Revisiting the Karyotypes of Alligators and Caimans (Crocodylia, Alligatoridae) after a Half-Century Delay: Bridging the Gap in the Chromosomal Evolution of Reptiles
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
2018/22033-1
Fundação de Amparo à Pesquisa do Estado de São Paulo
302449/2018-3
Conselho Nacional de Desenvolvimento Científico e Tecnológico
PubMed
34198806
PubMed Central
PMC8228166
DOI
10.3390/cells10061397
PII: cells10061397
Knihovny.cz E-zdroje
- Klíčová slova
- Alligatoridae, chromosome, cytogenomics, molecular cytogenetics,
- MeSH
- aligátoři a krokodýli klasifikace genetika MeSH
- chromozomy genetika MeSH
- hybridizace in situ fluorescenční MeSH
- karyotyp * MeSH
- molekulární evoluce * MeSH
- srovnávací genomová hybridizace MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Although crocodilians have attracted enormous attention in other research fields, from the cytogenetic point of view, this group remains understudied. Here, we analyzed the karyotypes of eight species formally described from the Alligatoridae family using differential staining, fluorescence in situ hybridization with rDNA and repetitive motifs as a probe, whole chromosome painting (WCP), and comparative genome hybridization. All Caimaninae species have a diploid chromosome number (2n) 42 and karyotypes dominated by acrocentric chromosomes, in contrast to both species of Alligatorinae, which have 2n = 32 and karyotypes that are predominantly metacentric, suggesting fusion/fission rearrangements. Our WCP results supported this scenario by revealing the homeology of the largest metacentric pair present in both Alligator spp. with two smaller pairs of acrocentrics in Caimaninae species. The clusters of 18S rDNA were found on one chromosome pair in all species, except for Paleosuchus spp., which possessed three chromosome pairs bearing these sites. Similarly, comparative genomic hybridization demonstrated an advanced stage of sequence divergence among the caiman genomes, with Paleosuchus standing out as the most divergent. Thus, although Alligatoridae exhibited rather low species diversity and some level of karyotype stasis, their genomic content indicates that they are not as conserved as previously thought. These new data deepen the discussion of cytotaxonomy in this family.
Alfred Nobel Strasse 1e 55411 Bingen am Rhein Germany
An der Nachtweide 16 60433 Frankfurt Germany
Department of Ecology Faculty of Science Charles University 12844 Prague Czech Republic
Institute of Human Genetics Jena University Hospital Am Klinikum 1 07747 Jena Germany
Zobrazit více v PubMed
Grigg G., Seebacher F., Franklin C.E., editors. Crocodilian Biology and Evolution. 1st ed. Surrey Beatty; Chipping Norton, Australia: 2001. p. 446.
Brochu C.A. Phylogenetic approaches toward crocodylian history. Annu. Rev. Earth and Planet. Sci. 2003;31:357–397. doi: 10.1146/annurev.earth.31.100901.141308. DOI
Bronzati M., Montefeltro F.C., Langer M.C. Diversification events and the effects of mass extinction on Crocodyliformes evolutionary history. R. Soc. Open Sci. 2015;2:140385. doi: 10.1098/rsos.140385. PubMed DOI PMC
Stubbs T.L., Pierce S.E., Elsler A., Anderson P.S.L., Rayfield E.J., Benton M.J. Ecological opportunity and the rise and fall of crocodylomorph evolutionary innovation. Proc. R. Soc. B. 2021;288:20210069. doi: 10.1098/rspb.2021.0069. PubMed DOI PMC
Janke A., Arnason U. The complete mitochondrial genome of Alligator mississippiensis and the separation between recent Archosauria (birds and crocodiles) Mol. Biol. Evol. 1997;14:1266–1272. doi: 10.1093/oxfordjournals.molbev.a025736. PubMed DOI
Iwabe N., Hara Y., Kumazawa Y., Shibamoto K., Saito Y., Miyata T., Katoh K. Sister group relationship of turtles to the bird-crocodilian clade revealed by nuclear DNA-coded proteins. Mol. Biol. Evol. 2005;22:810–813. doi: 10.1093/molbev/msi075. PubMed DOI
Green R.E., Braun E.L., Armstrong J., Earl D., Nguyen N., Hickey G., Vandewege M.W., St. John J.A., Capella-Gutiérrez S., Castoe T.A. Three crocodilian genomes reveal ancestral patterns of evolution among archosaurs. Science. 2014;346:1254449. doi: 10.1126/science.1254449. PubMed DOI PMC
Pan T., Miao J.-S., Zhang H.-B., Yan P., Lee P.-S., Jiang X.-Y., Ouyang J.-H., Deng Y.-P., Zhang B.-W., Wu X.-B. Near-complete phylogeny of extant Crocodylia (Reptilia) using mitogenome-based data. Zool. J. Linn. Soc. 2021;191:1075–1089. doi: 10.1093/zoolinnean/zlaa074. DOI
Espinosa E., Godshalk R., Hall P., Thorbjarnarson J., Tucker A., Verdade L. Species Accounts. In: Ross P., editor. Status Survey and Conservation Action Plan: Revised Action Plan for Crocodiles. 2nd ed. Volume 1. IUCN/SSC Crocodile Specialist Group; Gland, Switzerland: Cambridge, UK: 1998. pp. 3–73.
Rueda-Almonacid J.V., Carr J.L., Mittermeier R.A., Rodríguez-Mahecha J.V., Mast R.B., Vogt R.C., Rhodin A.G.J., Ossa-Velásquez J.O., Rueda J.N., Mittermeier C.G. Orden Crocodylia. In: Mittermeier R.A., Rylands A., editors. Conservación Internacional. Serie de Guías Tropicales de Campo N° 6. Las Tortugas y lós Crocodilianos de los Países Andinos del Trópico. 1st ed. Volume 1. Editorial Panamericana, Formas e Impresos; Bogotá, Colombia: 2007. pp. 387–432.
Meredith R.W., Hekkala E.R., Amato G., Gatesy J. A phylogenetic hypothesis for Crocodylus (Crocodylia) based on mitochondrial DNA: Evidence for a trans-Atlantic voyage from Africa to the New World. Mol. Phylogenet. Evol. 2011;60:183–191. doi: 10.1016/j.ympev.2011.03.026. PubMed DOI
Oaks J.R. A time-calibrated species tree of Crocodylia reveals a recent radiation of the true crocodiles. Evolution. 2011;65:3285–3297. doi: 10.1111/j.1558-5646.2011.01373.x. PubMed DOI
McAliley L.R., Willis R.E., Ray D.A., White P.S., Brochu C.A., Densmore L.D. Are crocodiles really monophyletic?—Evidence for subdivisions from sequence and morphological data. Mol. Phylogenet. Evol. 2006;39:16–32. doi: 10.1016/j.ympev.2006.01.012. PubMed DOI
Martin S. Global diversity of crocodiles (Crocodilia, Reptilia) in freshwater. Hydrobiologia. 2008;595:587–591. doi: 10.1007/s10750-007-9030-4. DOI
Hekkala E., Shirley M.H., Amato G., Austin J.D., Charter S., Thorbjarnarson J., Vliet K.A., Houck M.L., Desalle R., Blum M.J. An ancient icon reveals new mysteries: Mummy DNA resurrects a cryptic species within the Nile crocodile. Mol. Ecol. 2011;20:4199–4215. doi: 10.1111/j.1365-294X.2011.05245.x. PubMed DOI
Shirley M.H., Vliet K.A., Carr A.N., Austin J.D. Rigorous approaches to species delimitation have significant implications for African crocodilian systematics and conservation. Proc. R. Soc. B. 2014;281:20132483. doi: 10.1098/rspb.2013.2483. PubMed DOI PMC
Srikulnath K., Thapana W., Muangmai N. Role of chromosome changes in Crocodylus evolution and diversity. Genom. Inform. 2015;13:102–111. doi: 10.5808/GI.2015.13.4.102. PubMed DOI PMC
Barreiros J.P. Crocodylia: Uma Longa História de Sucesso Evolutivo. 1st ed. Atlântida Revista de Cultura; Açores, Portugal: 2016. pp. 1–12.
Muniz F.L., Ximenes A.M., Bittencourt P.S., Hernández-Rangel S.M., Campos Z., Hrbek T., Farias I.P. Detecting population structure of Paleosuchus trigonatus (Alligatoridae: Caimaninae) through microsatellites markers developed by next generation sequencing. Mol. Biol. Rep. 2019;46:1–12. doi: 10.1007/s11033-019-04709-7. PubMed DOI
Uetz P., Freed P., Aguilar R., Hošek J., editors. The Reptile Database. [(accessed on 31 August 2020)]; Available online: http://www.reptile-database.org.
Nicolai M.P.J., Matzke N.J. Trait-based range expansion aided in the global radiation of Crocodylidae. Glob. Ecol. Biogeogr. 2019;28:1244–1258. doi: 10.1111/geb.12929. DOI
Shirley M.H., Carr A.N., Nestler J.H., Vliet K.A., Brochu C.A. Systematic revision of the living African slender-snouted crocodiles (Mecistops Gray, 1844) Zootaxa. 2018;4504:151–193. doi: 10.11646/zootaxa.4504.2.1. PubMed DOI
Bezuijen M.R., Shwedick B., Simpson B.K., Staniewicz A., Stuebing R. Tomistoma schlegelii. IUCN Red List Threat. Species. 2014;2014:E.T21981A2780499. doi: 10.2305/IUCN.UK.2014-1.RLTS.T21981A2780499.en. DOI
Lee M.S.Y., Yates A.M. Tip-dating and homoplasy: Reconciling the shallow molecular divergences of modern gharials with their long fossil record. Proc. R. Soc. B. 2018;285:20181071. doi: 10.1098/rspb.2018.1071. PubMed DOI PMC
Muniz F.L., Campos Z., Rangel S.M.H., Martínez J.G., Souza B.C., De Thoisy B., Botero-Arias R., Hrbek T., Farias I.P. Delimitation of evolutionary units in Cuvier´s dwarf caiman, Paleosuchus palpebrosus (Cuvier, 1807): Insights from conservation of a broadly distributes species. Conserv. Genet. 2018;19:599–610. doi: 10.1007/s10592-017-1035-6. DOI
Bittencourt P.S., Campos Z., Muniz F.L., Marioni B., Souza B.C., Da Silveira R., de Thoisy B., Hrbek T., Farias I.P. Evidence of cryptic lineages within a small South American crocodilian: The Schneider´s dwarf caiman Paleosuchus trigonatus (Alligatoridae: Caimaninae) PeerJ. 2019;7:e6580. doi: 10.7717/peerj.6580. PubMed DOI PMC
Balaguera-Reina S.A., Velasco A. Caiman crocodilus. IUCN Red List Threat. Species. 2019;2019:E.T46584A3009688. doi: 10.2305/IUCN.UK.2019-1.RLTS.T46584A3009688.en. DOI
Jiang H., Wu X. Alligator sinensis. IUCN Red List Threat. Species. 2018;2018 doi: 10.2305/IUCN.UK.2018-1.RLTS.T867A3146005.en. DOI
Thorbjarnarson J., Wang X., Ming S., He L., Ding Y., Wu Y., McMurry S.T. Wild populations of the Chinese alligator approach extinction. Biol. Conserv. 2002;103:93–102. doi: 10.1016/S0006-3207(01)00128-8. DOI
Olmo E. Trends in the evolution of reptilian chromosomes. Integr. Comp. Biol. 2008;48:486–493. doi: 10.1093/icb/icn049. PubMed DOI
Deakin J.E., Ezaz T. Understanding the evolution of reptile chromosomes through applications of combined cytogenetics and genomics approaches. Cytogenet. Genome Res. 2019;157:7–20. doi: 10.1159/000495974. PubMed DOI
Straková B., Rovatsos M., Kubička L., Kratochvíl L. Evolution of sex determination in amniotes: Did stress and sequential hermaphroditism produce environmental determination? BioEssays. 2020;42:e2000050. doi: 10.1002/bies.202000050. PubMed DOI
Ezaz T., Quinn A.E., Miura I., Sarre S.D., Georges A., Graves J.A.M. The dragon lizard Pogona vitticeps has ZZ/ZW micro-sex chromosomes. Chromosome Res. 2005;13:763–776. doi: 10.1007/s10577-005-1010-9. PubMed DOI
Ezaz T., Valenzuela N., Grützner F., Miura I., Georges A., Burke R.L., Graves J.A.M. An XX/XY sex michrocromosome system in a freshwater turtle, Chelodina longicollis (Testudines: Chelidae) with genetic sex determination. Chromosome Res. 2006;14:139–150. doi: 10.1007/s10577-006-1029-6. PubMed DOI
Kawai A., Nishida-Umehara C., Ishijima J., Tsuda Y., Ota H., Matsuda Y. Different origins of bird and reptile sex chromosomes inferred from comparative mapping of chicken Z-linked genes. Cytogenet. Genome Res. 2007;117:92–102. doi: 10.1159/000103169. PubMed DOI
Martinez P.A., Ezaz T., Valenzuela N., Georges A., Graves J.A.M. An XX/XY heteromorphic sex chromosome system in the Australian chelid turtle Emydura macquarii: A new piece in the puzzle of sex chromosome evolution in turtles. Chromosome Res. 2008;16:815–825. doi: 10.1007/s10577-008-1228-4. PubMed DOI
Badenhorst D., Stanyon R., Engstrom T., Valenzuela N. A ZZ/ZW microchromosome system in the spiny softshell turtle, Apalone spinifera, reveals an intriguing sex chromosome conservation in Trionychidae. Chromosome Res. 2013;21:137–147. doi: 10.1007/s10577-013-9343-2. PubMed DOI
Koubová M., Pokorná M.J., Rovatsos M., Farkačová K., Altmanová M., Kratochvil L. Sex determination in Madagascar geckos of the genus Paroedura (Squamata: Gekkonidae) are differentiated sex chromosomes indeed so evolutionary stable? Chromosome Res. 2014;22:441–452. doi: 10.1007/s10577-014-9430-z. PubMed DOI
Matsubara K., Gamble T., Matsuda Y., Zarkower D., Sarre S.D., Georges A., Graves J.A.M., Ezaz T. Non-homologous sex chromosomes in two geckos (Gekkonidae: Gekkota) with female heterogamety. Cytogenet. Genome Res. 2014;143:251–258. doi: 10.1159/000366172. PubMed DOI
Montiel E.E., Badenhorst D., Tamplin J., Burke R.L., Valenzuela N. Discovery of the youngest sex chromosomes reveals first case of convergent co-option of ancestral autosomes in turtles. Chromosoma. 2016;126:105–113. doi: 10.1007/s00412-016-0576-7. PubMed DOI
Viana P.F., Ezaz T., Cioffi M.B., Almeida B.J., Feldberg E. Evolutionary Insights of the ZW Sex Chromosomes in Snakes: A New Chapter Added by the Amazonian Puffing Snakes of the Genus Spilotes. Genes. 2019;10:288. doi: 10.3390/genes10040288. PubMed DOI PMC
Viana P.F., Ezaz T., Cioffi M.B., Liehr T., Al-Rikabi A., Goll L.G., Rocha A.M., Feldberg E. Landscape of snake’ sex chromosomes evolution spanning 85 MYR reveals ancestry of sequences despite distinct evolutionary trajectories. Sci. Rep. 2020;10:12499. doi: 10.1038/s41598-020-69349-5. PubMed DOI PMC
Cohen M.M., Clark H.F. The somatic chromosomes of five crocodilian species. Cytogenetics. 1967;6:193–203. doi: 10.1159/000129941. PubMed DOI
Cohen M.M., Gans C. The chromosomes of the Order Crocodilia. Cytogenetics. 1970;9:81–105. doi: 10.1159/000130080. PubMed DOI
King M., Honeycutt R., Contreras N. Chromosomal repatterning in crocodiles: C, G, and N-banding and the in situ hybridization of 18S and 26S rRNA cistrons. Genetica. 1986;70:191–201. doi: 10.1007/BF00122186. DOI
Lui J.F., Valencia E.F.T., Boer J.A. Karyotypic analysis and chromosome biometry of cell cultures of the yellow throated alligator (Caiman latirostris DAUDIN) Rev. Brasil. Genet. 1994;17:165–169.
Valleley E.M.A., Harrison C.J., Cook Y., Ferguson M.W.J., Sharpe P.T. The karyotype of Alligator mississippiensis, and chromosomal mapping of the ZFY/X homologue, Zfc. Chromosoma. 1994;103:502–507. doi: 10.1007/BF00337388. PubMed DOI
Kawagoshi T., Nishida C., Ota H., Kumazawa Y., Endo H., Matsuda Y. Molecular structures of centromeric heterochromatin and karyotypic evolution in the Siamese crocodile (Crocodylus siamensis) (Crocodylidae, Crocodylia) Chromosome Res. 2008;16:1119–1132. doi: 10.1007/s10577-008-1263-1. PubMed DOI
Uno Y., Nishida C., Tarui H., Ishishita S., Takagi C., Nishimura O., Ishijima J., Ota H., Kosaka A., Matsubara K., et al. Inference of the protokaryotypes of amniotes and tetrapods and the evolutionary processes of microchromosomes from comparative gene mapping. PLoS ONE. 2012;7:e53027. doi: 10.1371/journal.pone.0053027. PubMed DOI PMC
Kasai F., O’Brien P.C.M., Martin S., Ferguson-Smith M.A. Extensive homology of chicken macrochromosomes in the karyotypes of Trachemys scripta elegans and Crocodylus niloticus revealed by chromosome painting despite long divergence times. Cytogenet. Genome Res. 2012;136:303–307. doi: 10.1159/000338111. PubMed DOI
Oliveira V.C.S., Viana P.F., Gross M.C., Feldberg E., Da Silveira R., Cioffi M.B., Bertollo L.A.C., Schneider C.H. Looking for genetic effects of polluted anthropized environments on Caiman crocodilus crocodilus (Reptilia, Crocodylia): A comparative genotoxic and chromosomal analysis. Ecotoxicol. Environ. Saf. 2021;209:111835. doi: 10.1016/j.ecoenv.2020.111835. PubMed DOI
Olmo E., Signorino G.G. Chromorep: A Reptile Chromosomes Database. [(accessed on 24 August 2020)]; Available online: http://chromorep.univpm.it/?q=node/13.
Degrandi T.M., Gunski R.J., Garnero A.V., Oliveira E.H.C., Kretschmer R., Souza M.S., Barcellos S.A., Hass I. The distribution of 45S rDNA sites in bird suggests multiple evolutionary histories. Genet. Mol. Biol. 2020;43:e20180331. doi: 10.1590/1678-4685-gmb-2018-0331. PubMed DOI PMC
Amavet P., Markariani R., Fenocchio A. Comparative cytogenetic analysis of the South American alligators Caiman latirostris and Caiman yacare (Reptilia, Alligatoridae) from Argentina. Caryologia. 2003;56:489–493. doi: 10.1080/00087114.2003.10589361. DOI
Valenzuela N. Temperature dependent sex determination in reptiles. In: Deeming D.C., editor. Reptilian Incubation: Environment & Behaviour. 1st ed. Volume 1. Nottinghan University Press; Nottingham, UK: 2004. pp. 65–80.
González E.J., Martínez-López M., Morales-Garduza M.A., García-Morales R., Charruau P., Gallardo-Cruz J.A. The sex-determination pattern in crocodilians: A systematic review of three decades of research. J. Anim. Ecol. 2019;88:1417–1427. doi: 10.1111/1365-2656.13037. PubMed DOI
Viana P.F., Ribeiro L.B., Lima T., de Carvalho V.T., Vogt R.C., Gross M.C., Feldberg E. An optimized protocol for obtaining mitotic chromosomes from cultured reptilian lymphocytes. Nucleus. 2016;59:191–195. doi: 10.1007/s13237-016-0174-3. DOI
Johnson Pokorná M., Altmanová M., Rovatsos M., Velenský P., Vodička R., Rehák I., Kratochvíl L. First description of the karyotype and sex chromosomes in the Komodo dragon (Varanus komodoensis) Cytogenet. Genome Res. 2016;148:284–291. doi: 10.1159/000447340. PubMed DOI
Sumner A.T. A simple technique for demonstrating centromeric heterochromatin. Exp. Cell Res. 1972;75:304–306. doi: 10.1016/0014-4827(72)90558-7. PubMed DOI
Schmid M. Chromosome banding in Amphibia. IV. Differentiation of GC and AT-rich regions in Anura. Chromosoma. 1980;77:83–103. doi: 10.1007/BF00292043. PubMed DOI
Cioffi M.B., Martins C., Bertollo L.A.C. Comparative chromosome mapping of repetitive sequences. Implications for genomic evolution in the fish, Hoplias malabaricus. BMC Genet. 2009;10:34. doi: 10.1186/1471-2156-10-34. PubMed DOI PMC
Ijdo J.W., Wells R.A., Baldini A., Reeders S.T. Improved telomere detection using a telomere repeat probe (TTAGGG)n generated by PCR. Nucleic Acids Res. 1991;19:4780. doi: 10.1093/nar/19.17.4780. PubMed DOI PMC
Kubat Z., Hobza R., Vyskot B., Kejnovsky E. Microsatellite accumulation on the Y chromosome in Silene latifolia. Genome. 2008;51:350–356. doi: 10.1139/G08-024. PubMed DOI
Yano C.F., Bertollo L.A.C., Cioffi M.B. Fish-FISH: Molecular Cytogenetics in Fish Species. In: Liehr T., editor. Fluorescence In Situ Hybridization (FISH)—Application Guide. 2nd ed. Volume 1. Springer; Berlin, Germany: 2017. pp. 429–444. DOI
Kosyakova N., Liehr T., Al-Rikabi A. FISH-microdissection. In: Liehr T., editor. Fluorescence In Situ Hybridization (FISH)—Application Guide. 2nd ed. Volume 1. Springer; Berlin, Germany: 2017. pp. 81–99. DOI
Sambrook J., Russell D.W. Molecular Cloning, A Laboratory Manual. 3rd ed. Cold Spring Harbor Laboratory Press; New York, NY, USA: 2001. pp. 58–63.
Zwick M.S., Hanson R.E., McKnight T.D., Islam-Faridi M.N., Stelly D.M., Wing R.A., Price H.J. A rapid procedure for the isolation of C0t-1 DNA from plants. Genome. 1997;40:138–142. doi: 10.1139/g97-020. PubMed DOI
Symonová R., Sember A., Majtánová Z., Ráb P. Characterization of fish genomes by GISH and CGH. In: Ozouf-Costaz C., Pisano E., Foresti F., Toledo L.F.A., editors. Fish Cytogenetic Techniques Ray-Fin Fishes Chondrichthyans. 1st ed. CCR Press; Boca Raton, FL, USA: 2015. pp. 118–131.
Levan A., Fredga K., Sandberg A.A. Nomenclature for centromeric position on chromosomes. Hereditas. 1964;52:201–220. doi: 10.1111/j.1601-5223.1964.tb01953.x. DOI
Matthey R., van Brink J.M. Sex chromosomes in Amniota. Evolution. 1957;11:163–165. doi: 10.1111/j.1558-5646.1957.tb02885.x. DOI
Ohno S. Sex Chromosomes and Sex-linked Genes. In: Labhart A., Mann T., Samuels L.T., Zander J., editors. Monographs on Endocrinology. 1st ed. Volume 1. Springer; Berlin, Germany: New York, NY, USA: 1967. pp. 33–46. DOI
Beçak W., Beçak M.L. Order: CROCODILIA, Suborder: EUSUCHIA, Family: CROCODYLIDAE, Caiman crocodilus (Linnaeus) Folio R-15. 1971;1:1–3.
Olmo E.A. Reptilia. In: John B., editor. Animal Cytogenetics. Chordata 3. 1st ed. Volume 4. Gebrueder Borntraeger; Berlin, Germany: Stuttgart, Germany: 1986. pp. 1–100.
Amavet P., Siroski P., Donayo P., Medina M. Karyotype of Caiman latirostris and Caiman yacare (Reptilia, Alligatoridae); Proceedings of the 15th Working Meeting of the Crocodile Specialist Group; Varadero, Cuba. 17–20 January 2000; pp. 135–138.
Alfaro M.E., Santini F., Brock C., Alamillo H., Dornburg A., Rabosky D.L., Carnevale G., Harmon L.J. Nine exceptional radiations plus high turnover explain species diversity in jawed vertebrates. Proc. Natl. Acad. Sci. USA. 2009;106:13410–13414. doi: 10.1073/pnas.0811087106. PubMed DOI PMC
Jetz W., Thomas G.H., Joy J.B., Hartmann K., Mooers A.O. The global diversity of birds in space and time. Nature. 2012;491:444–448. doi: 10.1038/nature11631. PubMed DOI
Pyron R.A., Burbrink F.T., Wiens J.J. A phylogeny and revised classification of Squamata, including 4161 species of lizards and snakes. BMC Evol. Biol. 2013;13:93. doi: 10.1186/1471-2148-13-93. PubMed DOI PMC
Bista B., Valenzuela N. Turtle insights into the evolution of the reptilian karyotype and the genomic architecture of sex determination. Genes. 2020;11:416. doi: 10.3390/genes11040416. PubMed DOI PMC
Rovatsos M., Altmanová M., Johnson Pokorná M., Velenský P., Baca A.S., Kratochvíl L. Evolution of karyotypes in chameleons. Genes. 2017;8:382. doi: 10.3390/genes8120382. PubMed DOI PMC
Müller J., Reisz R.R. Four well-constrained calibration points from the vertebrate fossil record for molecular clock estimates. BioEssays. 2005;27:1069–1075. doi: 10.1002/bies.20286. PubMed DOI
Slijepcevic P. Telomere length and telomere-centromere relationships? Mutat. Res. 1998;404:215–220. doi: 10.1016/S0027-5107(98)00116-X. PubMed DOI
Porter C.A., Haiduk M.W., de Queiroz K. Evolution and phylogenetic significance of ribosomal gene location in chromosomes of squamate reptiles. Copeia. 1994;1994:302–313. doi: 10.2307/1446980. DOI
Sochorová J., Garcia S., Gálvez F., Symonová R., Kovařík A. Evolutionary trends in animal ribosomal DNA loci: Introduction to a new online database. Chromosoma. 2018;127:141–150. doi: 10.1007/s00412-017-0651-8. PubMed DOI PMC
Camper J.D., Hanks B. Variation in the nucleolus organizer region among new world snakes. J. Herpetol. 1995;29:468–471. doi: 10.2307/1565003. DOI
O’Meally S., Patel H.R., Stiglec R., Sarre S.D., Georges A., Graves J.A.M., Ezaz T. Non-homologous sex chromosomes of birds and snakes share repetitive sequences. Chromosome Res. 2010;18:787–800. doi: 10.1007/s10577-010-9152-9. PubMed DOI
Rovatsos M., Altmanová M., Augstenová B., Mazzoleni S., Velenský P., Kratochvíl L. ZZ/ZW sex determination with multiple neo-sex chromosomes is common in Madagascan chameleons of the genus Furcifer (Reptilia: Chamaeleonidae) Genes. 2019;10:1020. doi: 10.3390/genes10121020. PubMed DOI PMC
Mazzoleni S., Augstenová B., Clemente L., Auer M., Fritz U., Praschag P., Protiva T., Velenský P., Kratochvíl L., Rovatsos M. Sex is determined by XX/XY sex chromosomes in Australasian side-necked turtles (Testudines: Chelidae) Sci. Rep. 2020;10:4276. doi: 10.1038/s41598-020-61116-w. PubMed DOI PMC
Perry B.W., Schield D.R., Adams R.H., Castoe T.A. Microchromosomes exhibit distinct features of vertebrate chromosome structure and function with underappreciated ramifications for genome evolution. Mol. Biol. Evol. 2021;38:904–910. doi: 10.1093/molbev/msaa253. PubMed DOI PMC
Burt D.W. Origin and evolution of avian microchromosomes. Cytogenet. Genome Res. 2002;96:97–112. doi: 10.1159/000063018. PubMed DOI
Norris T.B., Rickards G.K., Daugherty C.H. Chromosomes of tuatara, Sphenodon, a chromosome heteromorphism and an archaic reptilian karyotype. Cytogenet. Genome Res. 2004;105:93–99. doi: 10.1159/000078014. PubMed DOI
Auer H., Mayr B., Lambrou M., Schleger W. An extended chicken karyotype, including the NOR chromosome. Cytogenet. Cell Genet. 1987;45:218–221. doi: 10.1159/000132457. PubMed DOI
McQueen H.A., Siriaco G., Bird A.P. Chicken microchromosomes are hyperacetylated, early replicating, and gene rich. Genome Res. 1998;8:621–630. doi: 10.1101/gr.8.6.621. PubMed DOI PMC
Smith J., Bruley C.K., Paton I.R., Dunn I., Jones C.T., Windsor D., Morrice D.R., Law A.S., Masabanda J., Sazanov A., et al. Differences in gene density on chicken macrochromosomes and microchromosomes. Anim. Genet. 2000;31:96–103. doi: 10.1046/j.1365-2052.2000.00565.x. PubMed DOI
Andreozzi L., Federico C., Motta S., Saccone S., Sazanova A.L., Sazanov A.A., Smirnov A.F., Galkina S.A., Lukina N.A., Rodionov A.V., et al. Compositional mapping of chicken chromosomes and identification of the gene-richest regions. Chromosome Res. 2001;9:521–532. doi: 10.1023/A:1012436900788. PubMed DOI
Kuraku S., Ishijima J., Nishida-Umehara C., Agata K., Kuratani S., Matsuda Y. cDNA-based gene mapping and GC3 profiling in the soft-shelled turtle suggest a chromosomal size-dependent GC bias shared by sauropsids. Chromosome Res. 2006;14:187–202. doi: 10.1007/s10577-006-1035-8. PubMed DOI
Olmo E. Rate of chromosome changes and speciation in reptiles. Genetica. 2005;125:185–203. doi: 10.1007/s10709-005-8008-2. PubMed DOI
Shedlock A.M., Botka C.W., Zhao S., Shetty J., Zhang T., Liu J.S., Deschavanne P.J., Edwards S.V. Phylogenomics of nonavian reptiles and the structure of the ancestral amniote genome. Proc. Natl. Acad. Sci. USA. 2007;104:2767–2772. doi: 10.1073/pnas.0606204104. PubMed DOI PMC
Alföldi J., Di Palma F., Grabherr M., Williams C., Kong L., Mauceli E., Russell P., Lowe C.B., Glor R.E., Jaffe J.D., et al. The genome of the green anole lizard and a comparative analysis with birds and mammals. Nature. 2011;477:587–591. doi: 10.1038/nature10390. PubMed DOI PMC
Adams R.H., Blackmon H., Reyes-Velasco J., Schield D.R., Card D.C., Andrew A.L., Waynewood N., Castoe T.A. Microsatellite landscape evolutionary dynamics across 450 million years of vertebrate genome evolution. Genome. 2016;59:295–310. doi: 10.1139/gen-2015-0124. PubMed DOI
Kapusta A., Suh A., Feschotte C. Dynamics of genome size evolution in birds and mammals. Proc. Natl. Acad. Sci. USA. 2017;114:1–10. doi: 10.1073/pnas.1616702114. PubMed DOI PMC
Balaresque P., King T.E., Parkin E.J., Heyer E., Carvalho-Silva D., Kraaijenbrink T., de Knijff P., Tyler-Smith C., Jobling M.A. Gene conversion violates the stepwise mutation model for microsatellites in Y-chromosomal palindromic repeats. Hum. Mutat. 2014;35:609–617. doi: 10.1002/humu.22542. PubMed DOI PMC
Ramsay L., Macaulay M., Cardle L., Morgante M., Ivanissevich S.d., Maestri E., Powell W., Waugh R. Intimate association of microsatellite repeats with retrotransposons and other dispersed repetitive elements in barley. Plant. J. 1999;17:415–425. doi: 10.1046/j.1365-313X.1999.00392.x. PubMed DOI
Cordaux R., Batzer M.A. The impact of retrotransposon on human genome evolution. Nat. Rev. Genet. 2009;10:691–703. doi: 10.1038/nrg2640. PubMed DOI PMC
Janes D.E., Organ C.L., Fujita M.K., Shedlock A.M., Edwards S.V. Genome evolution in reptilia, the sister group of mammals. Annu. Rev. Genom. Hum. Genet. 2010;11:239–264. doi: 10.1146/annurev-genom-082509-141646. PubMed DOI
Figliuolo V.S.P., Goll L., Viana P.F., Feldberg E., Gross M.C. First record on sex chromosomes in a species of the family Cynodontidae: Cynodon gibbus (Agassiz, 1829) Cytogenet Genome Res. 2020;160:29–37. doi: 10.1159/000505889. PubMed DOI
Pasquesi G.I.M., Adams R.H., Card D.C., Schield D.R., Corbin A.B., Perry B.W., Reyes-Velasco J., Ruggiero R.P., Vandewege M.W., Shortt J.A., et al. Squamate reptiles challenge paradigms of genomic repeat element evolution set by birds and mammals. Nat. Commun. 2018;9:2774. doi: 10.1038/s41467-018-05279-1. PubMed DOI PMC
Ahmad S.F., Singchat W., Jehangir M., Suntronpong A., Panthum T., Malaivijitnond M., Srikulnath K. Dark matter of primate genomes: Satellite DNA repeats and their evolutionary dynamics. Cells. 2020;9:2714. doi: 10.3390/cells9122714. PubMed DOI PMC
Lim K.Y., Kovarik A., Matyasek R., Chase M.W., Clarkson J.J., Grandbastien M.A., Leitch A.R. Sequence of events leading to near-complete genome turnover in allopolyploid Nicotiana within five million years. New Phytol. 2007;175:756–763. doi: 10.1111/j.1469-8137.2007.02121.x. PubMed DOI
Majka J., Majka M., Kwiatek M., Wiśniewska H. Similarities and differences in the nuclear genome organization within Pooideae species revealed by comparative genomic in situ hybridization (GISH) J. Appl. Genet. 2017;58:151–161. doi: 10.1007/s13353-016-0369-y. PubMed DOI PMC
Barby F.F., Bertollo L.A.C., de Oliveira E.A., Yano C.F., Hatanaka T., Ráb P., Sember A., Ezaz T., Artoni R.F., Liehr T., et al. Emerging patterns of genome organization in Notopteridae species (Teleostei, Osteoglossiformes) as revealed by Zoo-FISH and Comparative Genomic Hybridization (CGH) Sci. Rep. 2019;9:1112. doi: 10.1038/s41598-019-38617-4. PubMed DOI PMC
Matsuoka M.P., Gharrett A.J., Wilmot R.L., Smoker W.W. Genetic linkage mapping of allozyme loci in even- and odd-year pink salmon (Oncorhynchus gorbuscha) J. Hered. 2004;95:421–429. doi: 10.1093/jhered/esh069. PubMed DOI
Mandáková T., Joly S., Krzywinski M., Mummenhoff K., Lysak M.A. Fast diploidization in close mesopolyploid relatives of Arabidopsis. Plant. Cell. 2010;22:2277–2290. doi: 10.1105/tpc.110.074526. PubMed DOI PMC
Bomfleur B., Decombeix A.-L., Schwendemann A.B., Escapa I.H., Taylor E.L., Taylor T.N., McLoughlin S. Habit and ecology of the petriellales, an unusual group of seed plants from the Triassic of Gondwana. Int. J. Plant. Sci. 2014;175:1062–1075. doi: 10.1086/678087. DOI
Samad M.S., Biswas A., Bakken L.R., Clough T.J., de Klein C.A.M., Richards K.G., Lanigan G.J., Morales S.E. Phylogenetic and functional potential links pH and N2O emission in pasture soils. Sci Rep. 2016;6:35990. doi: 10.1038/srep35990. PubMed DOI PMC
Sessions S.K., Kezer J. Evolutionary cytogenetics of Bolitoglossine salamanders (Family Plethodontidae) In: Green D.M., Sessions S.K., editors. Amphibian Cytogenetics and Evolution. 1st ed. San Diego Academic Press; San Diego, CA, USA: 1991. pp. 89–130. DOI
Aprea G., Andreone G., Capriglione T., Odierna V., Vences M. Evidence for a remarkable stasis of chromosome evolution in Malagasy tree-frogs (Boophis: Mantellidae) Ital. J. Zool. 2004;2:237–243. doi: 10.1080/11250000409356641. DOI
Ellegren H. Evolutionary stasis: The stable chromosome of birds. Trends Ecol. Evol. 2010;25:283–291. doi: 10.1016/j.tree.2009.12.004. PubMed DOI
Molina W.F. Chromosomal changes and stasis in marine fish groups. In: Pisano E., Ozouf-Costaz C., Foresti F., Kapoor B.G., editors. Fish Cytogenetics. 1st ed. CRC Press; Boca Raton, FL, USA: 2007. pp. 69–110. DOI
Gaffaroglu M., Majtánová Z., Symonová R., Pelikánová S., Unal S., Lajbner Z., Ráb P. Present and future salmonid cytogenetics. Genes. 2020;11:1462. doi: 10.3390/genes11121462. PubMed DOI PMC
Barby F.F., Ráb P., Lavoué S., Ezaz T., Bertollo L.A.C., Kilian A., Maruyama S.R., de Oliveira E.A., Artoni R.A., Santos M.H. From chromosomes to genome: Insights into the evolutionary relationships and biogeography of Old World knifefishes (Notopteridae; Osteoglossiformes) Genes. 2018;9:306. doi: 10.3390/genes9060306. PubMed DOI PMC
Wake D.B., Roth G., Wake M.H. On the problem of stasis in organismal evolution. J. Theor. Biol. 1983;101:211–224. doi: 10.1016/0022-5193(83)90335-1. DOI
Stockdale M.T., Benton M.J. Environmental drivers of body size evolution in crocodile-line archosaurs. Commun. Biol. 2021;4:38. doi: 10.1038/s42003-020-01561-5. PubMed DOI PMC
White M.J.D. Animal Cytology and Evolution. 3rd ed. Cambridge University Press; Cambridge, UK: 1973. p. 468.
King M. Chromosome change and speciation in lizards. In: Atchley W.R., Woodruff D.S., editors. Essays on Evolution and Speciation in Honour of M. J. D. 1st ed. Cambridge University Press; London, UK: 1981. pp. 262–285.
White M.J.D. Modes of Speciation. 1st ed. W.R. Freeman and Company; San Francisco, CA, USA: 1978.
King M. Species Evolution: The Role of Chromosome Change. 3rd ed. Cambridge University Press; Cambridge, UK: 1995. p. 322.
Potter S., Bragg J.G., Blom M.P.K., Deakin J.E., Kirkpatrick M., Eldridge M.D.B., Moritz C. Chromosomal speciation in the genomics era: Disentangling phylogenetic evolution of rock-wallabies. Front. Genet. 2017;8:10. doi: 10.3389/fgene.2017.00010. PubMed DOI PMC
Evolution of ancient satellite DNAs in extant alligators and caimans (Crocodylia, Reptilia)