Thickness and Wavelength Optimizations of a High-Performance SPR Sensor Employing a Silver Layer and Black Phosphorus in Principal Directions
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
REFRESH/CZ.10.03.01/00/22_003/0000048
Ministry of the Environment of the Czech Republic
ERDF/ESF project, CZ.02.1.01/0.0/0.0/17_$048/0007399
VŠB-Technical University of Ostrava
PubMed
40497839
PubMed Central
PMC12157747
DOI
10.3390/nano15110790
PII: nano15110790
Knihovny.cz E-zdroje
- Klíčová slova
- SPR, angular domain, black phosphorus, sensitivity enhancement, silver layer, zigzag and armchair directions,
- Publikační typ
- časopisecké články MeSH
In this paper, we propose an innovative approach based on the wavelength optimization of a light source for a simple, high-performance surface plasmon resonance (SPR) sensor utilizing comprehensive reflectance analysis in the angular domain. The proposed structure consists of a glass substrate, an adhesion layer of titanium dioxide, a silver plasmonic layer, and a 2D material. Analysis is performed in the Kretschmann configuration for liquid analyte sensing. Sensing parameters such as the refractive index (RI) sensitivity, the reflectance minimum, and the figure of merit (FOM) are investigated in the first step of this study as a function of the thickness of the silver layer together with the RI of a coupling prism. Next, utilizing the results offering a fused silica prism, the thickness of the silver layer and the wavelength of the light source are optimized for the structure with the addition of a 2D material, black phosphorus (BP), which is studied along different principal directions, the zigzag and armchair directions. In addition, a new approach of adjusting the source wavelength using a one-dimensional photonic crystal combined with an LED, is presented. Based on this analysis, for the reference structure at a wavelength of 632.8 nm, the optimized silver layer thickness is 50 nm, and the achieved RI sensitivity ranges from 193.9 to 251.5 degrees per RI unit (deg/RIU), with the highest FOM reaching 52.3 RIU-1. In addition, for the modified structure with BP, the achieved RI sensitivity varies in the range of 269.1-351.2 deg/RIU at the optimized wavelength of 628 nm, with the highest FOM reaching 44.7 RIU-1 for the zigzag direction. Due to the optimization and adjusting the wavelength of the source, the results obtained for the proposed SPR structure could have significant implications for the development of more sensitive and efficient sensors employing a simple plasmonic structure.
Zobrazit více v PubMed
Polman A. Plasmonics applied. Science. 2008;322:868–869. doi: 10.1126/science.1163959. PubMed DOI
Kretschmann E., Raether H. Radiative decay of nonradiative surface plasmons excited by light. Z. Naturforschung. 1968;A23:2135–2136. doi: 10.1515/zna-1968-1247. DOI
Raether H. Surface Plasmons on Smooth and Rough Surfaces and on Gratings. Springer; New York, NY, USA: 1988.
Homola J., Yee S., Gauglitz G. Surface plasmon resonance sensors: Review. Sens. Actuators B Chem. 1999;54:3–15. doi: 10.1016/S0925-4005(98)00321-9. DOI
Homola J. Surface Plasmon Resonance Based Sensors. Springer; Berlin, Germany: 2006.
