Highly Sensitive Plasmonic Structures Utilizing a Silicon Dioxide Overlayer

. 2022 Sep 06 ; 12 (18) : . [epub] 20220906

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36144878

In this paper, simple and highly sensitive plasmonic structures are analyzed theoretically and experimentally. A structure comprising a glass substrate with a gold layer, two adhesion layers of chromium, and a silicon dioxide overlayer is employed in liquid analyte sensing. The sensing properties of two structures with distinct protective layer thicknesses are derived based on a wavelength interrogation method. Spectral reflectance responses in the Kretschmann configuration with a coupling BK7 prism are presented, using the thicknesses of individual layers obtained by a method of spectral ellipsometry. In the measured spectral reflectance, a pronounced dip is resolved, which is strongly red-shifted as the refractive index (RI) of the analyte increases. Consequently, a sensitivity of 15,785 nm per RI unit (RIU) and a figure of merit (FOM) of 37.9 RIU-1 are reached for the silicon dioxide overlayer thickness of 147.5 nm. These results are in agreement with the theoretical ones, confirming that both the sensitivity and FOM can be enhanced using a thicker silicon dioxide overlayer. The designed structures prove to be advantageous as their durable design ensures the repeatability of measurement and extends their employment compared to regularly used structures for aqueous analyte sensing.

Zobrazit více v PubMed

Kretschmann E., Raether H. Radiative decay of nonradiative surface plasmons excited by light. Z. Naturforschung A. 1968;23:2135–2136. doi: 10.1515/zna-1968-1247. DOI

Raether H. Surface Plasmons on Smooth and Rough Surfaces and on Gratings. Springer; New York, NY, USA: 1988.

Homola J., Yee S., Gauglitz G. Surface plasmon resonance sensors: Review. Sens. Actuators B Chem. 1999;54:3–15. doi: 10.1016/S0925-4005(98)00321-9. DOI

Homola J. Surface Plasmon Resonance Based Sensors. Springer; New York, NY, USA: 2006.

Manuel M., Vidal B., Lopéz R., Alegret S., Alonso-Chamarro J., Garces I., Mateo J. Determination of probable alcohol yield in musts by means of an SPR optical sensor. Sens. Actuators B Chem. 1993;11:455–459. doi: 10.1016/0925-4005(93)85287-K. DOI

Liedberg B., Nylander C., Lundström I. Principles of biosensing with an extended coupling matrix and surface plasmon resonance. Sens. Actuators B Chem. 1993;11:63–72. doi: 10.1016/0925-4005(93)85239-7. DOI

Dostálek J., Vaisocherova H., Homola J. Multichannel surface plasmon resonance biosensor with wavelength division multiplexing. Sens. Actuators B Chem. 2005;108:758–764. doi: 10.1016/j.snb.2004.12.096. DOI

Gwon H.R., Lee S.H. Spectral and angular responses of surface plasmon resonance based on the Kretschmann prism configuration. Mater. Trans. 2010;51:1150–1155. doi: 10.2320/matertrans.M2010003. DOI

Shalabney A., Abdulhalim I. Figure-of-merit enhancement of surface plasmon resonance sensors in the spectral interrogation. Opt. Lett. 2012;37:1175–1177. doi: 10.1364/OL.37.001175. PubMed DOI

Urbancova P., Chylek J., Hlubina P., Pudis D. Guided-Mode Resonance-Based Relative Humidity Sensing Employing a Planar Waveguide Structure. Sensors. 2020;20:6788. doi: 10.3390/s20236788. PubMed DOI PMC

Nikitin P., Beloglazov A., Kochergin V., Valeiko M., Ksenevich T. Surface plasmon resonance interferometry for biological and chemical sensing. Sens. Actuators B Chem. 1999;54:43–50. doi: 10.1016/S0925-4005(98)00325-6. DOI

Hlubina P., Ciprian D. Spectral phase shift of surface plasmon resonance in the Kretschmann configuration: Theory and experiment. Plasmonics. 2017;12:1071–1078. doi: 10.1007/s11468-016-0360-9. DOI

Lahav A., Shalabaney A., Abdulhalim I. Surface plasmon sensor with enhanced sensitivity using top nano dielectric layer. J. Nanophotonics. 2009;3:031501. doi: 10.1117/1.3079803. DOI

Wang H., Zhang H., Dong J., Hu S., Zhu W., Qiu W., Lu H., Yu J., Guan H., Gao S., et al. Sensitivity-enhanced surface plasmon resonance sensor utilizing a tungsten disulfide (WS2) nanosheets overlayer. Photonics Res. 2018;6:485–491. doi: 10.1364/PRJ.6.000485. DOI

Maurya J.B., Prajapati Y.K., Singh V., Saini J.P., Tripathi R. Performance of graphene–MoS2 based surface plasmon resonance sensor using Silicon layer. Opt. Quant. Electron. 2015;47:3599–3611. doi: 10.1007/s11082-015-0233-z. DOI

Szunerits S., Shalabney A., Boukherroub R., Abdulhalim I. Dielectric coated plasmonic interfaces: Their interest for sensitive sensing of analyte-ligand interactions. Rev. Anal. Chem. 2012;31:15–28. doi: 10.1515/revac.2011.120. DOI

Mishra A.K., Mishra S.K., Verma R.K. An SPR-based sensor with an extremely large dynamic range of refractive index measurements in the visible region. J. Phys. D Appl. Phys. 2015;48:435502. doi: 10.1088/0022-3727/48/43/435502. DOI

