Sensitivity analysis of parameters for carbon sequestration: Symbolic regression models based on open porous media reservoir simulators predictions
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
39634430
PubMed Central
PMC11615518
DOI
10.1016/j.heliyon.2024.e40044
PII: S2405-8440(24)16075-6
Knihovny.cz E-zdroje
- Klíčová slova
- Carbon sequestration, Machine learning modeling, Open porous media (OPM) flow, Petroleum engineering, Sensitivity analysis, Symbolic regression,
- Publikační typ
- časopisecké články MeSH
Open Porous Media (OPM) Flow is an open-source reservoir simulator used for solving subsurface porous media flow problems. Focus is placed here on carbon sequestration and the modeling of fluid flow within underground porous reservoirs. In this study, a sensitivity analysis of some input parameters for carbon sequestration is performed using six different uncertain parameters. An ensemble of model realizations is simulated using OPM Flow, and the model output is then calculated based on the values of the six input parameters mentioned above. CO2 injection is simulated for a period of 15 years, while the post-injection migration of CO2 in the saline storage aquifer is simulated for a subsequent period of 200 years, leading to a final analysis after 215 years. The input parameter values are generated using the quasi-Monte Carlo (QMC) method in the region of interest, following specified patterns suitable for analysis. The optimal convergence rate for quasi-Monte Carlo is observed. The aim of this study is to identify important input parameters contributing significantly to the model output, which is accomplished using sensitivity analysis and verified through symbolic regression modeling based on machine learning. Global sensitivity analysis using the Sobol sequence identifies input parameter 3, 'Permeability of shale between sand layers,' as having the most influence on the model output 'Secondary Trapped CO2.' All regression models, including the simplest and least accurate ones, incorporate parameter 3, confirming its significance. These approximations are valid within the designated area of interest for the input parameters and are easily interpretable for human experts. Sensitivity analysis of the developed time-dependent carbon sequestration model shows that the significance of each physical parameter changes over time: Sand porosity is more significant than shale permeability for roughly the first 120 years. Consequently, the presented results show that simulation timescales of at least 200 years are necessary for carbon sequestration evaluation.
Faculty of Electronic Engineering University of Niš 18000 Niš Serbia
IT4Innovations VSB Technical University of Ostrava 708 00 Ostrava Czech Republic
Zobrazit více v PubMed
Rasmussen A.F., Sandve T.H., Bao K., Lauser A., Hove J., Skaflestad B., Klöfkorn R., Blatt M., Rustad A.B., Sævareid O., Lie K.-A., Thune A. The open porous media flow reservoir simulator. Comput. Math. Appl. 2021;81:159–185. doi: 10.1016/j.camwa.2020.05.014. DOI
Okoroafor E.R., Sampaio L., Gasanzade F., Claro Y.P., Zhou J.D., Saltzer S.D., Bauer S., Kovscek A.R. Intercomparison of numerical simulation models for hydrogen storage in porous media using different codes. Energy Convers. Manag. 2023;292 doi: 10.1016/j.enconman.2023.117409. DOI
Roe G. In defense of Milankovitch. Geophys. Res. Lett. 2006;33(24) doi: 10.1029/2006GL027817. DOI