Manuel M., Vidal B., Lopéz R., Alegret S., Alonso-Chamarro J., Garces I., Mateo J. Determination of probable alcohol yield in musts by means of an SPR optical sensor. Sens. Actuators B Chem. 1993;11:455–459. doi: 10.1016/0925-4005(93)85287-K. DOI
Liedberg B., Nylander C., Lundström I. Principles of biosensing with an extended coupling matrix and surface plasmon resonance. Sens. Actuators B Chem. 1993;11:63–72. doi: 10.1016/0925-4005(93)85239-7. DOI
Dostálek J., Vaisocherova H., Homola J. Multichannel surface plasmon resonance biosensor with wavelength division multiplexing. Sens. Actuators B Chem. 2005;108:758–764. doi: 10.1016/j.snb.2004.12.096. DOI
Chylek J., Maniakova P., Hlubina P., Sobota J., Pudis D. Highly sensitive plasmonic structures utilizing a silicon dioxide overlayer. Nanomaterials. 2022;12:3090. doi: 10.3390/nano12183090. PubMed DOI PMC
Gwon H.R., Lee S.H. Spectral and angular responses of surface plasmon resonance based on the Kretschmann prism configuration. Mater. Trans. 2010;51:1150–1155. doi: 10.2320/matertrans.M2010003. DOI
Nikitin P., Beloglazov A., Kochergin V., Valeiko M., Ksenevich T. Surface plasmon resonance interferometry for biological and chemical sensing. Sens. Actuators B Chem. 1999;54:43–50. doi: 10.1016/S0925-4005(98)00325-6. DOI
Chylek J., Ciprian D., Hlubina P. Optimized film thicknesses for maximum refractive index sensitivity and figure of merit of a bimetallic film surface plasmon resonance sensor. Eur. Phys. J. Plus. 2024;139:11. doi: 10.1140/epjp/s13360-023-04798-1. DOI
Bansal A., Srivastava S.K. High performance SPR sensor using 2-D materials: A treatise on design aspects, material choice and figure of merit. Sens. Actuators A Chem. 2024;369:115159. doi: 10.1016/j.sna.2024.115159. DOI
Wu L., Chu H.S., Koh W.S., Li E.P. Highly sensitive graphene biosensors based on surface plasmon resonance. Opt. Express. 2010;18:14395–14400. doi: 10.1364/OE.18.014395. PubMed DOI
Bao Q., Loh K.P. Graphene photonics, plasmonics, and broadband optoelectronic devices. ACS Nano. 2012;6:3677–3694. doi: 10.1021/nn300989g. PubMed DOI
Li Z., Zhang W., Xing F. Graphene optical biosensors. Int. J. Mol. Sci. 2019;20:2461. doi: 10.3390/ijms20102461. PubMed DOI PMC
Castellanos-Gomez A. Black phosphorus: Narrow gap, wide applications. J. Phys. Chem. Lett. 2015;6:4280–4291. doi: 10.1021/acs.jpclett.5b01686. PubMed DOI
Abbas A.N., Liu B., Chen L., Ma Y., Cong S., Aroonyadet N., Kopf M., Nilges T., Zhou C. Black phosphorus gas sensors. ACS Nano. 2015;9:5618–5624. doi: 10.1021/acsnano.5b01961. PubMed DOI
Wang X., Lan S. Optical properties of black phosphorus. Adv. Opt. Photonics. 2016;8:618–655. doi: 10.1364/AOP.8.000618. DOI
Huang S., Ling X. Black phosphorus: Optical characterization, properties and applications. Small. 2017;13:1700823. doi: 10.1002/smll.201700823. PubMed DOI
Venuthurumilli P.K., Ye P.D., Xu X. Plasmonic resonance enhanced polarization-sensitive photodetection by black phosphorus in near infrared. ACS Nano. 2018;12:4861–4867. doi: 10.1021/acsnano.8b01660. PubMed DOI
Liu H., Hu K., Yan D., Chen R., Zou Y., Liu H., Wang S. Recent advances on black phosphorus for energy storage, catalysis, and sensor applications. Adv. Mater. 2018;30:1800295. doi: 10.1002/adma.201800295. PubMed DOI
Dai X., Chen H., Qiu C., Wu L., Xiang Y. Ultrasensitive multiple guided-mode biosensor with few-layer black phosphorus. J. Light. Technol. 2019;38:1564–1571. doi: 10.1109/JLT.2019.2954168. DOI
Yi Y., Sun Z., Li J., Chu P.K., Yu X.F. Optical and optoelectronic properties of black phosphorus and recent photonic and optoelectronic applications. Small Methods. 2019;3:1900165. doi: 10.1002/smtd.201900165. DOI
Su M., Chen X., Tang L., Yang B., Zou H., Liu J., Li Y., Chen S., Fan D. Black phosphorus (BP)–graphene guided-wave surface plasmon resonance (GWSPR) biosensor. Nanophotonics. 2020;9:4265–4272. doi: 10.1515/nanoph-2020-0251. DOI
Kishore S.C., Perumal S., Atchudan R., Alagan M., Sundramoorthy A.K., Ramalingam S., Manoj D., Sambasivam S. A critical review on black phosphorus and its utilization in the diverse range of sensors. Sens. Actuators A Chem. 2024;377:115719. doi: 10.1016/j.sna.2024.115719. DOI
Shekhar P., Raghuwanshi S.K., Singh Y. Enhancement of the sensitivity of a surface plasmon resonance sensor using a nobel structure based on barium titanate-graphene-silver. Opt. Quantum Electron. 2022;54:417.
