The chromatin determinants and Ph1 gene effect at wheat sites with contrasting recombination frequency
Jazyk angličtina Země Egypt Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
36632886
PubMed Central
PMC10658417
DOI
10.1016/j.jare.2023.01.002
PII: S2090-1232(23)00002-4
Knihovny.cz E-zdroje
- Klíčová slova
- Crossovers, DNA methylation, Hotspot, Ph1 locus, Recombination, Wheat,
- MeSH
- chromatin * genetika MeSH
- chromozomy MeSH
- DNA MeSH
- pšenice * genetika MeSH
- šlechtění rostlin MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- chromatin * MeSH
- DNA MeSH
INTRODUCTION: Meiotic recombination is one of the most important processes of evolution and adaptation to environmental conditions. Even though there is substantial knowledge about proteins involved in the process, targeting specific DNA loci by the recombination machinery is not well understood. OBJECTIVES: This study aims to investigate a wheat recombination hotspot (H1) in comparison with a "regular" recombination site (Rec7) on the sequence and epigenetic level in conditions with functional and non-functional Ph1 locus. METHODS: The DNA sequence, methylation pattern, and recombination frequency were analyzed for the H1 and Rec7 in three mapping populations derived by crossing introgressive wheat line 8.1 with cv. Chinese Spring (with Ph1 and ph1 alleles) and cv. Tähti. RESULTS: The H1 and Rec7 loci are 1.586 kb and 2.538 kb long, respectively. High-density mapping allowed to delimit the Rec7 and H1 to 19 and 574 bp and 593 and 571 bp CO sites, respectively. A new method (ddPing) allowed screening recombination frequency in almost 66 thousand gametes. The screening revealed a 5.94-fold higher recombination frequency at the H1 compared to the Rec7. The H1 was also found out of the Ph1 control, similarly as gamete distortion. The recombination was strongly affected by larger genomic rearrangements but not by the SNP proximity. Moreover, chromatin markers for open chromatin and DNA hypomethylation were found associated with crossover occurrence except for the CHH methylation. CONCLUSION: Our results, for the first time, allowed study of wheat recombination directly on sequence, shed new light on chromatin landmarks associated with particular recombination sites, and deepened knowledge about role of the Ph1 locus in control of wheat recombination processes. The results are suggesting more than one recombination control pathway. Understanding this phenomenon may become a base for more efficient wheat genome manipulation, gene pool enrichment, breeding, and study processes of recombination itself.
Zobrazit více v PubMed
Zickler D., Kleckner N. Meiotic chromosomes: integrating structure and function. Annu Rev Genet. 1999;33:603–754. PubMed
Hunter N. Meiotic recombination: the essence of heredity. Cold Spring Harb Perspect Biol. 2015;7:1–35. PubMed PMC
Fernandes J.B., Duhamel M., Seguela-Arnaud M., Froger N., Girard C., Choinard S., et al. FIGL1 and its novel partner FLIP form a conserved complex that regulates homologous recombination. PLoS Genet. 2018;14:e1007317. PubMed PMC
Lukaszewski A.J., Curtis C.A. Physical distribution of recombination in B-genome chromosomes of tetraploid wheat. Theor Appl Genet. 1993;86:121–127. PubMed
Tock A.J., Henderson I.R. Hotspots for Initiation of Meiotic Recombination. Front Genet. 2018;9:521. PubMed PMC
Zelkowski M., Olson M.A., Wang M., Pawlowski W. Diversity and determinants of meiotic recombination landscapes. Trends Genet. 2019;35:359–370. PubMed
Baker K., Bayer M., Cook N., Dreissig S., Dhillon T., Russell J., et al. The low-recombining pericentromeric region of barley restricts gene diversity and evolution but not gene expression. Plant J. 2014;79:981–992. PubMed PMC