Marsh G.E. Interglacials, Milankovitch cycles, solar activity, and carbon dioxide. J. Climatol. 2014 doi: 10.1155/2014/345482. 2014. DOI
Davis W.J. The relationship between atmospheric carbon dioxide concentration and global temperature for the last 425 million years. Climate. 2017;5(4):76. doi: 10.3390/cli5040076. DOI
Gür T.M. Carbon dioxide emissions, capture, storage and utilization: review of materials, processes and technologies. Prog. Energy Combust. Sci. 2022;89 doi: 10.1016/j.pecs.2021.100965. DOI
Smirnov B.M. Physics of the earth's glacial cycle. Foundations. 2022;2(4):1114–1128. doi: 10.3390/foundations2040073. DOI
Rigby S.P., Alsayah A. Storage sites for carbon dioxide in the north sea and their particular characteristics. Energies. 2023;17(1):211. doi: 10.3390/en17010211. DOI
Sun X., Shang A., Wu P., Liu T., Li Y. A review of CO2 marine geological sequestration. Processes. 2023;11(7):2206. doi: 10.3390/pr11072206. DOI
Lackner K.S. A guide to CO2 sequestration. Science. 2003;300(5626):1677–1678. doi: 10.1126/science.1079033. PubMed DOI
Lal R. Carbon sequestration. Phil. Trans. Biol. Sci. 2008;363(1492):815–830. doi: 10.1098/rstb.2007.2185. PubMed DOI PMC
Kumar N., Verma A., Ahmad T., Sahu R.K., Mandal A., Mubashir M., Ali M., Pal N. Carbon capture and sequestration technology for environmental remediation: a CO2 utilization approach through EOR. Geoenergy Science and Engineering. 2023;212619 doi: 10.1016/j.geoen.2023.212619. DOI
Park C., Oh J., Jo S., Jang I., Lee K.S. Multi-objective optimization of CO2 sequestration in heterogeneous saline aquifers under geological uncertainty. Appl. Sci. 2021;11(20):9759. doi: 10.3390/app11209759. DOI
Tang L., Fan J., Li Z., Chen J., Liu W. A new constitutive model for salt rock under cyclic loadings based on state variables. Geoenergy Science and Engineering. 2024;233 doi: 10.1016/j.geoen.2023.212433. DOI
Xie Z., Cao C., Zhao Y., Zhang L., Zhang R., Li J., Zhang D. A new pressure management framework for CO2 sequestration in deep saline aquifers based on genetic algorithm. Geoenergy Science and Engineering. 2024;212668 doi: 10.1016/j.geoen.2024.212668. DOI
Deng K., Ge Z., Zhang H., Gong S., Zhang H. Isothermal adsorption characteristics of various phases of CO2 and CH4 in different rank coals. Energy Sources, Part A Recovery, Util. Environ. Eff. 2023;45(2):6356–6370. doi: 10.1080/15567036.2023.2211035. DOI
Han S., Wang S., Guo C., Sang S., Xu A., Gao W., Zhou P. Distribution of the adsorbed density of supercritical CO2 onto the anthracite and its implication for CO2 geologic storage in deep coal. Geoenergy Science and Engineering. 2024;234 doi: 10.1016/j.geoen.2023.212624. DOI
Wei J., Chen Y., Liang W. Experimental and theoretical investigation on permeability evolution of fractures in anthracite with supercritical CO2 immersion. Int. J. Rock Mech. Min. Sci. 2024;174 doi: 10.1016/j.ijrmms.2024.105651. DOI
Li Y., Tian H. Development and application of a simulator for simulating the behaviors of a geological system when replacing CH4 from hydrate-bearing reservoirs by CO2. Energies. 2023;16(8):3342. doi: 10.3390/en16083342. DOI
Wei B., Wang B., Li X., Aishan M., Ju Y. CO2 storage in depleted oil and gas reservoirs: a review. Advances in Geo-Energy Research. 2023;9(2):76–93. doi: 10.46690/ager.2023.08.02. DOI