Karki B., Pal A., Singh Y., Sharma S. Sensitivity enhancement of surface plasmon resonance sensor using 2D material barium titanate and black phosphorus over the bimetallic layer of Au, Ag, and Cu. Opt. Commun. 2022;508:127616. doi: 10.1016/j.optcom.2021.127616. DOI
Uniyal A., Pal A., Srivastava G., Rana M.M., Taya S.A., Sharma A., Altahan B.R., Tomar S., Singh Y., Parajuli D., et al. Surface plasmon resonance biosensor sensitivity improvement employing of 2D materials and BaTiO3 with bimetallic layers of silver. J. Mater. Sci. Mater. Electron. 2023;34:466. doi: 10.1007/s10854-023-09821-w. DOI
Gan S., Zhao Y., Dai X., Xiang Y. Sensitivity enhancement of surface plasmon resonance sensors with 2D franckeite nanosheets. Results Phys. 2019;13:102320. doi: 10.1016/j.rinp.2019.102320. PubMed DOI PMC
Song B., Li D., Qi W., Elstner M., Fan C., Fang H. Graphene on Au (111): A highly conductive material with excellent adsorption properties for high-resolution bio/nanodetection and identification. ChemPhysChem. 2010;11:585–589. doi: 10.1002/cphc.200900743. PubMed DOI
Abellán G., Wild S., Lloret V., Scheuschner N., Gillen R., Mundloch U., Maultzsch J., Varela M., Hauke F., Hirsch A. Fundamental insights into the degradation and stabilization of thin layer black phosphorus. J. Am. Chem. Soc. 2017;139:10432–10440. doi: 10.1021/jacs.7b04971. PubMed DOI PMC
Zhang Y., Jiang Q., Lang P., Yuan N., Tang J. Fabrication and applications of 2D black phosphorus in catalyst, sensing and electrochemical energy storage. J. Alloy. Compd. 2021;850:156580. doi: 10.1016/j.jallcom.2020.156580. DOI
Cho S.Y., Lee Y., Koh H.J., Jung H., Kim J.S., Yoo H.W., Kim J., Jung H.T. Superior Chemical Sensing Performance of Black Phosphorus: Comparison with MoS2 and Graphene. Adv. Mater. 2016;28:7020–7028. doi: 10.1002/adma.201601167. PubMed DOI
Wu L., Guo J., Wang Q., Lu S., Dai X., Xiang Y., Fan D. Sensitivity enhancement by using few-layer black phosphorus-graphene/TMDCs heterostructure in surface plasmon resonance biochemical sensor. Sens. Actuators B Chem. 2017;249:542–548. doi: 10.1016/j.snb.2017.04.110. DOI
Zhou L., Liu C., Sun Z., Mao H., Zhang L., Yu X., Zhao J., Chen X. Black phosphorus based fiber optic biosensor for ultrasensitive cancer diagnosis. Biosens. Bioelectron. 2019;137:140–147. doi: 10.1016/j.bios.2019.04.044. PubMed DOI
Pandey A., Nikam A.N., Fernandes G., Kulkarni S., Padya B.S., Prassl R., Das S., Joseph A., Deshmukh P.K., Patil P.O., et al. Black phosphorus as multifaceted advanced material nanoplatforms for potential biomedical applications. Nanomaterials. 2020;11:13. doi: 10.3390/nano11010013. PubMed DOI PMC
Shalabney A., Abdulhalim I. Sensitivity-enhancement methods for surface plasmon sensors. Laser Photonics Rev. 2011;5:571–606. doi: 10.1002/lpor.201000009. DOI
Lakayan D., Tuppurainen J., Albers M., van Lint M.J., van Iperen D.J., Weda J.J., Kuncova-Kallio J., Somsen G.W., Kool J. Angular scanning and variable wavelength surface plasmon resonance allowing free sensor surface selection for optimum material-and bio-sensing. Sens. Actuators B Chem. 2018;259:972–979. doi: 10.1016/j.snb.2017.12.131. DOI
Chen S., Lin C. Figure of merit analysis of graphene based surface plasmon resonance biosensor for visible and near infrared. Opt. Commun. 2019;435:102–107. doi: 10.1016/j.optcom.2018.11.031. DOI
