (Triticum aestivum L.). Genet. Resour. Crop Evol. DOI 10.1007/s10722-016-0389-9 DOI
Vogel, J.P. , Garvin, D.F. , Mockler, T.C. , Schmutz, J. , Rokhsar, D. , Bevan, M.W. , Barry, K. et al. (2010) Genome sequencing and analysis of the model grass Brachypodium distachyon . Nature, 463, 763–768. PubMed
Vrána, J. , Kubaláková, M. , Simková, H. , Číhalíková, J. , Lysák, M.A. and Doležel, J. (2000) Flow sorting of mitotic chromosomes in common wheat (Triticum aestivum L.). Genetics, 156, 2033–2041. PubMed PMC
Wang, S. , Wong, D. , Forrest, K. , Allen, A. , Chao, S. , Huang, B.E. , Maccaferri, M. et al. (2014) Characterization of polyploid wheat genomic diversity using a high‐density 90 000 single nucleotide polymorphism array. Plant Biotechnol. J. 12, 787–796. PubMed PMC
Wulff, B.B.H. and Moscou, M.J. (2014) Strategies for transferring resistance into wheat: from wide crosses to GM cassettes. Front. Plant Sci. 5, 692. doi: 10.3389/fpls.2014.00692 PubMed DOI PMC
Zamir, D. (2001) Improving plant breeding with exotic genetic libraries. Nat. Rev. Genet. 2, 983–989. PubMed
Chromosome analysis and sorting