Surface Plasmon Resonance-Based Sensing Utilizing Spatial Phase Modulation in an Imaging Interferometer
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
32183244
PubMed Central
PMC7146496
DOI
10.3390/s20061616
PII: s20061616
Knihovny.cz E-zdroje
- Klíčová slova
- Kretschmann configuration, aqueous solutions of ethanol, fringe phase shift, imaging interferometer, sensitivity, spatial phase modulation, surface plasmon resonance,
- Publikační typ
- časopisecké články MeSH
Spatial phase modulation in an imaging interferometer is utilized in surface plasmon resonance (SPR) based sensing of liquid analytes. In the interferometer, a collimated light beam from a laser diode irradiating at 637.1 nm is passing through a polarizer and is reflected from a plasmonic structure of SF10/Cr/Au attached to a prism in the Kretschmann configuration. The beam passes through a combination of a Wollaston prism, a polarizer and a lens, and forms an interference pattern on a CCD sensor of a color camera. Interference patterns obtained for different liquid analytes are acquired and transferred to the computer for data processing. The sensing concept is based on the detection of a refractive index change, which is transformed via the SPR phenomenon into an interference fringe phase shift. By calculating the phase shift for the plasmonic structure of SF10/Cr/Au of known parameters we demonstrate that this technique can detect different weight concentrations of ethanol diluted in water, or equivalently, different changes in the refractive index. The sensitivity to the refractive index and the detection limit obtained are -278 rad/refractive-index-unit (RIU) and 3.6 × 10 - 6 RIU, respectively. The technique is demonstrated in experiments with the same liquid analytes as in the theory. Applying an original approach in retrieving the fringe phase shift, we revealed good agreement between experiment and theory, and the measured sensitivity to the refractive index and the detection limit reached -226 rad/RIU and 4.4 × 10 - 6 RIU, respectively. These results suggest that the SPR interferometer with the detection of a fringe phase shift is particularly useful in applications that require measuring refractive index changes with high sensitivity.
Zobrazit více v PubMed
Pitarke J.M., Silkin V.M., Chulkov E.V., Echenique P.M. Theory of surface plasmons and surface-plasmon polaritons. Rep. Prog. Phys. 2007;70:1–87. doi: 10.1088/0034-4885/70/1/R01. DOI
Kretschmann E., Raether H. Radiative decay of nonradiative surface plasmons excited by light. Z. Naturforschung. 1968;A23:2135–2136. doi: 10.1515/zna-1968-1247. DOI
Raether H. Surface Plasmons on Smooth and Rough Surfaces and on Gratings. Springer; New York, NY, USA: 1988.
Manuel M., Vidal B., Lopéz R., Alegret S., Alonso-Chamarro J., Garces I., Mateo J. Determination of probable alcohol yield in musts by means of an SPR optical sensor. Sens. Actuators B Chem. 1993;11:455–459. doi: 10.1016/0925-4005(93)85287-K. DOI
Homola J. Surface Plasmon Resonance Based Sensors. Springer; New York, NY, USA: 2006.
Hsu S.H., Lin Y.Y., Lu S.H., Tsai I.F., Lu Y.T., Ho H.T. Mycobacterium tuberculosis DNA detection dsing durface plasmon resonance modulated by telecommunication wavelength. Sensors. 2014;14:458–467. doi: 10.3390/s140100458. PubMed DOI PMC
Abdulhalim I., Zourob M., Lakhtakia A. Surface plasmon resonance sensors—A mini review. J. Electromagn. 2008;28:213–242.
Gwon H.R., Lee S.H. Spectral and angular responses of surface plasmon resonance based on the Kretschmann prism configuration. Mater. Trans. 2010;51:1150–1155. doi: 10.2320/matertrans.M2010003. DOI
Watad I., Abdulhalimn I. Spectropolarimetric surface plasmon resonance sensor and the selection of the best polarimetric function. IEEE J. Sel. Top. Quantum Electronl. 2017;23:4600609. doi: 10.1109/JSTQE.2016.2575543. DOI
Dostálek J., Vaisocherova H., Homola J. Multichannel surface plasmon resonance biosensor with wavelength division multiplexing. Sens. Actuators B Chem. 2005;108:758–764. doi: 10.1016/j.snb.2004.12.096. DOI
Shalabney A., Abdulhalim I. Figure-of-merit enhancement of surface plasmon resonance sensors in the spectral interrogation. Opt. Lett. 2012;37:1175–1177. doi: 10.1364/OL.37.001175. PubMed DOI
Liu C., Liu Q., Qin Z., Xie X. Determination of the bimetallic layers’ film thicknesses by phase detection of SPR prism coupler. Plasmonics. 2017;12:1199–1204. doi: 10.1007/s11468-016-0376-1. DOI
Yu X., Ding X., Liu F., Wei X., Wang D. A surface plasmon resonance interferometer based on spatial phase modulation for protein array detection. Meas. Sci. Technol. 2008;19:015301. doi: 10.1088/0957-0233/19/1/015301. DOI
Ho H., Law W., Wu S., Liu X., Wong S., Lin C., Kong S.K. Phase-sensitive surface plasmon resonance biosensor using the photoelastic modulation technique. Sens. Actuators B Chem. 2006;114:80–84. doi: 10.1016/j.snb.2005.04.007. DOI
Chiang H., Yeh H., Chen C., Wu J., Su S., Chang R., Wu Y., Tsai D., Jen S., Leung P. Surface plasmon resonance monitoring of temperature via phase measurement. Opt. Commun. 2004;241:409–418. doi: 10.1016/j.optcom.2004.07.045. DOI
Nikitin P., Beloglazov A., Kochergin V., Valeiko M., Ksenevich T. Surface plasmon resonance interferometry for biological and chemical sensing. Sens. Actuators B Chem. 1999;54:43–50. doi: 10.1016/S0925-4005(98)00325-6. DOI
Naraoka R., Kajikawa K. Phase detection of surface plasmon resonance using rotating analyzer method. Sens. Actuators B Chem. 2005;107:952–956. doi: 10.1016/j.snb.2004.12.044. DOI
Ng S., Wu C., Wu S., Ho H. White-light spectral interferometry for surface plasmon resonance sensing applications. Opt. Express. 2011;19:4521–4527. doi: 10.1364/OE.19.004521. PubMed DOI
Hlubina P., Duliakova M., Kadulova M., Ciprian D. Spectral interferometry-based surface plasmon resonance sensor. Opt. Commun. 2015;354:240–245. doi: 10.1016/j.optcom.2015.06.011. DOI
Hlubina P., Ciprian D. Spectral phase shift of surface plasmon resonance in the Kretschmann configuration: Theory and experiment. Plasmonics. 2017;12:1071–1078. doi: 10.1007/s11468-016-0360-9. DOI
Huang Y.H., Ho H.P., Wu S.Y., Kong S.K. Detecting phase shifts in surface plasmon resonance: A review. Adv. Opt. Technol. 2012;2012:471957. doi: 10.1155/2012/471957. DOI
Deng S., Wang P., Yu X. Phase-sensitive surface plasmon resonance sensors: Recent progress and future prospects. Sensors. 2017;17:2819. doi: 10.3390/s17122819. PubMed DOI PMC
Wang D., Loo J.F.C., Chen J., Yam Y., Chen S.C., He H., Kong S.K., Ho H.P. Recent advances in surface plasmon resonance imaging sensors. Sensors. 2019;19:1266. doi: 10.3390/s19061266. PubMed DOI PMC
Nelson S., Johnston K., Yee S. High sensitivity surface plasmon resonance sensor based on phase detection. Sens. Actuators B Chem. 1996;35–36:187–191. doi: 10.1016/S0925-4005(97)80052-4. DOI
Wu C., Jian Z., Joe S., Chang L. High-sensitivity sensor based on surface plasmon resonance and heterodyne interferometry. Sens. Actuators B Chem. 2003;92:133–136. doi: 10.1016/S0925-4005(03)00157-6. DOI
Kabashin A., Nikitin P. Surface plasmon resonance interferometer for bio- and chemical-sensors. Opt. Commun. 1998;150:5–8. doi: 10.1016/S0030-4018(97)00726-8. DOI
Ho H., Lamb W. Application of differential phase measurement technique to surface plasmon resonance sensors. Sens. Actuators B Chem. 2003;96:554–559. doi: 10.1016/S0925-4005(03)00638-5. DOI
Wu S.Y., Ho H.P., Law W.C., Lin C., Kong S.K. Highly sensitive differential phase-sensitive surface plasmon resonance biosensor based on the Mach–Zehnder configuration. Opt. Lett. 2004;29:2378–2380. doi: 10.1364/OL.29.002378. PubMed DOI
Lee J., Shih H., Hong C., Chou T. Measurement of refractive index change by surface plasmon resonance and phase quadrature interferometry. Opt. Commun. 2007;276:283–287. doi: 10.1016/j.optcom.2007.04.021. DOI
Watad I., Abdulhalim I. Phase-shifted polarimetric surface plasmon resonance sensor using a liquid crystal retarder and a diverging beam. Opt. Lett. 2019;44:1607–1610. doi: 10.1364/OL.44.001607. PubMed DOI
Zhang Y., Li H., Duan J., Shi A., Liu Y. Surface plasmon resonance sensor based on spectral interferometry: Numerical analysis. Appl. Opt. 2013;52:3253–3259. doi: 10.1364/AO.52.003253. PubMed DOI
Kaňok R., Ciprian D., Hlubina P. Sensing of liquid analytes via the phase shift induced by surface plasmon resonance. Proc. SPIE. 2018;10680:106801Q.
Dai S., Lu H., Zhang J., Shi Y., Dou J., Di J., Zhao J. Complex refractive index measurement for atomic-layer materials via surface plasmon resonance holographic microscopy. Opt. Lett. 2019;44:2982–2985. doi: 10.1364/OL.44.002982. PubMed DOI
Chlebus R., Chylek J., Ciprian D., Hlubina P. Surface plasmon resonance based measurement of the dielectric function of a thin metal film. Sensors. 2018;18:3693. doi: 10.3390/s18113693. PubMed DOI PMC
Gryga M., Vala D., Kolejak P., Gembalova L., Ciprian D., Hlubina P. One-dimensional photonic crystal for Bloch surface waves and radiation modes based sensing. Opt. Mater. Express. 2019;9:4009–4022. doi: 10.1364/OME.9.004009. DOI
Yeh P. Optical Waves in Layered Media. J. Wiley and Sons, Inc.; New York, NY, USA: 1988.
Hlubina P., Luňáček J., Ciprian D., Chlebus R. Windowed Fourier transform applied in the wavelength domain to process the spectral interference signals. Opt. Commun. 2008;281:2349–2354. doi: 10.1016/j.optcom.2007.12.028. DOI
Lim O.R., Ahn T.J. Fiber-optic measurement of liquid evaporation dynamics using signal processing. J. Light. Technol. 2019;37:4967–4975. doi: 10.1109/JLT.2019.2926480. DOI