Lin Z., Chen S., Lin C. Sensitivity improvement of a surface plasmon resonance sensor based on two-dimensional materials hybrid structure in visible region: A theoretical study. Sensors. 2020;20:2445. doi: 10.3390/s20092445. PubMed DOI PMC
Priya S., Laha R., Dantham V.R. Wavelength-dependent angular shift and figure of merit of silver-based surface plasmon resonance biosensor. Sens. Actuators A Chem. 2020;315:112289. doi: 10.1016/j.sna.2020.112289. DOI
Sang W., Huang S., Chen J., Dai X., Liu H., Zeng Y., Zhang T., Wang X., Qu J., Ho H.P., et al. Wavelength sequential selection technique for high-throughput multi-channel phase interrogation surface plasmon resonance imaging sensing. Talanta. 2023;258:124405. doi: 10.1016/j.talanta.2023.124405. PubMed DOI
Fernandes G.B., Wang Y., Blair S., Marques J.L., Moreira C.S. Wavelength-dependent angular sensitivity signatures in SPR sensors: Is the 633 nm wavelength still optimal for the latest designs? IEEE Sens. J. 2024;24:17653–17660. doi: 10.1109/JSEN.2024.3388046. DOI
Gryga M., Ciprian D., Gembalova L., Hlubina P. One-dimensional photonic crystal with a defect layer utilized as an optical filter in narrow linewidth LED-based sources. Crystals. 2023;13:93. doi: 10.3390/cryst13010093. DOI
Rakić A.D., Djurišić A.B., Elazar J.M., Majewski M.L. Optical properties of metallic films for vertical-cavity optoelectronic devices. Optik. 1998;37:5271–5283. doi: 10.1364/AO.37.005271. PubMed DOI
Malitson I.H. Interspecimen Comparison of the Refractive Index of Fused Silica. J. Opt. Soc. Amer. 1965;55:1205–1209. doi: 10.1364/JOSA.55.001205. DOI
Liu Z., Aydin K. Localized surface plasmons in nanostructured monolayer black phosphorus. Nano Lett. 2016;16:3457–3462. doi: 10.1021/acs.nanolett.5b05166. PubMed DOI
Han L., Wang L., Xing H., Chen X. Anisotropic plasmon induced transparency in black phosphorus nanostrip trimer. Opt. Mater. Express. 2019;9:352–361. doi: 10.1364/OME.9.000352. DOI
Chen H., Xiong L., Hu F., Xiang Y., Dai X., Li G. Ultrasensitive and tunable sensor based on plasmon-induced transparency in a black phosphorus metasurface. Plasmonics. 2021;16:1071–1077. doi: 10.1007/s11468-021-01374-0. DOI
Lee S.Y., Yee K.J. Black phosphorus phase retarder based on anisotropic refractive index dispersion. 2D Mater. 2021;9:015020. doi: 10.1088/2053-1583/ac3a99. DOI
Hu Y., Yang F., Chen J., Lu S., Zeng Q., Han H., Ma Y., Zhao Z., Chai G., Xiang B., et al. High-responsivity and high-speed black phosphorus photodetectors integrated with proton exchanged thin-film lithium niobate waveguides. Opt. Express. 2023;31:27962–27972. doi: 10.1364/OE.497756. PubMed DOI
Xin W., Jiang H.B., Sun T.Q., Gao X.G., Chen S.N., Zhao B., Yang J.J., Liu Z.B., Tian J.G., Guo C.L. Optical anisotropy of black phosphorus by total internal reflection. Nano Mater. Sci. 2019;1:304–309. doi: 10.1016/j.nanoms.2019.09.006. DOI
Zhang W., Wu W., Chen S., Zhang J., Ling X., Shu W., Luo H., Wen S. Photonic spin Hall effect on the surface of anisotropic two-dimensional atomic crystals. Photonics Res. 2018;6:511–516. doi: 10.1364/PRJ.6.000511. DOI
Sinibaldi A., Danz N., Descrovi E., Munzert P., Schulz U., Sonntag F., Dominici L., Michelotti F. Direct comparison of the performance of Bloch surface wave and surface plasmon polariton sensors. Sens. Actuators B Chem. 2012;174:292–298. doi: 10.1016/j.snb.2012.07.015. DOI
Yeh P. Optical Waves in Layered Media. John Wiley and Sons; Hoboken NJ, USA: 2005.
Xia F., Wang H., Jia Y. Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nat. Commun. 2014;5:4458. doi: 10.1038/ncomms5458. PubMed DOI
Kanok R., Abuleil M., Hlubina P., Abdulhalim I. Bloch surface wave fast ellipsometric sensor utilizing a polarization camera with an improved detection limit. Opt. Laser Technol. 2024;179:111218. doi: 10.1016/j.optlastec.2024.111218. DOI
Hasib M.H.H., Nur J.N., Rizal C., Shushama K.N. Improved transition metal dichalcogenides-based surface plasmon resonance biosensors. Condens. Matter. 2019;4:49. doi: 10.3390/condmat4020049. DOI
Roy S., Mondol N., Kundu D., Meem A.A., Islam M.R., Hossain M.A., Hossain M.B. Numerical investigation into impact of halide perovskite material on the optical performance of prism-loaded hybrid surface plasmon resonance biosensor: A strategy to increase sensitivity. Sens. Bio-Sens. Res. 2024;43:100630. doi: 10.1016/j.sbsr.2024.100630. DOI
Kumar A., Yadav A.K., Kushwaha A.S., Srivastava S. A comparative study among WS2, MoS2 and graphene based surface plasmon resonance (SPR) sensor. Sens. Actuators Rep. 2020;2:100015. doi: 10.1016/j.snr.2020.100015. DOI
Chen S., Lin C. Sensitivity comparison of graphene based surface plasmon resonance biosensor with Au, Ag and Cu in the visible region. Mater. Res. Express. 2019;6:056503. doi: 10.1088/2053-1591/ab009d. DOI
Panda A., Pukhrambam P.D. Modeling of high-performance SPR refractive index sensor employing novel 2D materials for detection of malaria pathogens. IEEE Trans. NanoBiosci. 2021;21:312–319. doi: 10.1109/TNB.2021.3115906. PubMed DOI
Chen S., Lin Z., Bai G., Lin C. Comparative study on sensitivity enhancement of a graphene based nearly guided-wave surface plasmon resonance biosensor optimized using genetic algorithm in the visible region. Opt. Quantum Electron. 2022;54:199. doi: 10.1007/s11082-022-03584-0. DOI
Liu L., Wang M., Jiao L., Wu T., Xia F., Liu M., Kong W., Dong L., Yun M. Sensitivity enhancement of a graphene–barium titanate-based surface plasmon resonance biosensor with an Ag–Au bimetallic structure in the visible region. JOSA B. 2019;36:1108–1116. doi: 10.1364/JOSAB.36.001108. DOI
Srivastava A., Das R., Prajapati Y.K. Effect of perovskite material on performance of surface plasmon resonance biosensor. IET Optoelectron. 2020;14:256–265. doi: 10.1049/iet-opt.2019.0122. DOI
Zhu Q., Shen Y., Chen Z., Chen B., Dai E., Pan W. Anisotropic Sensing Performance in a High-Sensitivity Surface Plasmon Resonance Sensor Based on Few-Layer Black Phosphorus. Sensors. 2024;24:3851. doi: 10.3390/s24123851. PubMed DOI PMC