Distributed Bragg Reflectors Employed in Sensors and Filters Based on Cavity-Mode Spectral-Domain Resonances

. 2022 May 10 ; 22 (10) : . [epub] 20220510

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35632032

Spectral-domain resonances for cavities formed by two distributed Bragg reflectors (DBRs) were analyzed theoretically and experimentally. We model the reflectance and transmittance spectra of the cavity at the normal incidence of light when DBRs are represented by a one-dimensional photonic crystal (1DPhC) comprising six bilayers of TiO2/SiO2 with a termination layer of TiO2. Using a new approach based on the reference reflectance, we model the reflectance ratio as a function of both the cavity thickness and its refractive index (RI) and show that narrow dips within the 1DPhC band gap can easily be resolved. We revealed that the sensitivity and figure of merit (FOM) are as high as 610 nm/RIU and 938 RIU-1, respectively. The transmittance spectra include narrow peaks within the 1DPhC band gap and their amplitude and spacing depend on the cavity's thickness. We experimentally demonstrated the sensitivity to variations of relative humidity (RH) of moist air and FOM as high as 0.156 nm/%RH and 0.047 %RH-1, respectively. In addition, we show that, due to the transmittance spectra, the DBRs with air cavity can be employed as spectral filters, and this is demonstrated for two LED sources for which their spectra are filtered at wavelengths 680 nm and 780 nm, respectively, to widths as narrow as 2.3 nm. The DBR-based resonators, thus, represent an effective alternative to both sensors and optical filters, with advantages including the normal incidence of light and narrow-spectral-width resonances.

Zobrazit více v PubMed

Joannopoulos J.D., Johnson S.G., Winn J.N., Meade R.D. Photonic Crystals: Molding the Flow of Light. Princeton University Press; Princeton, NJ, USA: 2008.

Fink Y., Winn J.N., Fan S., Chen C., Miche J., Joannopoulos J.D., Thomas E.L. A Dielectric Omnidirectional Reflector. Science. 1998;282:1679–1682. doi: 10.1126/science.282.5394.1679. PubMed DOI

Wu F., Lu G., Guo Z., Jiang H., Xue C., Zheng M., Chen C., Du G., Chen H. Redshift gaps in one-dimensional photonic crystals containing hyperbolic metamaterials. Phys. Rev. Appl. 2018;10:064022. doi: 10.1103/PhysRevApplied.10.064022. DOI

Villar I.D., Matías I.R., Arregui F.J., Claus R.O. Analysis of one-dimensional photonic band gap structures with a liquid crystal defect towards development of fiber-optic tunable wavelength filters. Opt. Express. 2003;11:430–436. doi: 10.1364/OE.11.000430. PubMed DOI

Ghosh R., Ghosh K.K., Chakraborty R. A novel tunable filter featuring defect mode of the TE wave from one-dimensional photonic crystals doped by magnetized plasma. Opt. Commun. 2013;289:75–80. doi: 10.1016/j.optcom.2012.10.001. DOI

Zhao X., Yang Y., Wen J., Chen Z., Zhang M., Fei H., Hao Y. Tunable dual-channel filter based on the photonic crystal with air defects. Appl. Opt. 2017;56:5463–5469. doi: 10.1364/AO.56.005463. PubMed DOI

Wang F., Cheng Y.Z., Wang X., Zhang Y.N., Nie Y., Gong R.Z. Narrow Band Filter at 1550 nm Based on Quasi-One-Dimensional Photonic Crystal with a Mirror-Symmetric Heterostructure. Materials. 2018;11:1099. doi: 10.3390/ma11071099. PubMed DOI PMC

Guillermain E., Lysenko V., Orobtchouk R., Benyattou T., Roux S., Pillonnet A., Perriat P. Bragg surface wave device based on porous silicon and its application for sensing. Appl. Phys. Lett. 2007;90:241116. doi: 10.1063/1.2747671. DOI

Liscidini M., Sipe J.E. Analysis of Bloch-surface-wave assisted diffraction-based biosensors. J. Opt. Soc. Am. B. 2009;26:279–289. doi: 10.1364/JOSAB.26.000279. DOI

Chang Y.H., Jhu Y.Y., Wu C.J. Temperature dependence of defect mode in a defective photonic crystal. Opt. Commun. 2012;285:1501–1504. doi: 10.1016/j.optcom.2011.10.053. DOI