Choi K., Zhao X., Kelly K.A., Venn O., Higgins J.D., Yelina N.E., et al. Arabidopsis meiotic crossover hot spots overlap with H2A.Z nucleosomes at gene promoters. Nat Genet. 2013;45:1327–1338. PubMed PMC
Drouaud J., Khademian H., Giraut L., Zanni V., Bellalou S., Henderson I.R., et al. Contrasted patterns of crossover and non-crossover at Arabidopsis thaliana meiotic recombination hotspots. PLoS Genet. 2013;9:e1003922. PubMed PMC
Fu H., Zheng Z., Dooner H.K. Recombination rates between adjacent genic and retrotransposon regions in maize vary by 2 orders of magnitude. Proc Natl Acad Sci USA. 2002;99:1082–1087. PubMed PMC
He Y., Wang M., Dukowic-Schulze S., Zhou A., Tiang C.-L., Shilo S., et al. Genomic features shaping the landscape of meiotic double-strand-break hotspots in maize. Proc Natl Acad Sci. 2017;114:12231–12236. PubMed PMC
De Massy B. Distribution of meiotic recombination sites. Trends Genet. 2003;19:514–522. PubMed
Jeffreys A.J., Neumann R. The rise and fall of a human recombination hotspot. Nat Genet. 2009;41:625–629. PubMed PMC
Novák P., Guignard M.S., Neumann P., Kelly L.J., Mlinarec J., Koblížková A., et al. Repeat-sequence turnover shifts fundamentally in species with large genomes. Nat Plants. 2020;6:1325–1329. PubMed
Choi K., Henderson I.R. Meiotic recombination hotspots – a comparative view. Plant J. 2015;83:52–61. PubMed
Tiemann-Boege I., Schwarz T., Striedner Y., Heissl A. The consequences of sequence erosion in the evolution of recombination hotspots. Philos Trans R Soc B. 2017;372:20160462. PubMed PMC
International Wheat Genome Sequencing Consortium (IWGSC). Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science 2018;361:7191. PubMed
Riley R., Chapman V. Genetic control of the cytologically diploid behaviour of hexaploid wheat. Nature. 1958;182:713–715.
Sears E.R., Okamoto M. Intergenomic chromosome relationships in hexaploid wheat. Proc 10th Int Congr Genet Montreal. 1958;2:258–259.
Griffiths S., Sharp R., Foote T.N., Bertin I., Wanous M., Reader S., et al. Molecular characterization of Ph1 as a major chromosome pairing locus in polyploid wheat. Nature. 2006;439:749–752. PubMed
Lukaszewski A.J., Kopecký D. The Ph1 locus from wheat controls meiotic chromosome pairing in autotetraploid rye (Secale cereale L.) Cytogenet Genome Res. 2010;129:117–123. PubMed
Sears E.R. Induced mutant with homoeologous pairing in common wheat. Can J Genet Cytol. 1977;19:585–593.
Al-Kaff N., Knight E., Bertin I., Foote T., Hart N., Griffiths S., et al. Detailed dissection of the chromosomal region containing the Ph1 locus in wheat Triticum aestivum: with deletion mutants and expression profiling. Ann Bot. 2008;101:863–872. PubMed PMC
Fan C., Hao M., Jia Z., Neri C., Chen X., Chen W., et al. Some characteristics of crossing over in induced recombination between chromosomes of wheat and rye. Plant J. 2021;105:1665–1676. PubMed
Darrier B., Rimbert H., Balfourier L., Pingault L., Josselin A.-A., Servin B., et al. High-resolution mapping of crossover events in the hexaploid wheat genome suggests a universal recombination mechanism. Genetics. 2017;206:1373–1388. PubMed PMC
International Wheat Genome Sequencing Consortium (IWGSC). A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome. Science 2014;345:1251788. PubMed
Sherman J.D., Stack S.M. Two-dimensional spreads of synaptonemal complexes from solanaceous plants. VI. High-resolution recombination nodule map for tomato (Lycopersicon esculentum) Genetics. 1995;141:683–708. PubMed PMC
Tenaillon M.I., Sawkins M.C., Anderson L.K., Stack S.M., Doebley J., Gaut B.S. Patterns of diversity and recombination along chromosome 1 of maize (Zea mays ssp. mays L.) Genetics. 2002;162:1401–1413. PubMed PMC
Saintenac C., Falque M., Martin O.C., Paux E., Feuillet C., Sourdille P. Detailed recombination studies along chromosome 3B provide new insights on crossover distribution in wheat (Triticum aestivum L.) Genetics. 2009;181:393–403. PubMed PMC