Sharma A.K. Analyzing the application of silicon–silver–2D nanomaterial–Al2O3 heterojunction in plasmonic sensor and its performance evaluation. Opt. Commun. 2018;410:75–82. doi: 10.1016/j.optcom.2017.09.081. DOI

Samdani S., Kala A., Kaurav R., Kaladharan S., Achanta V.G. Reusable Biosensor Based on Differential Phase Detection at the Point of Darkness. Adv. Photonics Res. 2021;2:2000147. doi: 10.1002/adpr.202000147. DOI

Mahajna S., Neumann M., Eyal O., Shalabney A. Plasmon-Waveguide Resonances with Enhanced Figure of Merit and Their Potential for Anisotropic Biosensing in the Near Infrared Region. J. Sens. 2016;2016:898315. doi: 10.1155/2016/1898315. DOI

Nesterenko D.V., Hayashi S., Sekkat Z. Extremely narrow resonances, giant sensitivity and field enhancement in low-loss waveguide sensors. J. Opt. 2016;18:065004. doi: 10.1088/2040-8978/18/6/065004. DOI

Kabashin A., Evans P., Pastkovsky S., Hendren W., Wurtz G.A., Atkinson R., Pollard R., Podolskiy V.A., Zayats A.V. Plasmonic nanorod metamaterials for biosensing. Nat. Mater. 2009;8:867–871. doi: 10.1038/nmat2546. PubMed DOI

Cetin A.E., Etezadi D., Galarreta B.C., Busson M.P., Eksioglu Y., Altug H. Plasmonic Nanohole Arrays on a Robust Hybrid Substrate for Highly Sensitive Label-Free Biosensing. ACS Photonics. 2015;2:1167–1174. doi: 10.1021/acsphotonics.5b00242. DOI

Sreekanth K.V., Alapan Y., ElKabbash M., Ilkerand E., Hinczewski M., Gurkan U.A., Luca A.D., Strangi G. Extreme sensitivity biosensing platform based on hyperbolic metamaterials. Nat. Mater. 2016;15:621–627. doi: 10.1038/nmat4609. PubMed DOI PMC

Garoli D., Calandrini E., Giovannini G., Hubarevich A., Caligiuri V., Angelis F.D. Nanoporous gold metamaterials for high sensitivity plasmonic sensing. Nanoscale Horiz. 2019;4:1153–1157. doi: 10.1039/C9NH00168A. DOI

Yan R., Wang T., Yue X., Wang H., Zhang Y.H., Xu P., Wang L., Wang Y., Zhang J. Highly sensitive plasmonic nanorod hyperbolic metamaterial biosensor. Photonics Res. 2022;10:84–95. doi: 10.1364/PRJ.444490. DOI

Yeh P. Optical Waves in Layered Media. John Wiley and Sons; Hoboken, NJ, USA: 2005.

Polyanskiy M.N. Refractive Index Database. [(accessed on 18 July 2022)]. Available online: http://refractiveindex.info.

Malitson I.H. Interspecimen Comparison of the Refractive Index of Fused Silica. J. Opt. Soc. Am. 1965;55:1205–1209. doi: 10.1364/JOSA.55.001205. DOI

Vial A., Grimault A.S., Macías D., Barchiesi D., Chapelle M.L.D.L. Improved analytical fit of gold dispersion: Application to the modeling of extinction spectra with a finite-difference time-domain method. Phys. Rev. B. 2005;71:085416. doi: 10.1103/PhysRevB.71.085416. DOI

Vial A., Laroche T. Description of dispersion properties of metals by means of the critical points model and application to the study of resonant structures using the FDTD method. J. Phys. D Appl. Phys. 2007;40:7152–7158. doi: 10.1088/0022-3727/40/22/043. DOI

Yang Z., Gu D., Gao Y. An improved dispersion law of thin metal film and application to the study of surface plasmon resonance phenomenon. Opt. Commun. 2014;329:180–183. doi: 10.1016/j.optcom.2014.05.014. DOI

Sinibaldi A., Danz N., Descrovi E., Munzert P., Schulz U., Sonntag F., Dominici L., Michelotti F. Direct comparison of the performance of Bloch surface wave and surface plasmon polariton sensors. Sens. Actuators B Chem. 2012;174:292–298. doi: 10.1016/j.snb.2012.07.015. DOI

Refki S., Hayashi S., Ishitobi H., Nesterenko D.V., Rahmouni A., Inouye Y., Sekkat Z. Resolution Enhancement of Plasmonic Sensors by Metal-Insulator-Metal Structures. Ann. Der Phys. 2018;530:1700411. doi: 10.1002/andp.201700411. DOI

Tikhonravov A.V., Trubetskov M.K., Hrdina J., Sobota J. Characterization of quasi-rugate filters using ellipsometric measurements. Thin Solid Films. 1996;277:83–89. doi: 10.1016/0040-6090(95)08003-1. DOI

Chlebus R., Chylek J., Ciprian D., Hlubina P. Surface plasmon resonance based measurement of the dielectric function of a thin metal film. Sensors. 2018;18:3693. doi: 10.3390/s18113693. PubMed DOI PMC

Shrivastav A.M., Satish L., Kushmaro A., Shvalya V., Cvelbar U., Abdulhalim I. Engineering the penetration depth of nearly guided wave surface plasmon resonance towards application in bacterial cells monitoring. Sens. Actuators B Chem. 2021;345:130338. doi: 10.1016/j.snb.2021.130338. DOI

Urbancova P., Pudis D., Goraus M., Kovac J.J. IP-Dip-Based SPR Structure for Refractive Index Sensing of Liquid Analytes. Nanomaterials. 2021;11:1163. doi: 10.3390/nano11051163. PubMed DOI PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...