Farmer A., Friedli A.C., Wright S.M., Robertson W.M. Biosensing using surface electromagnetic waves in photonic band gap multilayers. Sens. Actuators B Chem. 2012;173:79–84. doi: 10.1016/j.snb.2012.06.015. DOI

Sinibaldi A., Rizzo R., Figliozzi G., Descrovi E., Danz N., Munzert P., Anopchenko A., Michelotti F. A full ellipsometric approach to optical sensing with Bloch surface waves on photonic crystals. Opt. Express. 2013;21:23331–23344. doi: 10.1364/OE.21.023331. PubMed DOI

Li Y., Yang T., Pang Z., Du G., Song S. Phase-sensitive Bloch surface wave sensor based on variable angle spectroscopic ellipsometry. Opt. Express. 2014;22:21403–21410. doi: 10.1364/OE.22.021403. PubMed DOI

Kong W., Zheng Z., Wan Y., Li J., Liu J. High-sensitivity sensing based on intensity-interrogated Bloch surface wave sensors. Sens. Actuators B Chem. 2014;193:467–471. doi: 10.1016/j.snb.2013.11.101. DOI

Bouzidi A., Bria D., Akjouj A., Pennec Y., Djafari-Rouhani B. A tiny gas-sensor system based on 1D photonic crystal. J. Phys. D Appl. Phys. 2015;48:495102. doi: 10.1088/0022-3727/48/49/495102. DOI

Kang X.B., Wen L., Wang Z.G. Design of guided Bloch surface wave resonance bio-sensors with high sensitivity. Opt. Commun. 2017;383:531–536. doi: 10.1016/j.optcom.2016.10.004. DOI

Gryga M., Vala D., Kolejak P., Gembalova L., Ciprian D., Hlubina P. One-dimensional photonic crystal for Bloch surface waves and radiation modes based sensing. Opt. Mater. Express. 2019;9:4009–4022. doi: 10.1364/OME.9.004009. DOI

Goyal A.K., Pal S. Design analysis of Bloch surface wave based sensor for haemoglobin concentration measurement. Appl. Nanosci. 2020;10:3639–3647. doi: 10.1007/s13204-020-01437-4. DOI

Gryga M., Ciprian D., Gembalova L., Hlubina P. Sensing based on Bloch surface wave and self-referenced guided mode resonances employing a one-dimensional photonic crystal. Opt. Express. 2021;29:12996–13010. doi: 10.1364/OE.421162. PubMed DOI

Kaliteevski M., Iorsh I., Brand S., Abram R.A., Chamberlain J.M., Kavokin A.V., Shelykh I.A. Tamm plasmon-polaritons: Possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror. Phys. Rev. B. 2007;76:165415. doi: 10.1103/PhysRevB.76.165415. DOI

Auguié B., Fuertes M.C., Angelomié P.C., Abdala N.L., Illia G.J.A.A.S., Fainstein A. Tamm Plasmon Resonance in Mesoporous Multilayers: Toward a Sensing Application. ACS Photonics. 2014;9:775–780. doi: 10.1021/ph5001549. DOI

Kumar S., Shukla M.K., Maji P.S., Das R. Self-referenced refractive index sensing with hybrid-Tamm-plasmon-polariton modes in subwavelength analyte layers. J. Phys. D Appl. Phys. 2017;50:375106. doi: 10.1088/1361-6463/aa7fd7. DOI

Maji P.S., Shukla M.K., Das R. Blood component detection based on miniaturized self-referenced hybrid Tamm-plasmon-polariton sensor. Sens. Actuators B Chem. 2018;255:729–734. doi: 10.1016/j.snb.2017.08.031. DOI

Zaky Z.A., Ahmed A.M., Shalaby A.S., Aly A.H. Refractive index gas sensor based on the Tamm state in a onedimensional photonic crystal: Theoretical optimisation. Sci. Rep. 2020;10:9736. doi: 10.1038/s41598-020-66427-6. PubMed DOI PMC

Jena S., Tokas R.B., Thakur S., Udupa D.V. Rabi-like splitting and refractive index sensing with hybrid Tamm plasmon-cavity modes. J. Phys. D Appl. Phys. 2022;55:175104. doi: 10.1088/1361-6463/ac49b3. DOI

Xu H., Wu P., Zhu C., Elbaza A., Gu Z.Z. Photonic crystal for gas sensing. J. Mater. Chem. C. 2013;1:6087–6098. doi: 10.1039/c3tc30722k. DOI

Chen Y.H., Shi W.H., Feng L., Xu X.Y., Shang-Guan M.Y. Study on simultaneous sensing of gas concentration and temperature in one-dimensional photonic crystal. Superlattices Microstruct. 2019;131:53–58. doi: 10.1016/j.spmi.2019.05.033. DOI

Surdo S., Barillaro G. On the performance of label-free biosensors based on vertical one-dimensional photonic crystal resonant cavities. Opt. Express. 2015;23:9192–9201. doi: 10.1364/OE.23.009192. PubMed DOI

El-Khozondar H.J., Mahalakshmi P., El-Khozondar R.J., Ramanujam N.R., Amiri I.S., Yupapin P. Design of one dimensional refractive index sensor using ternary photonic crystal waveguide for plasma blood samples applications. Phys. E Low-Dimens. Syst. Nanostruct. 2019;111:173120. doi: 10.1016/j.physe.2019.02.030. DOI

Hao J.J., Xie X., Gu K.D., Du W.C., Liu Y.J., Yang H.W. Research on Photonic Crystal-Based Biosensor for Detection of Escherichia coli Colony. Plasmonics. 2019;14:1919–1928. doi: 10.1007/s11468-019-00987-w. DOI

Goyal A.K. Design Analysis of One-Dimensional Photonic Crystal Based Structure for Hemoglobin Concentration Measurement. Prog. Electromagn. Res. M. 2020;97:77–86. doi: 10.2528/PIERM20080601. DOI

Bijalwan A., Singh B.K., Rastogi V. Analysis of one-dimensional photonic crystal based sensor for detection of blood plasma and cancer cells. Optik. 2021;226:165994. doi: 10.1016/j.ijleo.2020.165994. DOI

Ghasemi F., Razi S. Novel Photonic Bio-Chip Sensor Based on Strained Graphene Sheets for Blood Cell Sorting. Molecules. 2021;26:5585. doi: 10.3390/molecules26185585. PubMed DOI PMC

Sinibaldi A., Danz N., Descrovi E., Munzert P., Schulz U., Sonntag F., Dominici L., Michelotti F. Direct comparison of the performance of Bloch surface wave and surface plasmon polariton sensors. Sens. Actuators B Chem. 2012;174:292–298. doi: 10.1016/j.snb.2012.07.015. DOI

Gryga M., Ciprian D., Hlubina P. Bloch surface wave resonance based sensors as an alternative to surface plasmon resonance sensors. Sensors. 2020;20:5119. doi: 10.3390/s20185119. DOI

Chen J., Zhang D., Wang P., Ming H., Lakowicz J.R. Strong Polarization Transformation of Bloch Surface Waves. Phys. Rev. Appl. 2018;9:024008. doi: 10.1103/PhysRevApplied.9.024008. PubMed DOI PMC

Lahijani B.V., Descharmes N., Barbey R., Osowiecki G.D., Wittwer V.J., Razskazovskaya O., Südmeyer T., Herzig H.P. Centimeter-Scale Propagation of Optical Surface Waves at Visible Wavelengths. Adv. Opt. Mater. 2022;10:2102854

Mejía-Salazar J.R., Oliveira O.N., Jr. Plasmonic Biosensing: Focus review. Chem. Rev. 2018;118:10617–10625. doi: 10.1021/acs.chemrev.8b00359. PubMed DOI

Xu Y., Bai P., Zhou X., Akimov Y., Png C.E., Ang L.K., Knoll W., Wu L. Optical Refractive Index Sensors with Plasmonic and Photonic Structures: Promising and Inconvenient Truth. Adv. Opt. Mater. 2019;7:1801433. doi: 10.1002/adom.201801433. DOI

Ahmadivand A., Gerislioglu B., Ahuja R., Mishra Y.K. Terahertz plasmonics: The rise of toroidal metadevices towards immunobiosensings. Mater. Today. 2020;32:108–130. doi: 10.1016/j.mattod.2019.08.002. DOI

Bahramipanah M., Dutta-Gupta S., Abasahl B., Martin O.J.F. Cavity-Coupled Plasmonic Device with Enhanced Sensitivity and Figure-of-Merit. ACS Nano. 2015;9:7621–7633. doi: 10.1021/acsnano.5b02977. PubMed DOI

Zhang X.L., Song J.F., Li X.B., Feng J., Sun H.B. Optical Tamm states enhanced broad-band absorption of organic solar cells. Appl. Phys. Lett. 2012;101:243901. doi: 10.1063/1.4770316. DOI

Zhang C., Wu K., Giannini V., Li X. Planar Hot-Electron Photodetection with Tamm Plasmons. ACS Nano. 2017;11:1719–1727. doi: 10.1021/acsnano.6b07578. PubMed DOI

Mitra S., Biswas T., Chattopadhyay R., Ghosh J., Bysakh S., Bhadra S.K. Safe and simple detection of sparse hydrogen by Pd-Au alloy/air based 1D photonic crystal sensor. J. Appl. Phys. Lett. 2016;120:173120. doi: 10.1063/1.4966661. DOI

Domash L., Wu M., Nemchuk N., Ma E. Tunable and switchable multiple-cavity thin film filters. J. Light. Technol. 2004;22:126–135. doi: 10.1109/JLT.2004.823349. DOI

Greuter L., Starosielec S., Najer D., Ludwig A., Duempelmann L., Rohner D., Warburton R.J. A small mode volume tunable microcavity: Development and characterization. Appl. Phys. Lett. 2014;105:121105. doi: 10.1063/1.4896415. DOI

Dai J., Gao W., Liu B., Cao X., Tao T., Xie Z., Zhao H., Chen D., Ping H., Zhang R. Design and fabrication of UV band-pass filters based on SiO2/Si3N4 dielectric distributed bragg reflectors. Appl. Surf. Sci. 2016;364:866–891. doi: 10.1016/j.apsusc.2015.12.222. DOI

Fang C., Dai B., Xu Q., Wang Q., Zhang D. Optofluidic tunable linear narrow-band filter based on Bragg nanocavity. IEEE Photonics J. 2017;9:7801608. doi: 10.1109/JPHOT.2017.2655005. DOI

Peng J., Wang W., Qu Y., Sun T., Lv D., Dai J., Yang M. Thin films based one-dimensional photonic crystal for humidity detection. Sens. Actuators A Phys. 2017;263:209–215. doi: 10.1016/j.sna.2017.06.011. DOI

Sayginer O., Chiasera A., Zur L., Varas S., Tran L.T.N., Armellini C., Ferrari M., Bursi O.S. Fabrication, modelling and assessment of hybrid 1-D elastic Fabry Perot microcavity for mechanical sensing applications. Ceram. Int. 2019;45:7785–7788. doi: 10.1016/j.ceramint.2019.01.083. DOI

Rho D., Breaux C., Kim S. Label-Free Optical Resonator-Based Biosensors. Sensors. 2020;20:5901. doi: 10.3390/s20205901. DOI

Kaňok R., Hlubina P., Gembalová L., Ciprian D. Efficient optical sensing based on phase shift of waves supported by a one-dimensional photonic crystal. Sensors. 2021;21:6535. doi: 10.3390/s21196535. PubMed DOI PMC

Pettersson L.A.A., Roman L.S., Inganäs O. Modeling photocurrent action spectra of photovoltaic devices based on organic thin films. J. Appl. Phys. 1999;86:487–496. doi: 10.1063/1.370757. DOI

Hlubina P. Dispersive spectral-domain two-beam interference analysed by a fibre-optic spectrometer. J. Mod. Opt. 2004;51:537–547. doi: 10.1080/09500340408238066. DOI

Ghulinyan M., Oton C.J., Bonetti G., Gaburro Z., Pavesi L. Free-standing porous silicon single and multiple optical cavities. J. Appl. Phys. 2003;93:9724–9729. doi: 10.1063/1.1578170. DOI

Hlubina P., Gryga M., Ciprian D., Pokorny P., Gembalova L., Sobota J. High performance liquid analyte sensing based on Bloch surface wave resonances in the spectral domain. Opt. Laser Technol. 2022;145:107492. doi: 10.1016/j.optlastec.2021.107492. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...