Gardiner L.J., Wingen L.U., Bailey P., Joynson R., Brabbs T., Wright J., et al. Analysis of the recombination landscape of hexaploid bread wheat reveals genes controlling recombination and gene conversion frequency. Genome Biol. 2019;20:69. PubMed PMC
Falque M., Anderson L.K., Stack S.M., Gauthier F., Martin O.C. Two types of meiotic crossovers coexist in maize. Plant Cell. 2009;21:3915–3925. PubMed PMC
Pan J., Sasaki M., Kniewel R., Murakami H., Blitzblau H.G., Tischfield S.E., et al. A hierarchical combination of factors shapes the genome-wide topography of yeast meiotic recombination initiation. Cell. 2011;144:719–731. PubMed PMC
Fayos I., Mieulet D., Petit J., Meunier A.C., Perin C., Nicolas A., et al. Engineering meiotic recombination pathways in rice. Plant Biotechnol J. 2019;17:2062–2077. PubMed PMC
Janáková E., Jakobson I., Peusha H., Abrouk M., Škopová M., Šimková H., et al. Divergence between bread wheat and Triticum militinae in the powdery mildew resistance QPm.tut-4A locus and its implications for cloning of the resistance gene. Theor Appl Genet. 2019;132:1061–1072. PubMed PMC
Jakobson I., Peusha H., Timofejeva L., Järve K. Adult plant and seedling resistance to powdery mildew in a Triticum aestivum × Triticum militinae hybrid line. Theor Appl Genet. 2006;112:760–769. PubMed
Jakobson I., Reis D., Tiidema A., Peusha H., Timofejeva L., Valárik M., et al. Fine mapping, phenotypic characterization and validation of non-race-specific resistance to powdery mildew in a wheat-Triticum militinae introgression line. Theor Appl Genet. 2012;125:609–623. PubMed
Abrouk M., Balcárková B., Šimková H., Komínková E., Martis M., Jakobson I., et al. The in silico identification and characterization of a bread wheat/Triticum militinae introgression line. Plant Biotechnol J. 2017;15:249–256. PubMed PMC
Hernandez P., Martis M., Dorado G., Pfeifer M., Gálvez S., Schaaf S., et al. Next-generation sequencing and syntenic integration of flow sorted arms of wheat chromosome 4A exposes the chromosome structure and gene content. Plant J. 2012;69:377–386. PubMed
Altschul S.F., Gish W., Miller W., Myers E.W., Lipman D.J. Basic local alignment search tool. J Mol Biol. 1990;215:403–410. PubMed
Michaels S.D., Amasino R.M. A robust method for detecting single-nucleotide changes as polymorphic markers by PCR. Plant J. 1998;14:381–385. PubMed
Untergasser A., Cutcutache I., Koressaar T., Ye J., Faircloth B.C., Remm M., et al. Primer3: new capabilities and interfaces. Nucleic Acids Res. 2012;40:e115. PubMed PMC
Šimková H., Svensson J.T., Condamine P., Hřibová E., Suchánková P., Bhat P.R., et al. Coupling amplified DNA from flow-sorted chromosomes to high-density SNP mapping in barley. BMC Genomics. 2008;9:294. PubMed PMC
Ivaničová Z., Jakobson I., Reis D., Šafář J., Milec Z., Abrouk M., et al. Characterization of new allele influencing flowering time in bread wheat introgressed from Triticum militinae. New Biotechnol. 2016;33:718–727. PubMed
Altschul S.F., Madden T.L., Schäffer A.A., Zhang J., Zhang Z., Webb W., et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997;25:3389–3402. PubMed PMC
Solovyev V., Kosarev P., Seledsov I., Vorobyev D. Automatic annotation of eukaryotic genes, pseudogenes and promoters. Genome Biol. 2006;7:10.1-10.12. PubMed PMC
Danecek P., Bonfield J.K., Liddle J., Marshall J., Ohan V., Pollard M.O., et al. Twelve years of SAMtools and BCFtools. GigaScience. 2021;10(2) giab008 [33590861] PubMed PMC
Gruntman E., Qi Y., Slotkin R.K., Roeder T., Martienssen R.A., Sachidanandam R. Kismeth: Analyzer of plant methylation states through bisulfite sequencing. BMC Bioinf. 2008;9:371. PubMed PMC
Doležel J., Binarová P., Lucretti S. Analysis of nuclear DNA content in plant cells by flow cytometry. Biol Plant. 1989;31:113–120.
Röder M.S., Korzun V., Wendehake K., Plaschke J., Tixier M.H., Leroy P., et al. A microsatellite map of wheat. Genetics. 1998;149:2007–2023. PubMed PMC
Myers S., Freeman C., Auton A., Donnelly P., McVean G. A common sequence motif associated with recombination hot spots and genome instability in humans. Nat Genet. 2008;40:1124–1129. PubMed
Greer E., Martín A.C., Pendle A., Colas I., Jones A.M.E., Moore G., et al. The Ph1 locus suppresses Cdk2-type activity during premeiosis and meiosis in wheat. Plant Cell. 2012;24:152–162. PubMed PMC
Stapley J., Feulner P.G.D., Johnston S.E., Santure A.W., Smadja C.M. Variation in recombination frequency and distribution across eukaryotes: patterns and processes. Philos Trans R Soc B. 2017;372:20160455. PubMed PMC
Drouaud J., Camilleri C., Bourguignon P.-Y., Canaguier A., Berard A., Vezon D., et al. Variation in crossing-over rates across chromosome 4 of Arabidopsis thaliana reveals the presence of meiotic recombination “hot spots”. Genome Res. 2006;16:106–114. PubMed PMC
Datta A., Hendrix M., Lipstich M., Jinks-Robertson S. Dual roles for DNA sequence identity and the mismatch repair system in the regulation of mitotic crossing-over in yeast. Proc Natl Acad Sci USA. 1997;94:9757–9762. PubMed PMC
Dooner H.K. Genetic fine structure of the BRONZE locus in maize. Genetics. 1986;113:1021–1036. PubMed PMC
Dooner H.K., He L. Maize genome structure variation: interplay between retrotransposon polymorphisms and genic recombination. Plant Cell. 2008;20:249–258. PubMed PMC
Rodgers-Melnick E., Bradbury P.J., Elshire R.J., Glaubitz J.C., Acharya C.B., Mitchell S.E., et al. Recombination in diverse maize is stable, predictable, and associated with genetic load. Proc Natl Acad Sci USA. 2015;112:3823–3828. PubMed PMC
Bouchet S., Olatoye M.O., Marla S.R., Perumal R., Tesso T., Yu J., et al. Increased power to dissect adaptive traits in global Sorghum diversity using a nested association mapping population. Genetics. 2017;206:573–585. PubMed PMC
Serra H., Choi K., Zhao X., Blackwell A.R., Kim J., Henderson I.R. Interhomolog polymorphism shapes meiotic crossover within the Arabidopsis RAC1 and RPP13 disease resistance genes. PLOS Genet. 2018;14(12):e1007843. PubMed PMC
Vrána J., Kubaláková M., Číhalíková J., Valárik M., Doležel J. Preparation of sub-genomic fractions enriched for particular chromosomes in polyploid wheat. Biol Plant. 2015;59:445–455.
Tsõmbalova J., Karafiátová M., Vrána J., Kubaláková M., Peuša H., Jakobson I., et al. A haplotype specific to North European wheat (Triticum aestivum L.) Genet Resour Crop Evol. 2017;64:653–664.
Bannister A., Kouzarides T. Regulation of chromatin by histone modifications. Cell Res. 2011;21:381–395. PubMed PMC
Law J.A., Jacobsen S.E. Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nat Rev Genet. 2010;11:204–220. PubMed PMC
Lindroth A.M., Cao X., Jackson J.P., Zilberman D., McCallum C.M., Henikoff S., et al. Requirement of CHROMOMETHYLASE3 for maintenance of CpXpG methylation. Science. 2001;292:2077–2080. PubMed
Harris K.D., Zemach A. Contiguous and stochastic CHH methylation patterns of plant DRM2 and CMT2 revealed by single-read methylome analysis. Genome Biol. 2020;194:1–19. PubMed PMC
Mirouze M., Lieberman-Lazarovich M., Aversano R., Bucher E., Nicolet J., Reinders J., et al. Loss of DNA methylation affects the recombination landscape in Arabidopsis. Proc Natl Acad Sci. 2012;109:5880–5885. PubMed PMC
Yelina N.E., Lambing C., Hardcastle T.J., Zhao X., Santos B., Henderson I.R. DNA methylation epigenetically silences crossover hot spots and controls chromosomal domains of meiotic recombination in Arabidopsis. Genes Dev. 2015;29:2183–2202. PubMed PMC
Zhao M, Ku JC, Liu B, Yang D, Yin L, Ferrell TJ, et al. The mop1 mutation affects the recombination landscape in maize. Proc Natl Acad Sci 2021;118:e2009475118. PubMed PMC
Barski A., Cuddapah S., Cui K., Roh T.Y., Schones D.E., Wang Z., et al. High-resolution profiling of histone methylations in the human genome. Cell. 2007;129:823–837. PubMed
Pokholok D.K., Harbison C.T., Levine S., Cole M., Hannett N.M., Lee T.I., et al. Genome-wide map of nucleosome acetylation and methylation in yeast. Cell. 2005;122:517–527. PubMed
Zhang A., Wei Y., Shi Y., Deng X., Gao J., Feng Y., et al. Profiling of H3K4me3 and H3K27me3 and their roles in gene subfunctionalization in allotetraploid cotton. Front Plant Sci. 2021;12 PubMed PMC
Borde V., Robine N., Lin W., Bonfils S., Géli V., Nicolas A. Histone H3 lysine 4 trimethylation marks meiotic recombination initiation sites. EMBO J. 2009;28:99–111. PubMed PMC
Bettridge J., Na C.H., Pandey A., Desiderio S. H3K4me3 induces allosteric conformational changes in the DNA-binding and catalytic regions of the V(D)J recombinase. PNAS. 2017;114:1904–1909. PubMed PMC
Bajic M., Maher K.A., Deal R.B. Identification of open chromatin regions in plant genomes using ATAC-seq. Methods Mol Biol. 2018;1675:183–201. PubMed PMC
Champagne K.S., Kutateladze T.G. Structural insight into histone recognition by the ING PHD fingers. Curr Drug Targets. 2009;10:432–441. PubMed PMC
Tock A.J., Holland D.M., Jiang W., Osman K., Sanchez-Moran E., Higgins J.D., et al. Crossover-active regions of the wheat genome are distinguished by DMC1, the chromosome axis, H3K27me3, and signatures of adaptation. Genome Res. 2021;31:1614–1628. PubMed PMC
Martín A.C., Shaw P., Phillips D., Reader S., Moore G. Licensing MLH1 sites for crossover during meiosis. Nat Commun. 2014;5:1–5. PubMed PMC
Dubcovsky J., Luo M.C., Dvorak J. Differentiation between homoeologous chromosomes 1A of wheat and 1Am of Triticum monococcum and its recognition by the wheat Ph1 locus. Proc Natl Acad Sci USA. 1995;92:6645–6649. PubMed PMC
Zhang W., Zhu X., Zhang M., Chao S., Xu S., Cai X. Meiotic homoeologous recombination-based mapping of wheat chromosome 2B and its homoeologues in Aegilops speltoides and Thinopyrum elongatum. Theor Appl Genet. 2018;131:2381–2395. PubMed
Lyttle T.W. Segregation distorters. Annu Rev Genet. 1991;25:511–557. PubMed