Central African dwarf crocodiles found in syntopy are comparably divergent to South American dwarf caimans

. 2024 May ; 20 (5) : 20230448. [epub] 20240508

Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid38716586

Grantová podpora
Czech Science Foundation
Neuron Endowment Fund
Ministry of Culture of the Czech Republic

Recent molecular taxonomic advancements have expanded our understanding of crocodylian diversity, revealing the existence of previously overlooked species, including the Congo dwarf crocodile (Osteolaemus osborni) in the central Congo Basin rainforests. This study explores the genomic divergence between O. osborni and its better-known relative, the true dwarf crocodile (Osteolaemus tetraspis), shedding light on their evolutionary history. Field research conducted in the northwestern Republic of the Congo uncovered a locality where both species coexist in sympatry/syntopy. Genomic analysis of sympatric individuals reveals a level of divergence comparable to that between ecologically similar South American dwarf caimans (Paleosuchus palpebrosus and Paleosuchus trigonatus), suggesting parallel speciation in the Afrotropics and Neotropics during the Middle to Late Miocene, 10-12 Ma. Comparison of the sympatric and allopatric dwarf crocodiles indicates no gene flow between the analysed sympatric individuals of O. osborni and O. tetraspis. However, a larger sample will be required to answer the question of whether or to what extent these species hybridize. This study emphasizes the need for further research on the biology and conservation status of the Congo dwarf crocodile, highlighting its significance in the unique biodiversity of the Congolian rainforests and thus its potential as a flagship species.

Zobrazit více v PubMed

Stevenson C. 2019. Crocodiles of the world. A complete guide to alligators, caimans, crocodiles and gharials. Wahroonga, Australia: New Holland Publishers.

Schmitz A, Mansfeld P, Hekkala E, Shine T, Nickel H, Amato G, Böhme W. 2003. Molecular evidence for species level divergence in African Nile Crocodiles Crocodylus niloticus (Laurenti, 1786). Comptes Rendus Palevol. 2 , 703–712. (10.1016/j.crpv.2003.07.002) DOI

Eaton MJ, Martin A, Thorbjarnarson J, Amato G. 2009. Species-level diversification of African dwarf crocodiles (genus Osteolaemus): a geographic and phylogenetic perspective. Mol. Phylogenet. Evol. 50 , 496–506. (10.1016/j.ympev.2008.11.009) PubMed DOI

Hekkala E, et al. . 2011. An ancient icon reveals new mysteries: mummy DNA resurrects a cryptic species within the Nile crocodile. Mol. Ecol. 20 , 4199–4215. (10.1111/j.1365-294X.2011.05245.x) PubMed DOI

Shirley MH, Vliet KA, Carr AN, Austin JD. 2014. Rigorous approaches to species delimitation have significant implications for African crocodilian systematics and conservation. Proc. R. Soc. B 281 , 20132483. (10.1098/rspb.2013.2483) PubMed DOI PMC

Brochu CA. 2003. Phylogenetic approaches toward crocodylian history. Annu. Rev. Earth Planet. Sci. 31 , 357–397. (10.1146/annurev.earth.31.100901.141308) DOI

Grigg G, Kirshner D. 2015. Biology and evolution of crocodylians. Ithaca, NY: Cornell University Press. See https://ebooks.publish.csiro.au/content/ISBN/9781486300679

Schmidt KP. 1919. Contributions to the herpetology of the Belgian Congo based on the collection of the American Museum Congo Expedition, 1909–1915. Part I. Turtles, crocodiles, lizards, and chameleons. Bull. Am. Mus. Nat. Hist. 39 , 385–624.

Chabanaud P. 1920. Sur une tête osseuse de crocodilide d‘Afrique occidentale. Bull. Soc. Zool. France 45 , 231–233.

Kälin JA. 1933. Beiträge zur vergleichenden Osteologie des Crocodilidenschädels. Zool. Jahrb. Anat. 57 , 535–714.

Kälin J. 1941. Über die Altersvariationen von Osteolaemus tetraspis Cope und über Osteoblepharon osborni K.P. Schmidt. Zool. Anz 134 , 295–299.

