Distributed Bragg Reflectors Employed in Sensors and Filters Based on Cavity-Mode Spectral-Domain Resonances
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
35632032
PubMed Central
PMC9147317
DOI
10.3390/s22103627
PII: s22103627
Knihovny.cz E-zdroje
- Klíčová slova
- band gap, cavity mode, distributed bragg reflector, figure of merit, filter, reflectance, sensitivity, sensor, spectral domain, transmittance,
- Publikační typ
- časopisecké články MeSH
Spectral-domain resonances for cavities formed by two distributed Bragg reflectors (DBRs) were analyzed theoretically and experimentally. We model the reflectance and transmittance spectra of the cavity at the normal incidence of light when DBRs are represented by a one-dimensional photonic crystal (1DPhC) comprising six bilayers of TiO2/SiO2 with a termination layer of TiO2. Using a new approach based on the reference reflectance, we model the reflectance ratio as a function of both the cavity thickness and its refractive index (RI) and show that narrow dips within the 1DPhC band gap can easily be resolved. We revealed that the sensitivity and figure of merit (FOM) are as high as 610 nm/RIU and 938 RIU-1, respectively. The transmittance spectra include narrow peaks within the 1DPhC band gap and their amplitude and spacing depend on the cavity's thickness. We experimentally demonstrated the sensitivity to variations of relative humidity (RH) of moist air and FOM as high as 0.156 nm/%RH and 0.047 %RH-1, respectively. In addition, we show that, due to the transmittance spectra, the DBRs with air cavity can be employed as spectral filters, and this is demonstrated for two LED sources for which their spectra are filtered at wavelengths 680 nm and 780 nm, respectively, to widths as narrow as 2.3 nm. The DBR-based resonators, thus, represent an effective alternative to both sensors and optical filters, with advantages including the normal incidence of light and narrow-spectral-width resonances.
Zobrazit více v PubMed
Joannopoulos J.D., Johnson S.G., Winn J.N., Meade R.D. Photonic Crystals: Molding the Flow of Light. Princeton University Press; Princeton, NJ, USA: 2008.
Fink Y., Winn J.N., Fan S., Chen C., Miche J., Joannopoulos J.D., Thomas E.L. A Dielectric Omnidirectional Reflector. Science. 1998;282:1679–1682. doi: 10.1126/science.282.5394.1679. PubMed DOI
Wu F., Lu G., Guo Z., Jiang H., Xue C., Zheng M., Chen C., Du G., Chen H. Redshift gaps in one-dimensional photonic crystals containing hyperbolic metamaterials. Phys. Rev. Appl. 2018;10:064022. doi: 10.1103/PhysRevApplied.10.064022. DOI
Villar I.D., Matías I.R., Arregui F.J., Claus R.O. Analysis of one-dimensional photonic band gap structures with a liquid crystal defect towards development of fiber-optic tunable wavelength filters. Opt. Express. 2003;11:430–436. doi: 10.1364/OE.11.000430. PubMed DOI
Ghosh R., Ghosh K.K., Chakraborty R. A novel tunable filter featuring defect mode of the TE wave from one-dimensional photonic crystals doped by magnetized plasma. Opt. Commun. 2013;289:75–80. doi: 10.1016/j.optcom.2012.10.001. DOI
Zhao X., Yang Y., Wen J., Chen Z., Zhang M., Fei H., Hao Y. Tunable dual-channel filter based on the photonic crystal with air defects. Appl. Opt. 2017;56:5463–5469. doi: 10.1364/AO.56.005463. PubMed DOI
Wang F., Cheng Y.Z., Wang X., Zhang Y.N., Nie Y., Gong R.Z. Narrow Band Filter at 1550 nm Based on Quasi-One-Dimensional Photonic Crystal with a Mirror-Symmetric Heterostructure. Materials. 2018;11:1099. doi: 10.3390/ma11071099. PubMed DOI PMC
Guillermain E., Lysenko V., Orobtchouk R., Benyattou T., Roux S., Pillonnet A., Perriat P. Bragg surface wave device based on porous silicon and its application for sensing. Appl. Phys. Lett. 2007;90:241116. doi: 10.1063/1.2747671. DOI
Liscidini M., Sipe J.E. Analysis of Bloch-surface-wave assisted diffraction-based biosensors. J. Opt. Soc. Am. B. 2009;26:279–289. doi: 10.1364/JOSAB.26.000279. DOI
Chang Y.H., Jhu Y.Y., Wu C.J. Temperature dependence of defect mode in a defective photonic crystal. Opt. Commun. 2012;285:1501–1504. doi: 10.1016/j.optcom.2011.10.053. DOI
Farmer A., Friedli A.C., Wright S.M., Robertson W.M. Biosensing using surface electromagnetic waves in photonic band gap multilayers. Sens. Actuators B Chem. 2012;173:79–84. doi: 10.1016/j.snb.2012.06.015. DOI
Sinibaldi A., Rizzo R., Figliozzi G., Descrovi E., Danz N., Munzert P., Anopchenko A., Michelotti F. A full ellipsometric approach to optical sensing with Bloch surface waves on photonic crystals. Opt. Express. 2013;21:23331–23344. doi: 10.1364/OE.21.023331. PubMed DOI
Li Y., Yang T., Pang Z., Du G., Song S. Phase-sensitive Bloch surface wave sensor based on variable angle spectroscopic ellipsometry. Opt. Express. 2014;22:21403–21410. doi: 10.1364/OE.22.021403. PubMed DOI
Kong W., Zheng Z., Wan Y., Li J., Liu J. High-sensitivity sensing based on intensity-interrogated Bloch surface wave sensors. Sens. Actuators B Chem. 2014;193:467–471. doi: 10.1016/j.snb.2013.11.101. DOI
Bouzidi A., Bria D., Akjouj A., Pennec Y., Djafari-Rouhani B. A tiny gas-sensor system based on 1D photonic crystal. J. Phys. D Appl. Phys. 2015;48:495102. doi: 10.1088/0022-3727/48/49/495102. DOI
Kang X.B., Wen L., Wang Z.G. Design of guided Bloch surface wave resonance bio-sensors with high sensitivity. Opt. Commun. 2017;383:531–536. doi: 10.1016/j.optcom.2016.10.004. DOI
Gryga M., Vala D., Kolejak P., Gembalova L., Ciprian D., Hlubina P. One-dimensional photonic crystal for Bloch surface waves and radiation modes based sensing. Opt. Mater. Express. 2019;9:4009–4022. doi: 10.1364/OME.9.004009. DOI
Goyal A.K., Pal S. Design analysis of Bloch surface wave based sensor for haemoglobin concentration measurement. Appl. Nanosci. 2020;10:3639–3647. doi: 10.1007/s13204-020-01437-4. DOI
Gryga M., Ciprian D., Gembalova L., Hlubina P. Sensing based on Bloch surface wave and self-referenced guided mode resonances employing a one-dimensional photonic crystal. Opt. Express. 2021;29:12996–13010. doi: 10.1364/OE.421162. PubMed DOI
Kaliteevski M., Iorsh I., Brand S., Abram R.A., Chamberlain J.M., Kavokin A.V., Shelykh I.A. Tamm plasmon-polaritons: Possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror. Phys. Rev. B. 2007;76:165415. doi: 10.1103/PhysRevB.76.165415. DOI
Auguié B., Fuertes M.C., Angelomié P.C., Abdala N.L., Illia G.J.A.A.S., Fainstein A. Tamm Plasmon Resonance in Mesoporous Multilayers: Toward a Sensing Application. ACS Photonics. 2014;9:775–780. doi: 10.1021/ph5001549. DOI
Kumar S., Shukla M.K., Maji P.S., Das R. Self-referenced refractive index sensing with hybrid-Tamm-plasmon-polariton modes in subwavelength analyte layers. J. Phys. D Appl. Phys. 2017;50:375106. doi: 10.1088/1361-6463/aa7fd7. DOI
Maji P.S., Shukla M.K., Das R. Blood component detection based on miniaturized self-referenced hybrid Tamm-plasmon-polariton sensor. Sens. Actuators B Chem. 2018;255:729–734. doi: 10.1016/j.snb.2017.08.031. DOI
Zaky Z.A., Ahmed A.M., Shalaby A.S., Aly A.H. Refractive index gas sensor based on the Tamm state in a onedimensional photonic crystal: Theoretical optimisation. Sci. Rep. 2020;10:9736. doi: 10.1038/s41598-020-66427-6. PubMed DOI PMC
Jena S., Tokas R.B., Thakur S., Udupa D.V. Rabi-like splitting and refractive index sensing with hybrid Tamm plasmon-cavity modes. J. Phys. D Appl. Phys. 2022;55:175104. doi: 10.1088/1361-6463/ac49b3. DOI
Xu H., Wu P., Zhu C., Elbaza A., Gu Z.Z. Photonic crystal for gas sensing. J. Mater. Chem. C. 2013;1:6087–6098. doi: 10.1039/c3tc30722k. DOI
Chen Y.H., Shi W.H., Feng L., Xu X.Y., Shang-Guan M.Y. Study on simultaneous sensing of gas concentration and temperature in one-dimensional photonic crystal. Superlattices Microstruct. 2019;131:53–58. doi: 10.1016/j.spmi.2019.05.033. DOI
Surdo S., Barillaro G. On the performance of label-free biosensors based on vertical one-dimensional photonic crystal resonant cavities. Opt. Express. 2015;23:9192–9201. doi: 10.1364/OE.23.009192. PubMed DOI
El-Khozondar H.J., Mahalakshmi P., El-Khozondar R.J., Ramanujam N.R., Amiri I.S., Yupapin P. Design of one dimensional refractive index sensor using ternary photonic crystal waveguide for plasma blood samples applications. Phys. E Low-Dimens. Syst. Nanostruct. 2019;111:173120. doi: 10.1016/j.physe.2019.02.030. DOI
Hao J.J., Xie X., Gu K.D., Du W.C., Liu Y.J., Yang H.W. Research on Photonic Crystal-Based Biosensor for Detection of Escherichia coli Colony. Plasmonics. 2019;14:1919–1928. doi: 10.1007/s11468-019-00987-w. DOI
Goyal A.K. Design Analysis of One-Dimensional Photonic Crystal Based Structure for Hemoglobin Concentration Measurement. Prog. Electromagn. Res. M. 2020;97:77–86. doi: 10.2528/PIERM20080601. DOI
Bijalwan A., Singh B.K., Rastogi V. Analysis of one-dimensional photonic crystal based sensor for detection of blood plasma and cancer cells. Optik. 2021;226:165994. doi: 10.1016/j.ijleo.2020.165994. DOI
Ghasemi F., Razi S. Novel Photonic Bio-Chip Sensor Based on Strained Graphene Sheets for Blood Cell Sorting. Molecules. 2021;26:5585. doi: 10.3390/molecules26185585. PubMed DOI PMC
Sinibaldi A., Danz N., Descrovi E., Munzert P., Schulz U., Sonntag F., Dominici L., Michelotti F. Direct comparison of the performance of Bloch surface wave and surface plasmon polariton sensors. Sens. Actuators B Chem. 2012;174:292–298. doi: 10.1016/j.snb.2012.07.015. DOI
Gryga M., Ciprian D., Hlubina P. Bloch surface wave resonance based sensors as an alternative to surface plasmon resonance sensors. Sensors. 2020;20:5119. doi: 10.3390/s20185119. DOI
Chen J., Zhang D., Wang P., Ming H., Lakowicz J.R. Strong Polarization Transformation of Bloch Surface Waves. Phys. Rev. Appl. 2018;9:024008. doi: 10.1103/PhysRevApplied.9.024008. PubMed DOI PMC
Lahijani B.V., Descharmes N., Barbey R., Osowiecki G.D., Wittwer V.J., Razskazovskaya O., Südmeyer T., Herzig H.P. Centimeter-Scale Propagation of Optical Surface Waves at Visible Wavelengths. Adv. Opt. Mater. 2022;10:2102854
Mejía-Salazar J.R., Oliveira O.N., Jr. Plasmonic Biosensing: Focus review. Chem. Rev. 2018;118:10617–10625. doi: 10.1021/acs.chemrev.8b00359. PubMed DOI
Xu Y., Bai P., Zhou X., Akimov Y., Png C.E., Ang L.K., Knoll W., Wu L. Optical Refractive Index Sensors with Plasmonic and Photonic Structures: Promising and Inconvenient Truth. Adv. Opt. Mater. 2019;7:1801433. doi: 10.1002/adom.201801433. DOI
Ahmadivand A., Gerislioglu B., Ahuja R., Mishra Y.K. Terahertz plasmonics: The rise of toroidal metadevices towards immunobiosensings. Mater. Today. 2020;32:108–130. doi: 10.1016/j.mattod.2019.08.002. DOI
Bahramipanah M., Dutta-Gupta S., Abasahl B., Martin O.J.F. Cavity-Coupled Plasmonic Device with Enhanced Sensitivity and Figure-of-Merit. ACS Nano. 2015;9:7621–7633. doi: 10.1021/acsnano.5b02977. PubMed DOI
Zhang X.L., Song J.F., Li X.B., Feng J., Sun H.B. Optical Tamm states enhanced broad-band absorption of organic solar cells. Appl. Phys. Lett. 2012;101:243901. doi: 10.1063/1.4770316. DOI
Zhang C., Wu K., Giannini V., Li X. Planar Hot-Electron Photodetection with Tamm Plasmons. ACS Nano. 2017;11:1719–1727. doi: 10.1021/acsnano.6b07578. PubMed DOI
Mitra S., Biswas T., Chattopadhyay R., Ghosh J., Bysakh S., Bhadra S.K. Safe and simple detection of sparse hydrogen by Pd-Au alloy/air based 1D photonic crystal sensor. J. Appl. Phys. Lett. 2016;120:173120. doi: 10.1063/1.4966661. DOI
Domash L., Wu M., Nemchuk N., Ma E. Tunable and switchable multiple-cavity thin film filters. J. Light. Technol. 2004;22:126–135. doi: 10.1109/JLT.2004.823349. DOI
Greuter L., Starosielec S., Najer D., Ludwig A., Duempelmann L., Rohner D., Warburton R.J. A small mode volume tunable microcavity: Development and characterization. Appl. Phys. Lett. 2014;105:121105. doi: 10.1063/1.4896415. DOI
Dai J., Gao W., Liu B., Cao X., Tao T., Xie Z., Zhao H., Chen D., Ping H., Zhang R. Design and fabrication of UV band-pass filters based on SiO2/Si3N4 dielectric distributed bragg reflectors. Appl. Surf. Sci. 2016;364:866–891. doi: 10.1016/j.apsusc.2015.12.222. DOI
Fang C., Dai B., Xu Q., Wang Q., Zhang D. Optofluidic tunable linear narrow-band filter based on Bragg nanocavity. IEEE Photonics J. 2017;9:7801608. doi: 10.1109/JPHOT.2017.2655005. DOI
Peng J., Wang W., Qu Y., Sun T., Lv D., Dai J., Yang M. Thin films based one-dimensional photonic crystal for humidity detection. Sens. Actuators A Phys. 2017;263:209–215. doi: 10.1016/j.sna.2017.06.011. DOI
Sayginer O., Chiasera A., Zur L., Varas S., Tran L.T.N., Armellini C., Ferrari M., Bursi O.S. Fabrication, modelling and assessment of hybrid 1-D elastic Fabry Perot microcavity for mechanical sensing applications. Ceram. Int. 2019;45:7785–7788. doi: 10.1016/j.ceramint.2019.01.083. DOI
Rho D., Breaux C., Kim S. Label-Free Optical Resonator-Based Biosensors. Sensors. 2020;20:5901. doi: 10.3390/s20205901. DOI
Kaňok R., Hlubina P., Gembalová L., Ciprian D. Efficient optical sensing based on phase shift of waves supported by a one-dimensional photonic crystal. Sensors. 2021;21:6535. doi: 10.3390/s21196535. PubMed DOI PMC
Pettersson L.A.A., Roman L.S., Inganäs O. Modeling photocurrent action spectra of photovoltaic devices based on organic thin films. J. Appl. Phys. 1999;86:487–496. doi: 10.1063/1.370757. DOI
Hlubina P. Dispersive spectral-domain two-beam interference analysed by a fibre-optic spectrometer. J. Mod. Opt. 2004;51:537–547. doi: 10.1080/09500340408238066. DOI
Ghulinyan M., Oton C.J., Bonetti G., Gaburro Z., Pavesi L. Free-standing porous silicon single and multiple optical cavities. J. Appl. Phys. 2003;93:9724–9729. doi: 10.1063/1.1578170. DOI
Hlubina P., Gryga M., Ciprian D., Pokorny P., Gembalova L., Sobota J. High performance liquid analyte sensing based on Bloch surface wave resonances in the spectral domain. Opt. Laser Technol. 2022;145:107492. doi: 10.1016/j.optlastec.2021.107492. DOI