Heidarabad R.G., Shin K. Carbon capture and storage in depleted oil and gas reservoirs: the viewpoint of wellbore injectivity. Energies. 2024;17(5):1201. doi: 10.3390/en17051201. DOI
Yang Y., Liao G., Wu Y., Ma X., Dong Z., Li W., Wei J. Displacement efficiency and storage characteristics of CO2 in low permeability reservoirs: an experimental work. Energy Explor. Exploit. 2023;41(2):601–618. doi: 10.1177/01445987221142664. DOI
Gupta A., Paul A.R. Influence of relative permeability, capillary pressure, and well orientation in the geological carbon sequestration in a saline aquifer. Int. J. Oil Gas Coal Technol. 2022;31(3):263–279. doi: 10.1504/IJOGCT.2022.126360. DOI
Hutchinson J.J., Campbell C.A., Desjardins R.L. Some perspectives on carbon sequestration in agriculture. Agric. For. Meteorol. 2007;142(2–4):288–302. doi: 10.1016/j.agrformet.2006.03.030. DOI
Guan D., Nie J., Zhou L., Chang Q., Cao J. How to simulate carbon sequestration potential of forest vegetation? A forest carbon sequestration model across a typical mountain city in China. Rem. Sens. 2023;15(21):5096. doi: 10.3390/rs15215096. DOI
Verma P., Ghosh P.K. The economics of forest carbon sequestration: a bibliometric analysis. Environ. Dev. Sustain. 2023:1–31. doi: 10.1007/s10668-023-02922-w. DOI
Zheng J., Chong Z.R., Qureshi M.F., Linga P. Carbon dioxide sequestration via gas hydrates: a potential pathway toward decarbonization. Energy & Fuels. 2020;34(9):10529–10546. doi: 10.1021/acs.energyfuels.0c02309. DOI
Cao X., Wang H., Yang K., Wu S., Chen Q., Bian J. Hydrate-based CO2 sequestration technology: feasibilities, mechanisms, influencing factors, and applications. J. Petrol. Sci. Eng. 2022;219 doi: 10.1016/j.petrol.2022.111121. DOI
Rau G.H., Caldeira K. Enhanced carbonate dissolution: a means of sequestering waste CO2 as ocean bicarbonate. Energy Convers. Manag. 1999;40(17):1803–1813. doi: 10.1016/S0196-8904(99)00071-0. DOI
Ellingboe E., Arehart J.H., Srubar III W.V. On the theoretical CO2 sequestration potential of pervious concrete. Infrastructures. 2019;4(1):12. doi: 10.3390/infrastructures4010012. DOI
Kazemian M., Shafei B. Carbon sequestration and storage in concrete: a state-of-the-art review of compositions, methods, and developments. J. CO2 Util. 2023;70 doi: 10.1016/j.jcou.2023.102443. DOI
Sajdak M., Zajemska M., Ouadi M., Mucha W., Misztal E., Pieszko C., Gałko G. Perspectives of using sewage sludge char in CO2 sequestration on degraded and brownfield sites. Energies. 2023;16(9):3945. doi: 10.3390/en16093945. DOI
Jiang L., Cheng L., Zhang Y., Liu G., Sun J. A review on CO2 sequestration via mineralization of coal fly ash. Energies. 2023;16(17):6241. doi: 10.3390/en16176241. DOI
Huang W., Xu R., Zhang F., Zou Y., Jiang P. CO2 capture analysis in different combustion methods for CO2 utilisation and storage. Int. J. Oil Gas Coal Technol. 2022;29(3):285–305. doi: 10.1504/IJOGCT.2022.121048. DOI
Liu Y., Hu T., Rui Z., Zhang Z., Du K., Yang T., Dindoruk B., Stenby E.H., Torabi F., Afanasyev A. An integrated framework for geothermal energy storage with CO2 sequestration and utilization. Engineering. 2023;30:121–130. doi: 10.1016/j.eng.2022.12.010. DOI
Dai Z., Middleton R., Viswanathan H., Fessenden-Rahn J., Bauman J., Pawar R., Lee S.Y., McPherson B. An integrated framework for optimizing CO2 sequestration and enhanced oil recovery. Environ. Sci. Technol. Lett. 2014;1(1):49–54. doi: 10.1021/ez4001033. DOI
Sambo C., Liu N., Shaibu R., Ahmed A.A., Hashish R.G. A technical review of CO2 for enhanced oil recovery in unconventional oil reservoirs. Geoenergy Science and Engineering. 2023;221 doi: 10.1016/j.petrol.2022.111185. DOI
Watson F.E., Mathias S.A., Daniels S.E., Jones R.R., Davies R.J., Hedley B.J., van Hunen J. Dynamic modelling of a UK North Sea saline formation for CO2 sequestration. Petrol. Geosci. 2014;20(2):169–185. doi: 10.1144/petgeo2012-072. DOI
Celia M.A., Bachu S., Nordbotten J.M., Bandilla K.W. Status of CO2 storage in deep saline aquifers with emphasis on modeling approaches and practical simulations. Water Resour. Res. 2015;51(9):6846–6892. doi: 10.1002/2015WR017609. DOI
Pavan T.N.V., Govindarajan S.K. Numerical investigations on performance of sc-CO2 sequestration associated with the evolution of porosity and permeability in low permeable saline aquifers. Geoenergy Science and Engineering. 2023;225 doi: 10.1016/j.geoen.2023.211681. DOI
Chen B., Harp D.R., Lin Y., Keating E.H., Pawar R.J. Geologic CO2 sequestration monitoring design: a machine learning and uncertainty quantification based approach. Appl. Energy. 2018;225:332–345. doi: 10.1016/j.apenergy.2018.05.044. DOI
Rathmaier D., Naim F., William A.C., Chakraborty D., Conwell C., Imhof M., Holmes G.M., Zerpa L.E. A reservoir modeling study for the evaluation of CO2 storage upscaling at the decatur site in the Eastern Illinois Basin. Energies. 2024;17(5):1212. doi: 10.3390/en17051212. DOI
Sobol I.M. Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates. Math. Comput. Simulat. 2001;55(1–3):271–280. doi: 10.1016/S0378-4754(00)00270-6. DOI
Sobol’ I.M., Asotsky D., Kreinin A., Kucherenko S. Construction and comparison of high‐dimensional Sobol generators. Wilmott. 2011;2011(56):64–79. doi: 10.1002/wilm.10056. DOI
Azzini I., Mara T., Rosati R. Monte Carlo estimators of first-and total-orders Sobol’ indices. arXiv preprint arXiv:2006.08232. 2020 doi: 10.48550/arXiv.2006.08232. DOI
Praks P., Brkić D. Approximate flow friction factor: estimation of the accuracy using Sobol's quasi-random sampling. Axioms. 2022;11(2):36. doi: 10.3390/axioms11020036. DOI
CO2DataShare Sleipner 2019 Benchmark Model. 2020 doi: 10.11582/2020.00004. DOI
Becker W. University of Sheffield; 2011. Uncertainty Propagation through Large Nonlinear Models.https://etheses.whiterose.ac.uk/15000/ 20-May-24.
Kopustinskas V., Praks P., Mara T., Rossati R. In: Safety and Reliability–Safe Societies in a Changing World. Haugen Stein, Barros Anne, Gulijk Coen., editors. 2018. Application of PCE sensitivity analysis method to gas transmission network; pp. 2693–2700. (CRC Press. Proceedings of ESREL 2018, June 17-21, 2018, Trondheim, Norway). Trond Kongsvik, and Jan Erik Vinnem. DOI
Pisoni E., Albrecht D., Mara T.A., Rosati R., Tarantola S., Thunis P. Application of uncertainty and sensitivity analysis to the air quality SHERPA modelling tool. Atmos. Environ. 2018;183:84–93. doi: 10.1016/j.atmosenv.2018.04.006. DOI
Saltelli A., Aleksankina K., Becker W., Fennell P., Ferretti F., Holst N., Li S., Wu Q. Why so many published sensitivity analyses are false: a systematic review of sensitivity analysis practices. Environ. Model. Software. 2019;114:29–39. doi: 10.1016/j.envsoft.2019.01.012. DOI
Geffray C., Gerschenfeld A., Kudinov P., Mickus I., Jeltsov M., Kööp K., Grishchenko D., Pointer D. Thermal Hydraulics Aspects of Liquid Metal Cooled Nuclear Reactors. Woodhead Publishing; 2019. Verification and validation and uncertainty quantification; pp. 383–405. DOI
Filippov Е.V., Zaharov L.А., Martyushev D.А., Ponomareva I.N. Reproduction of reservoir pressure by machine learning methods and study of its influence on the cracks formation process in hydraulic fracturing. Записки Горного института/Journal of Mining Institute. 2022;258:924–932. doi: 10.31897/PMI.2022.103. DOI
Schmidt M., Lipson H. Distilling free-form natural laws from experimental data. Science. 2009;324(5923):81–85. doi: 10.1126/science.1165893. PubMed DOI
de Silva B.M., Higdon D.M., Brunton S.L., Kutz J.N. Discovery of physics from data: universal laws and discrepancies. Frontiers in Artificial Intelligence. 2020;3:25. doi: 10.3389/frai.2020.00025. PubMed DOI PMC
Brkić D., Praks P. Accurate and efficient explicit approximations of the Colebrook flow friction equation based on the Wright ω-function. Mathematics. 2019;7(1):34. doi: 10.3390/math7010034. DOI
Praks P., Brkić D. Review of new flow friction equations: constructing Colebrook's explicit correlations accurately. Rev. Int. Métodos Numéricos Cálculo Diseño Ing. 2020;36(3):41. doi: 10.23967/j.rimni.2020.09.001. DOI
Ma L., Guo Q., Li X., Xu S., Zhou J., Ye M., Liu Z. Drag correlations for flow past monodisperse arrays of spheres and porous spheres based on symbolic regression: effects of permeability. Chem. Eng. J. 2022;445 doi: 10.1016/j.cej.2022.136653. DOI
Haghpanah R., Shade D. Fitting adsorption isotherms with symbolic regression. Ind. Eng. Chem. Res. 2023;62(51):22141–22148. doi: 10.1021/acs.iecr.3c02900. DOI
Kalam S., Arif M., Raza A., Lashari N., Mahmoud M. Data-driven modeling to predict adsorption of hydrogen on shale kerogen: implication for underground hydrogen storage. Int. J. Coal Geol. 2023;280 doi: 10.1016/j.coal.2023.104386. DOI
Ponomareva I.N., Martyushev D.A., Govindarajan S.K. A new approach to predict the formation pressure using multiple regression analysis: case study from Sukharev oil field reservoir–Russia. Journal of King Saud University-Engineering Sciences. 2022 doi: 10.1016/j.jksues.2022.03.005. DOI
Witte P.A., Konuk T., Skjetne E., Chandra R. Fast CO2 saturation simulations on large-scale geomodels with artificial intelligence-based Wavelet Neural Operators. Int. J. Greenh. Gas Control. 2023;126 doi: 10.1016/j.ijggc.2023.103880. DOI
Rezk M.G., Ibrahim A.F., Adebayo A.R. Influence of impurities on reactive transport of CO2 during geo-sequestration in saline aquifers. Fuel. 2023;344 doi: 10.1016/j.fuel.2023.127994. DOI
Feng R. Physics-informed deep learning for rock physical inversion and its uncertainty analysis. Geoenergy Science and Engineering. 2023;230 doi: 10.1016/j.geoen.2023.212229. DOI
Teng Y., Wang P., Xie H., Zhu J. Capillary trapping characteristics of CO2 sequestration in fractured carbonate rock and sandstone using MRI. J. Nat. Gas Sci. Eng. 2022;108 doi: 10.1016/j.jngse.2022.104809. DOI
Liu J., Tu L., Liu G., Jiang C., Zhang Z. An analytical structural global sensitivity analysis method based on direct integral. Inverse Problems in Science and Engineering. 2018;27(11):1559–1576. doi: 10.1080/17415977.2018.1531856. Informa UK Limited. DOI
Tarantola S., Ferretti F., Lo Piano S., Kozlova M., Lachi A., Rosati R., Puy A., Roy P., Vannucci G., Kuc-Czarnecka M., Saltelli A. vol. 174. Elsevier BV; 2024. An annotated timeline of sensitivity analysis. (Environmental Modelling & Software). DOI
Herman J., Usher W. SALib: an open-source Python library for sensitivity analysis. J. Open Source Softw. 2017;2(9):97. doi: 10.21105/joss.00097. DOI
Pianosi F., Wagener T. Distribution-based sensitivity analysis from a generic input-output sample. Environ. Model. Software. 2018;108:197–207. doi: 10.1016/j.envsoft.2018.07.019. DOI
Kleijnen J.P. An overview of the design and analysis of simulation experiments for sensitivity analysis. Eur. J. Oper. Res. 2005;164(2):287–300. doi: 10.1016/j.ejor.2004.02.005. DOI
Pujol T., Duran-Ros M., Betancur J.D., Arbat G., Cufí S., Pujol J., de Cartagena F.R., Puig-Bargués J. Sensitivity analysis of a particle retention model and application to a pressurised sand bed filter for drip irrigation. Biosyst. Eng. 2023;230:51–70. doi: 10.1016/j.biosystemseng.2023.04.006. DOI
Ouanes S., Sriti L. Regression-based sensitivity analysis and multi-objective optimisation of energy performance and thermal comfort: building envelope design in hot arid urban context. Build. Environ. 2024;248 doi: 10.1016/j.buildenv.2023.111099. DOI
Stajić L., Praksová R., Brkić D., Praks P. Estimation of global natural gas spot prices using big data and symbolic regression. Resour. Pol. 2024;95 doi: 10.1016/j.resourpol.2024.105144. DOI
Leobacher Gunther, Friedrich Pillichshammer. vol. 2012. 2013. (Introduction to Quasi Montecarlo Methods). DOI
Gomes F.M., Pereira F.M., Silva A.F., Silva M.B. Multiple response optimization: analysis of genetic programming for symbolic regression and assessment of desirability functions. Knowl. Base Syst. 2019;179:21–33. doi: 10.1016/j.knosys.2019.05.002. DOI
Yamashita G.H., Fogliatto F.S., Anzanello M.J., Tortorella G.L. Customized prediction of attendance to soccer matches based on symbolic regression and genetic programming. Expert Syst. Appl. 2022;187 doi: 10.1016/j.eswa.2021.115912. DOI
Dubčáková R. Eureqa: software review. Genet. Program. Evolvable Mach. 2011;12:173–178. doi: 10.1007/s10710-010-9124-z. DOI
Manache G., Melching C.S. Identification of reliable regression- and correlation-based sensitivity measures for importance ranking of water-quality model parameters. Environ. Model. Software. 2008;23(5):549–562. doi: 10.1016/j.envsoft.2007.08.001. Elsevier BV. DOI
Iooss B., Lemaître P. In: Uncertainty Management in Simulation-Optimization of Complex Systems. Dellino G., Meloni C., editors. vol. 59. Springer; Boston, MA: 2015. A review on global sensitivity analysis methods. (Operations Research/Computer Science Interfaces Series). DOI
Hervas-Raluy S., Wirthl B., Guerrero P.E., Robalo Rei G., Nitzler J., Coronado E., Font de Mora Sainz J., Schrefler B.A., Gomez-Benito M.J., Garcia-Aznar J.M., Wall W.A. Tumour growth: an approach to calibrate parameters of a multiphase porous media model based on in vitro observations of Neuroblastoma spheroid growth in a hydrogel microenvironment. Comput. Biol. Med. 2023;159 doi: 10.1016/j.compbiomed.2023.106895. Elsevier BV. PubMed DOI
Chinta S., Gao X., Zhu Q. Machine learning driven sensitivity analysis of E3SM land model parameters for wetland methane emissions. In journal of advances in modeling earth systems. American Geophysical Union (AGU) 2024;16(Issue 7) doi: 10.1029/2023ms004115. DOI
Experimental Analysis of Magnetic Focusing of the Plasma Arc of a Cutting Torch