Wermuth H. 1953. Systematik der rezenten krokodile. Mitt. Zool. Mus. Berlin 29 , 375–514. (10.1002/mmnz.19530290203) DOI

King FW, Burke RL (eds). 1989. Crocodilian, Tuatara, and turtle species of the world. A taxonomic and geographic reference. Washington, DC: Association of Systematics Collections.

Brochu CA. 2006. A new miniature horned crocodile from the Quaternary of Aldabra Atoll, western Indian Ocean. Copeia 2006 , 149–158. (10.1643/0045-8511(2006)6[149:ANMHCF]2.0.CO;2) DOI

Brochu CA. 2007. Morphology, relationships, and biogeographical significance of an extinct horned crocodile (Crocodylia, Crocodylidae) from the Quaternary of Madagascar. Zool. J. Linn. Soc. 150 , 835–863. (10.1111/j.1096-3642.2007.00315.x) DOI

McAliley LR, Willis RE, Ray DA, White PS, Brochu CA, Densmore III LD. 2006. Are crocodiles really monophyletic?—Evidence for subdivisions from sequence and morphological data. Mol. Phylogenet. Evol. 39 , 16–32. (10.1016/j.ympev.2006.01.012) PubMed DOI

Uetz P, Freed P, Aguilar R, Reyes F, Hošek J. 2023. The Reptile Database. See http://www.reptile-database.org (accessed 4 July 2023)

WCS Congo . 2020. Lessons learnt from the seizure of 30 Congolese dwarf crocodiles. See https://wcscongoblog.org/seizure-congolese-dwarf-crocodiles (accessed 29 June 2023)

Schmidt F, Franke FA, Shirley MH, Vliet KA, Villanova VL. 2015. The importance of genetic research in zoo breeding programmes for threatened species: the African dwarf crocodiles (genus Osteolaemus) as a case study. Int. Zoo Yb. 49 , 125–136. (10.1111/izy.12082) DOI

Shirley MH, Villanova VL, Vliet KA, Austin JD. 2015. Genetic barcoding facilitates captive and wild management of three cryptic African crocodile species complexes. Anim. Conserv. 18 , 322–330. (10.1111/acv.12176) DOI

Smolensky NL, Hurtado LA, Fitzgerald LA. 2015. DNA barcoding of Cameroon samples enhances our knowledge on the distributional limits of putative species of Osteolaemus (African dwarf crocodiles). Conserv. Genet. 16 , 235–240. (10.1007/s10592-014-0639-3) DOI

Smolensky NL. 2015. Co-occurring cryptic species pose challenges for conservation: a case study of the African dwarf crocodile (Osteolaemus spp.) in Cameroon. Oryx 49 , 584–590. (10.1017/S0030605314000647) DOI

Fuchs K, Mertens R, Wermuth H. 1974. Zum Status von Crocodylus cataphractus und Osteolaemus tetraspis. Stuttgarter Beitr. Ser. A 266 , 1–8.

Mertens R. 1943. Die rezenten Krokodile des Natur-Museums Senckenberg. Senckenbergiana 26 , 252–312.

Medem FJ. 1958. The crocodilian genus Paleosuchus. Fieldiana Zool. 39 , 227–247. (10.5962/bhl.title.3788) DOI

Merchant M, Shirley MH, Watson CM. 2016. Paleosuchus spp. (dwarf caiman) and Osteolaemus spp. (dwarf crocodile). Defense mechanisms. Herpetol. Rev. 47 , 660–663.

Lemmon AR, Emme SA, Lemmon EM. 2012. Anchored hybrid enrichment for massively high-throughput phylogenomics. Syst. Biol. 61 , 727–744. (10.1093/sysbio/sys049) PubMed DOI

Meyer M, Kircher M. 2010. Illumina sequencing library preparation for highly multiplexed target capture and sequencing. Cold Spring Harb. Protoc. 2010 , 5448. (10.1101/pdb.prot5448) PubMed DOI

Prum RO, Berv JS, Dornburg A, Field DJ, Townsend JP, Lemmon EM, Lemmon AR. 2015. A comprehensive phylogeny of birds (Aves) using targeted next-generation DNA sequencing. Nature 526 , 569–573. (10.1038/nature15697) PubMed DOI

