Evolution of ancient satellite DNAs in extant alligators and caimans (Crocodylia, Reptilia)

. 2024 Feb 27 ; 22 (1) : 47. [epub] 20240227

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38413947

Grantová podpora
401036/2022-7 Conselho Nacional de Desenvolvimento Científico e Tecnológico

Odkazy

PubMed 38413947
PubMed Central PMC10900743
DOI 10.1186/s12915-024-01847-8
PII: 10.1186/s12915-024-01847-8
Knihovny.cz E-zdroje

BACKGROUND: Crocodilians are one of the oldest extant vertebrate lineages, exhibiting a combination of evolutionary success and morphological resilience that has persisted throughout the history of life on Earth. This ability to endure over such a long geological time span is of great evolutionary importance. Here, we have utilized the combination of genomic and chromosomal data to identify and compare the full catalogs of satellite DNA families (satDNAs, i.e., the satellitomes) of 5 out of the 8 extant Alligatoridae species. As crocodilian genomes reveal ancestral patterns of evolution, by employing this multispecies data collection, we can investigate and assess how satDNA families evolve over time. RESULTS: Alligators and caimans displayed a small number of satDNA families, ranging from 3 to 13 satDNAs in A. sinensis and C. latirostris, respectively. Together with little variation both within and between species it highlighted long-term conservation of satDNA elements throughout evolution. Furthermore, we traced the origin of the ancestral forms of all satDNAs belonging to the common ancestor of Caimaninae and Alligatorinae. Fluorescence in situ experiments showed distinct hybridization patterns for identical orthologous satDNAs, indicating their dynamic genomic placement. CONCLUSIONS: Alligators and caimans possess one of the smallest satDNA libraries ever reported, comprising only four sets of satDNAs that are shared by all species. Besides, our findings indicated limited intraspecific variation in satellite DNA, suggesting that the majority of new satellite sequences likely evolved from pre-existing ones.

Zobrazit více v PubMed

Biémont C, Vieira C. Junk DNA as an evolutionary force. Nature. 2006 doi: 10.1038/443521a. PubMed DOI

López-Flores I, Garrido-Ramos MA. The repetitive DNA content of eukaryotic genomes. In: Garrido-Ramos MA, editor. Repetitive DNA. Basel: Karger; 2012. pp. 1–28. PubMed

Plohl M, Meštrović N, Mravinac B. Centromere identity from the DNA point of view. Chromosoma. 2014 doi: 10.1007/s00412-014-0462-0. PubMed DOI PMC

Garrido-Ramos MA. Satellite DNA: An evolving topic. Genes. 2017 doi: 10.3390/genes8090230. PubMed DOI PMC

Garrido-Ramos MA. The genomics of plant satellite DNA. In: Ugarković Ð, editor. Satellite DNAs in Physiology and Evolution, Progress in Molecular and Subcellular Biology. Springer: Cham; 2021. pp. 103–144. PubMed

Ruiz-Ruano F, López-Leon MD, Cabrero J, Camacho JPM. High-throughput analysis of the satellitome illuminates satellite DNA evolution. Sci Rep. 2016 doi: 10.1038/srep28333. PubMed DOI PMC

Csink AK, Henikoff S. Something from nothing: the evolution and utility of satellite repeats. Trends Genet. 1998 doi: 10.1016/S0168-9525(98)01444-9. PubMed DOI

Kuhn GCS, Sene FM, Moreira-Filho O, Schwarzacher T, Heslop-Harrison JS. Sequence analysis, chromosomal distribution and long-range organization show that rapid turnover of new and old pBuM satellite DNA repeats leads to different patterns of variation in seven species of the Drosophila buzzatii cluster. Chromosome Res. 2008 doi: 10.1007/s10577-007-1195-1. PubMed DOI

Kuhn GCS, Schwarzacher T, Heslop-Harrison JS. The non-regular orbit: three satellite DNAs in Drosophila martensis (buzzatii complex, repleta group) followed three different evolutionary pathways. Mol Genet Genom. 2010 doi: 10.1007/s00438-010-0564-1. PubMed DOI

Plohl M, Meštrović N, Mravinac B. Satellite DNA evolution. In: Garrido-Ramos MA, editor. Repetitive DNA. Basel: Karger; 2012. pp. 126–152. PubMed

Feliciello I, Akrap I, Ugarković Ð. Satellite DNA modulates gene expression in the beetle Tribolium castaneum after heat stress. PLoS Genet. 2015 doi: 10.1371/journal.pgen.1005466. PubMed DOI PMC

Prakhongcheep O, Thapana W, Suntronpong A, Singchat W, Pattanatanang K, Phatcharakullawarawat R, Muangmai N, Peyachoknagul S, Matsubara K, Ezaz T, Srikulnath K. Lack of satellite DNA species-specific homogenization and relationship to chromosomal rearrangements in monitor lizards (Varanidae, Squamata) BMC Evol Biol. 2017 doi: 10.1186/s12862-017-1044-6. PubMed DOI PMC

Palacios-Gimenez OM, Dias GB, de Lima LG, Campos G, Kuhn S, Ramos E, Martins C, Cabral-de-Mello DC. High-throughput analysis of the satellitome revealed enormous diversity of satellite DNAs in the neo-Y chromosome of the cricket Eneoptera surinamensis. Sci Rep. 2017 doi: 10.1038/s41598-017-06822-8. PubMed DOI PMC

Feliciello I, Chinali G, Ugarković Ð. Structure and population dynamics of the major satellite DNA in the red flour beetle Tribolium castaneum. Genetica. 2011 doi: 10.1007/s10709-011-9601-1. PubMed DOI

Kuhn GCS, Küttler H, Moreira-Filho O, Heslop-Harrison JS. The 1.668 repetitive DNA of Drosophila: Concerted evolution at different genomic scales and association with genes. Mol Biol Evol. 2012 10.1093/molbev/msr173. PubMed

Brajković J, Feliciello I, Bruvo-Mađarić B, Ugarković Ð. Satellite DNA-Like elements associated with genes within euchromatin of the beetle Tribolium castaneum. G3: Genes, Genomes, Genetics 2012 10.1534/g3.112.003467. PubMed PMC

Larracuente AM. The organization and evolution of the Responder satellite in species of the Drosophila melanogaster group: dynamic evolution of a target of meiotic drive. BMC Ecol Evol. 2014 doi: 10.1186/s12862-014-0233-9. PubMed DOI PMC

Pavlek M, Gelfand Y, Plohl M, Meštrović N. Genome-wide analysis of tandem repeats in Tribolium castaneum genome reveals abundant and highly dynamic tandem repeat families with satellite DNA features in euchromatic chromosomal arms. DNA Res. 2015 doi: 10.1093/dnares/dsv021. PubMed DOI PMC

Pita S, Panzera F, Mora P, Vela J, Cuadrado A, Sánchez A, Palomeque T, Lorite P. Comparative repeatome analysis on Triatoma infestans Andean and Non-Andean lineages, main vector of Chagas disease. PLoS ONE. 2017 doi: 10.1371/journal.pone.0181635. PubMed DOI PMC

de Lima L.G, Svartman M, Kuhn GCS. Dissecting the satellite DNA landscape in three cactophilic Drosophila sequenced genomes. G3. 2017 10.1534/g3.117.042093. PubMed PMC

Robledillo LÁ, Neumann P, Koblížková A, Novák P, Vrbová I, Macas J. Extraordinary sequence diversity and promiscuity of centromeric satellites in the legume tribe Fabeae. Mol Biol Evol. 2020 doi: 10.1093/molbev/msaa090. PubMed DOI PMC

Milani D, Ruiz-Ruano FJ, Camacho JPM, Cabral-de-Mello DC. Out of patterns, the euchromatic B chromosome of the grasshopper Abacris flavolineata is not enriched in high-copy repeats. Heredity. 2021 doi: 10.1038/s41437-021-00470-5. PubMed DOI PMC

Šatović-Vukšić E, Plohl M. Satellite DNAs-From localized to highly dispersed genome components. Genes. 2023 doi: 10.3390/genes14030742. PubMed DOI PMC

Joshi SS, Meller VH. Satellite repeats identify X chromatin for dosage compensation in Drosophila melanogaster males. Curr Biol. 2017 doi: 10.1016/j.cub.2017.03.078. PubMed DOI PMC

Rošić S, Köhler F, Erhardt S. Repetitive centromeric satellite RNA is essential for kinetochore formation and cell division. J Cell Biol. 2014 doi: 10.1083/jcb.201404097. PubMed DOI PMC

Ugarkovic D. Functional elements residing within satellite DNAs. EMBO Rep. 2005 doi: 10.1083/jcb.201404097. PubMed DOI PMC

Pathak R, Mamillapalli A, Rangaraj N, Kumar R, Vasanthi D, Mishra K, Mishra R. AAGAG repeat RNA is an essential component of nuclear matrix in Drosophila. RNA Biol. 2013 doi: 10.4161/rna.24326. PubMed DOI PMC

Jagannathan M, Cummings R, Yamashita YM. A conserved function for pericentromeric satellite DNA. eLife 2018 10.7554/eLife.34122. PubMed PMC

Jagannathan M, Cummings R, Yamashita YM. The modular mechanism of chromocenter formation in Drosophila. eLife 2019 10.7554/eLife.43938. PubMed PMC

Graphodatsky AS. Comparative chromosomics. Mol Biol. 2007;41:361–375. doi: 10.1134/S002689330703003X. PubMed DOI

Deakin JE, Potter S, O’Neill R, