Thickness and Wavelength Optimizations of a High-Performance SPR Sensor Employing a Silver Layer and Black Phosphorus in Principal Directions

. 2025 May 24 ; 15 (11) : . [epub] 20250524

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40497839

Grantová podpora
REFRESH/CZ.10.03.01/00/22_003/0000048 Ministry of the Environment of the Czech Republic
ERDF/ESF project, CZ.02.1.01/0.0/0.0/17_$048/0007399 VŠB-Technical University of Ostrava

In this paper, we propose an innovative approach based on the wavelength optimization of a light source for a simple, high-performance surface plasmon resonance (SPR) sensor utilizing comprehensive reflectance analysis in the angular domain. The proposed structure consists of a glass substrate, an adhesion layer of titanium dioxide, a silver plasmonic layer, and a 2D material. Analysis is performed in the Kretschmann configuration for liquid analyte sensing. Sensing parameters such as the refractive index (RI) sensitivity, the reflectance minimum, and the figure of merit (FOM) are investigated in the first step of this study as a function of the thickness of the silver layer together with the RI of a coupling prism. Next, utilizing the results offering a fused silica prism, the thickness of the silver layer and the wavelength of the light source are optimized for the structure with the addition of a 2D material, black phosphorus (BP), which is studied along different principal directions, the zigzag and armchair directions. In addition, a new approach of adjusting the source wavelength using a one-dimensional photonic crystal combined with an LED, is presented. Based on this analysis, for the reference structure at a wavelength of 632.8 nm, the optimized silver layer thickness is 50 nm, and the achieved RI sensitivity ranges from 193.9 to 251.5 degrees per RI unit (deg/RIU), with the highest FOM reaching 52.3 RIU-1. In addition, for the modified structure with BP, the achieved RI sensitivity varies in the range of 269.1-351.2 deg/RIU at the optimized wavelength of 628 nm, with the highest FOM reaching 44.7 RIU-1 for the zigzag direction. Due to the optimization and adjusting the wavelength of the source, the results obtained for the proposed SPR structure could have significant implications for the development of more sensitive and efficient sensors employing a simple plasmonic structure.

Zobrazit více v PubMed

Polman A. Plasmonics applied. Science. 2008;322:868–869. doi: 10.1126/science.1163959. PubMed DOI

Kretschmann E., Raether H. Radiative decay of nonradiative surface plasmons excited by light. Z. Naturforschung. 1968;A23:2135–2136. doi: 10.1515/zna-1968-1247. DOI

Raether H. Surface Plasmons on Smooth and Rough Surfaces and on Gratings. Springer; New York, NY, USA: 1988.

Homola J., Yee S., Gauglitz G. Surface plasmon resonance sensors: Review. Sens. Actuators B Chem. 1999;54:3–15. doi: 10.1016/S0925-4005(98)00321-9. DOI

Homola J. Surface Plasmon Resonance Based Sensors. Springer; Berlin, Germany: 2006.

Manuel M., Vidal B., Lopéz R., Alegret S., Alonso-Chamarro J., Garces I., Mateo J. Determination of probable alcohol yield in musts by means of an SPR optical sensor. Sens. Actuators B Chem. 1993;11:455–459. doi: 10.1016/0925-4005(93)85287-K. DOI

Liedberg B., Nylander C., Lundström I. Principles of biosensing with an extended coupling matrix and surface plasmon resonance. Sens. Actuators B Chem. 1993;11:63–72. doi: 10.1016/0925-4005(93)85239-7. DOI

Dostálek J., Vaisocherova H., Homola J. Multichannel surface plasmon resonance biosensor with wavelength division multiplexing. Sens. Actuators B Chem. 2005;108:758–764. doi: 10.1016/j.snb.2004.12.096. DOI

Chylek J., Maniakova P., Hlubina P., Sobota J., Pudis D. Highly sensitive plasmonic structures utilizing a silicon dioxide overlayer. Nanomaterials. 2022;12:3090. doi: 10.3390/nano12183090. PubMed DOI PMC

Gwon H.R., Lee S.H. Spectral and angular responses of surface plasmon resonance based on the Kretschmann prism configuration. Mater. Trans. 2010;51:1150–1155. doi: 10.2320/matertrans.M2010003. DOI

Nikitin P., Beloglazov A., Kochergin V., Valeiko M., Ksenevich T. Surface plasmon resonance interferometry for biological and chemical sensing. Sens. Actuators B Chem. 1999;54:43–50. doi: 10.1016/S0925-4005(98)00325-6. DOI

Chylek J., Ciprian D., Hlubina P. Optimized film thicknesses for maximum refractive index sensitivity and figure of merit of a bimetallic film surface plasmon resonance sensor. Eur. Phys. J. Plus. 2024;139:11. doi: 10.1140/epjp/s13360-023-04798-1. DOI

Bansal A., Srivastava S.K. High performance SPR sensor using 2-D materials: A treatise on design aspects, material choice and figure of merit. Sens. Actuators A Chem. 2024;369:115159. doi: 10.1016/j.sna.2024.115159. DOI

Wu L., Chu H.S., Koh W.S., Li E.P. Highly sensitive graphene biosensors based on surface plasmon resonance. Opt. Express. 2010;18:14395–14400. doi: 10.1364/OE.18.014395. PubMed DOI

Bao Q., Loh K.P. Graphene photonics, plasmonics, and broadband optoelectronic devices. ACS Nano. 2012;6:3677–3694. doi: 10.1021/nn300989g. PubMed DOI

Li Z., Zhang W., Xing F. Graphene optical biosensors. Int. J. Mol. Sci. 2019;20:2461. doi: 10.3390/ijms20102461. PubMed DOI PMC

Castellanos-Gomez A. Black phosphorus: Narrow gap, wide applications. J. Phys. Chem. Lett. 2015;6:4280–4291. doi: 10.1021/acs.jpclett.5b01686. PubMed DOI

Abbas A.N., Liu B., Chen L., Ma Y., Cong S., Aroonyadet N., Kopf M., Nilges T., Zhou C. Black phosphorus gas sensors. ACS Nano. 2015;9:5618–5624. doi: 10.1021/acsnano.5b01961. PubMed DOI

Wang X., Lan S. Optical properties of black phosphorus. Adv. Opt. Photonics. 2016;8:618–655. doi: 10.1364/AOP.8.000618. DOI

Huang S., Ling X. Black phosphorus: Optical characterization, properties and applications. Small. 2017;13:1700823. doi: 10.1002/smll.201700823. PubMed DOI

Venuthurumilli P.K., Ye P.D., Xu X. Plasmonic resonance enhanced polarization-sensitive photodetection by black phosphorus in near infrared. ACS Nano. 2018;12:4861–4867. doi: 10.1021/acsnano.8b01660. PubMed DOI

Liu H., Hu K., Yan D., Chen R., Zou Y., Liu H., Wang S. Recent advances on black phosphorus for energy storage, catalysis, and sensor applications. Adv. Mater. 2018;30:1800295. doi: 10.1002/adma.201800295. PubMed DOI

Dai X., Chen H., Qiu C., Wu L., Xiang Y. Ultrasensitive multiple guided-mode biosensor with few-layer black phosphorus. J. Light. Technol. 2019;38:1564–1571. doi: 10.1109/JLT.2019.2954168. DOI

Yi Y., Sun Z., Li J., Chu P.K., Yu X.F. Optical and optoelectronic properties of black phosphorus and recent photonic and optoelectronic applications. Small Methods. 2019;3:1900165. doi: 10.1002/smtd.201900165. DOI

Su M., Chen X., Tang L., Yang B., Zou H., Liu J., Li Y., Chen S., Fan D. Black phosphorus (BP)–graphene guided-wave surface plasmon resonance (GWSPR) biosensor. Nanophotonics. 2020;9:4265–4272. doi: 10.1515/nanoph-2020-0251. DOI

Kishore S.C., Perumal S., Atchudan R., Alagan M., Sundramoorthy A.K., Ramalingam S., Manoj D., Sambasivam S. A critical review on black phosphorus and its utilization in the diverse range of sensors. Sens. Actuators A Chem. 2024;377:115719. doi: 10.1016/j.sna.2024.115719. DOI

Shekhar P., Raghuwanshi S.K., Singh Y. Enhancement of the sensitivity of a surface plasmon resonance sensor using a nobel structure based on barium titanate-graphene-silver. Opt. Quantum Electron. 2022;54:417.

Karki B., Pal A., Singh Y., Sharma S. Sensitivity enhancement of surface plasmon resonance sensor using 2D material barium titanate and black phosphorus over the bimetallic layer of Au, Ag, and Cu. Opt. Commun. 2022;508:127616. doi: 10.1016/j.optcom.2021.127616. DOI

Uniyal A., Pal A., Srivastava G., Rana M.M., Taya S.A., Sharma A., Altahan B.R., Tomar S., Singh Y., Parajuli D., et al. Surface plasmon resonance biosensor sensitivity improvement employing of 2D materials and BaTiO3 with bimetallic layers of silver. J. Mater. Sci. Mater. Electron. 2023;34:466. doi: 10.1007/s10854-023-09821-w. DOI

Gan S., Zhao Y., Dai X., Xiang Y. Sensitivity enhancement of surface plasmon resonance sensors with 2D franckeite nanosheets. Results Phys. 2019;13:102320. doi: 10.1016/j.rinp.2019.102320. PubMed DOI PMC

Song B., Li D., Qi W., Elstner M., Fan C., Fang H. Graphene on Au (111): A highly conductive material with excellent adsorption properties for high-resolution bio/nanodetection and identification. ChemPhysChem. 2010;11:585–589. doi: 10.1002/cphc.200900743. PubMed DOI

Abellán G., Wild S., Lloret V., Scheuschner N., Gillen R., Mundloch U., Maultzsch J., Varela M., Hauke F., Hirsch A. Fundamental insights into the degradation and stabilization of thin layer black phosphorus. J. Am. Chem. Soc. 2017;139:10432–10440. doi: 10.1021/jacs.7b04971. PubMed DOI PMC

Zhang Y., Jiang Q., Lang P., Yuan N., Tang J. Fabrication and applications of 2D black phosphorus in catalyst, sensing and electrochemical energy storage. J. Alloy. Compd. 2021;850:156580. doi: 10.1016/j.jallcom.2020.156580. DOI

Cho S.Y., Lee Y., Koh H.J., Jung H., Kim J.S., Yoo H.W., Kim J., Jung H.T. Superior Chemical Sensing Performance of Black Phosphorus: Comparison with MoS2 and Graphene. Adv. Mater. 2016;28:7020–7028. doi: 10.1002/adma.201601167. PubMed DOI

Wu L., Guo J., Wang Q., Lu S., Dai X., Xiang Y., Fan D. Sensitivity enhancement by using few-layer black phosphorus-graphene/TMDCs heterostructure in surface plasmon resonance biochemical sensor. Sens. Actuators B Chem. 2017;249:542–548. doi: 10.1016/j.snb.2017.04.110. DOI

Zhou L., Liu C., Sun Z., Mao H., Zhang L., Yu X., Zhao J., Chen X. Black phosphorus based fiber optic biosensor for ultrasensitive cancer diagnosis. Biosens. Bioelectron. 2019;137:140–147. doi: 10.1016/j.bios.2019.04.044. PubMed DOI

Pandey A., Nikam A.N., Fernandes G., Kulkarni S., Padya B.S., Prassl R., Das S., Joseph A., Deshmukh P.K., Patil P.O., et al. Black phosphorus as multifaceted advanced material nanoplatforms for potential biomedical applications. Nanomaterials. 2020;11:13. doi: 10.3390/nano11010013. PubMed DOI PMC

Shalabney A., Abdulhalim I. Sensitivity-enhancement methods for surface plasmon sensors. Laser Photonics Rev. 2011;5:571–606. doi: 10.1002/lpor.201000009. DOI

Lakayan D., Tuppurainen J., Albers M., van Lint M.J., van Iperen D.J., Weda J.J., Kuncova-Kallio J., Somsen G.W., Kool J. Angular scanning and variable wavelength surface plasmon resonance allowing free sensor surface selection for optimum material-and bio-sensing. Sens. Actuators B Chem. 2018;259:972–979. doi: 10.1016/j.snb.2017.12.131. DOI

Chen S., Lin C. Figure of merit analysis of graphene based surface plasmon resonance biosensor for visible and near infrared. Opt. Commun. 2019;435:102–107. doi: 10.1016/j.optcom.2018.11.031. DOI

Lin Z., Chen S., Lin C. Sensitivity improvement of a surface plasmon resonance sensor based on two-dimensional materials hybrid structure in visible region: A theoretical study. Sensors. 2020;20:2445. doi: 10.3390/s20092445. PubMed DOI PMC

Priya S., Laha R., Dantham V.R. Wavelength-dependent angular shift and figure of merit of silver-based surface plasmon resonance biosensor. Sens. Actuators A Chem. 2020;315:112289. doi: 10.1016/j.sna.2020.112289. DOI

Sang W., Huang S., Chen J., Dai X., Liu H., Zeng Y., Zhang T., Wang X., Qu J., Ho H.P., et al. Wavelength sequential selection technique for high-throughput multi-channel phase interrogation surface plasmon resonance imaging sensing. Talanta. 2023;258:124405. doi: 10.1016/j.talanta.2023.124405. PubMed DOI

Fernandes G.B., Wang Y., Blair S., Marques J.L., Moreira C.S. Wavelength-dependent angular sensitivity signatures in SPR sensors: Is the 633 nm wavelength still optimal for the latest designs? IEEE Sens. J. 2024;24:17653–17660. doi: 10.1109/JSEN.2024.3388046. DOI

Gryga M., Ciprian D., Gembalova L., Hlubina P. One-dimensional photonic crystal with a defect layer utilized as an optical filter in narrow linewidth LED-based sources. Crystals. 2023;13:93. doi: 10.3390/cryst13010093. DOI

Rakić A.D., Djurišić A.B., Elazar J.M., Majewski M.L. Optical properties of metallic films for vertical-cavity optoelectronic devices. Optik. 1998;37:5271–5283. doi: 10.1364/AO.37.005271. PubMed DOI

Malitson I.H. Interspecimen Comparison of the Refractive Index of Fused Silica. J. Opt. Soc. Amer. 1965;55:1205–1209. doi: 10.1364/JOSA.55.001205. DOI

Liu Z., Aydin K. Localized surface plasmons in nanostructured monolayer black phosphorus. Nano Lett. 2016;16:3457–3462. doi: 10.1021/acs.nanolett.5b05166. PubMed DOI

Han L., Wang L., Xing H., Chen X. Anisotropic plasmon induced transparency in black phosphorus nanostrip trimer. Opt. Mater. Express. 2019;9:352–361. doi: 10.1364/OME.9.000352. DOI

Chen H., Xiong L., Hu F., Xiang Y., Dai X., Li G. Ultrasensitive and tunable sensor based on plasmon-induced transparency in a black phosphorus metasurface. Plasmonics. 2021;16:1071–1077. doi: 10.1007/s11468-021-01374-0. DOI

Lee S.Y., Yee K.J. Black phosphorus phase retarder based on anisotropic refractive index dispersion. 2D Mater. 2021;9:015020. doi: 10.1088/2053-1583/ac3a99. DOI

Hu Y., Yang F., Chen J., Lu S., Zeng Q., Han H., Ma Y., Zhao Z., Chai G., Xiang B., et al. High-responsivity and high-speed black phosphorus photodetectors integrated with proton exchanged thin-film lithium niobate waveguides. Opt. Express. 2023;31:27962–27972. doi: 10.1364/OE.497756. PubMed DOI

Xin W., Jiang H.B., Sun T.Q., Gao X.G., Chen S.N., Zhao B., Yang J.J., Liu Z.B., Tian J.G., Guo C.L. Optical anisotropy of black phosphorus by total internal reflection. Nano Mater. Sci. 2019;1:304–309. doi: 10.1016/j.nanoms.2019.09.006. DOI

Zhang W., Wu W., Chen S., Zhang J., Ling X., Shu W., Luo H., Wen S. Photonic spin Hall effect on the surface of anisotropic two-dimensional atomic crystals. Photonics Res. 2018;6:511–516. doi: 10.1364/PRJ.6.000511. DOI

Sinibaldi A., Danz N., Descrovi E., Munzert P., Schulz U., Sonntag F., Dominici L., Michelotti F. Direct comparison of the performance of Bloch surface wave and surface plasmon polariton sensors. Sens. Actuators B Chem. 2012;174:292–298. doi: 10.1016/j.snb.2012.07.015. DOI

Yeh P. Optical Waves in Layered Media. John Wiley and Sons; Hoboken NJ, USA: 2005.

Xia F., Wang H., Jia Y. Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nat. Commun. 2014;5:4458. doi: 10.1038/ncomms5458. PubMed DOI

Kanok R., Abuleil M., Hlubina P., Abdulhalim I. Bloch surface wave fast ellipsometric sensor utilizing a polarization camera with an improved detection limit. Opt. Laser Technol. 2024;179:111218. doi: 10.1016/j.optlastec.2024.111218. DOI

Hasib M.H.H., Nur J.N., Rizal C., Shushama K.N. Improved transition metal dichalcogenides-based surface plasmon resonance biosensors. Condens. Matter. 2019;4:49. doi: 10.3390/condmat4020049. DOI

Roy S., Mondol N., Kundu D., Meem A.A., Islam M.R., Hossain M.A., Hossain M.B. Numerical investigation into impact of halide perovskite material on the optical performance of prism-loaded hybrid surface plasmon resonance biosensor: A strategy to increase sensitivity. Sens. Bio-Sens. Res. 2024;43:100630. doi: 10.1016/j.sbsr.2024.100630. DOI

Kumar A., Yadav A.K., Kushwaha A.S., Srivastava S. A comparative study among WS2, MoS2 and graphene based surface plasmon resonance (SPR) sensor. Sens. Actuators Rep. 2020;2:100015. doi: 10.1016/j.snr.2020.100015. DOI

Chen S., Lin C. Sensitivity comparison of graphene based surface plasmon resonance biosensor with Au, Ag and Cu in the visible region. Mater. Res. Express. 2019;6:056503. doi: 10.1088/2053-1591/ab009d. DOI

Panda A., Pukhrambam P.D. Modeling of high-performance SPR refractive index sensor employing novel 2D materials for detection of malaria pathogens. IEEE Trans. NanoBiosci. 2021;21:312–319. doi: 10.1109/TNB.2021.3115906. PubMed DOI

Chen S., Lin Z., Bai G., Lin C. Comparative study on sensitivity enhancement of a graphene based nearly guided-wave surface plasmon resonance biosensor optimized using genetic algorithm in the visible region. Opt. Quantum Electron. 2022;54:199. doi: 10.1007/s11082-022-03584-0. DOI

Liu L., Wang M., Jiao L., Wu T., Xia F., Liu M., Kong W., Dong L., Yun M. Sensitivity enhancement of a graphene–barium titanate-based surface plasmon resonance biosensor with an Ag–Au bimetallic structure in the visible region. JOSA B. 2019;36:1108–1116. doi: 10.1364/JOSAB.36.001108. DOI

Srivastava A., Das R., Prajapati Y.K. Effect of perovskite material on performance of surface plasmon resonance biosensor. IET Optoelectron. 2020;14:256–265. doi: 10.1049/iet-opt.2019.0122. DOI

Zhu Q., Shen Y., Chen Z., Chen B., Dai E., Pan W. Anisotropic Sensing Performance in a High-Sensitivity Surface Plasmon Resonance Sensor Based on Few-Layer Black Phosphorus. Sensors. 2024;24:3851. doi: 10.3390/s24123851. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...