Tucker DB, Colli GR, Giugliano LG, Hedges SB, Hendry CR, Lemmon EM, Lemmon AR, Sites JW, Pyron RA. 2016. Methodological congruence in phylogenomic analyses with morphological support for teiid lizards (Sauria: Teiidae). Mol. Phylogenet. Evol. 103 , 75–84. (10.1016/j.ympev.2016.07.002) PubMed DOI

Rokyta DR, Lemmon AR, Margres MJ, Aronow K. 2012. The venom-gland transcriptome of the eastern diamondback rattlesnake (Crotalus adamanteus). BMC Genomics 13 , 312. (10.1186/1471-2164-13-312) PubMed DOI PMC

Hamilton CA, Lemmon AR, Lemmon EM, Bond JE. 2016. Expanding anchored hybrid enrichment to resolve both deep and shallow relationships within the spider tree of life. BMC Evol. Biol. 16 , 212. (10.1186/s12862-016-0769-y) PubMed DOI PMC

Katoh K, Standley DM. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30 , 772–780. (10.1093/molbev/mst010) PubMed DOI PMC

Lemmon AR, Brown JM, Stanger-Hall K, Lemmon EM. 2009. The effect of ambiguous data on phylogenetic estimates obtained by maximum likelihood and Bayesian inference. Syst. Biol. 58 , 130–145. (10.1093/sysbio/syp017) PubMed DOI PMC

Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ. 2015. IQ-Tree: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32 , 268–274. (10.1093/molbev/msu300) PubMed DOI PMC

Chernomor O, von Haeseler A, Minh BQ. 2016. Terrace aware data structure for phylogenomic inference from supermatrices. Syst. Biol. 65 , 997–1008. (10.1093/sysbio/syw037) PubMed DOI PMC

Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS. 2017. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat. Methods 14 , 587–589. (10.1038/nmeth.4285) PubMed DOI PMC

Hoang DT, Chernomor O, von Haeseler A, Minh BQ, Vinh LS. 2018. UFBoot2: improving the ultrafast bootstrap approximation. Mol. Biol. Evol. 35 , 518–522. (10.1093/molbev/msx281) PubMed DOI PMC

Douglas J, Jiménez-Silva CL, Bouckaert R. 2022. StarBeast3: adaptive parallelized Bayesian inference under the multispecies coalescent. Syst. Biol. 71 , 901–916. (10.1093/sysbio/syac010) PubMed DOI PMC

Bouckaert R, et al. . 2019. BEAST 2.5: an advanced software platform for Bayesian evolutionary analysis. PLoS Comput. Biol. 15 , e1006650. (10.1371/journal.pcbi.1006650) PubMed DOI PMC

Zhang R, Drummond A. 2020. Improving the performance of Bayesian phylogenetic inference under relaxed clock models. BMC Evol. Biol. 20 , 54. (10.1186/s12862-020-01609-4) PubMed DOI PMC

Douglas J, Zhang R, Bouckaert R. 2021. Adaptive dating and fast proposals: revisiting the phylogenetic relaxed clock model. PLoS Comput. Biol. 17 , e1008322. (10.1371/journal.pcbi.1008322) PubMed DOI PMC

Oaks JR. 2011. A time-calibrated species tree of Crocodylia reveals a recent radiation of the true crocodiles. Evolution 65 , 3285–3297. (10.1111/j.1558-5646.2011.01373.x) PubMed DOI

Colston TJ, Kulkarni P, Jetz W, Pyron RA. 2020. Phylogenetic and spatial distribution of evolutionary diversification, isolation, and threat in turtles and crocodilians (non-avian archosauromorphs). BMC Evol. Biol. 20 , 81. (10.1186/s12862-020-01642-3) PubMed DOI PMC

Pan T, et al. . 2021. Near-complete phylogeny of extant Crocodylia (Reptilia) using mitogenome-based data. Zool. J. Linn. Soc. 191 , 1075–1089. (10.1093/zoolinnean/zlaa074) DOI

Lee MSY, Yates AM. 2018. Tip-dating and homoplasy: reconciling the shallow molecular divergences of modern gharials with their long fossil record. Proc. R. Soc. B 285 , 20181071. (10.1098/rspb.2018.1071) PubMed DOI PMC

Rambaut A, Drummond AJ, Xie D, Baele G, Suchard MA. 2018. Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Syst. Biol. 67 , 901–904. (10.1093/sysbio/syy032) PubMed DOI PMC

Gvozdik V, Dolinay M, Zassi-Boulou A-G, Lemmon AR, Lemmon EM, Procházka M. 2023. Osteolaemus and other crocodilians (Crocodylia) – anchored hybrid enrichment phylogenomic data and gene trees. Mendeley Data, V2 (10.17632/3gdf6jjydz.2) DOI

Couvreur TLP, et al. . 2021. Tectonics, climate and the diversification of the tropical African terrestrial flora and fauna. Biol. Rev. 96 , 16–51. (10.1111/brv.12644) PubMed DOI PMC

The Paleobiology Database . 2024. Revealing the history of life. See https://paleobiodb.org (accessed 29 February 2024).

Hekkala E, et al. . 2021. Paleogenomics illuminates the evolutionary history of the extinct Holocene “horned” crocodile of Madagascar, Voay robustus. Commun. Biol. 4 , 505. (10.1038/s42003-021-02017-0) PubMed DOI PMC

Brochu CA, et al. . 2022. Giant dwarf crocodiles from the Miocene of Kenya and crocodylid faunal dynamics in the late Cenozoic of East Africa. Anat. Rec. (Hoboken) 305 , 2729–2765. (10.1002/ar.25005) PubMed DOI PMC

Perrichon G, Pochat‐Cottilloux Y, Conedera D, Richardin P, Fernandez V, Hautier L, Martin JE. 2023. Neuroanatomy and pneumaticity of the extinct Malagasy “horned” crocodile Voay robustus and its implications for crocodylid phylogeny and palaeoecology. Ana. Rec. (preprint) 1–38. (10.1002/ar.25367) PubMed DOI

Salas-Gismondi R, Flynn JJ, Baby P, Tejada-Lara JV, Wesselingh FP, Antoine PO. 2015. A Miocene hyperdiverse crocodylian community reveals peculiar trophic dynamics in proto-Amazonian mega-wetlands. Proc. R. Soc. B 282 , 20142490. (10.1098/rspb.2014.2490) PubMed DOI PMC

Dolinay M, Nečas T, Zimkus BM, Schmitz A, Fokam EB, Lemmon EM, Lemmon AR, Gvoždík V. 2021. Gene flow in phylogenomics: sequence capture resolves species limits and biogeography of Afromontane forest endemic frogs from the Cameroon Highlands. Mol. Phylogenet. Evol. 163 , 107258. (10.1016/j.ympev.2021.107258) PubMed DOI

Sales-Oliveira V, et al. . 2023. Cross-species chromosome painting and repetitive DNA mapping illuminate the karyotype evolution in true crocodiles (Crocodylidae). Chromosoma 132 , 289–303. (10.1007/s00412-023-00806-6) PubMed DOI

Oliveira VCS, et al. . 2021. Revisiting the karyotypes of alligators and caimans (Crocodylia, Alligatoridae) after a half-century delay: bridging the gap in the chromosomal evolution of reptiles. Cells 10 , 1397. (10.3390/cells10061397) PubMed DOI PMC

Marioni B, Magnusson WE, Vogt RC, Villamarín F. 2022. Home range and movement patterns of male dwarf caimans (Paleosuchus palpebrosus and Paleosuchus trigonatus) living in sympatry in Amazonian floodplain streams. Neotrop. Biodivers. 8 , 156–166. (10.1080/23766808.2022.2061292) DOI

Gvoždík V, Dolinay M, Zassi-Boulou AG, Lemmon AR, Lemmon EM, Procházka M. 2024. Data from: Central African dwarf crocodiles found in syntopy are comparably divergent to South American dwarf caimans. Figshare. (10.6084/m9.figshare.c.7158535) PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace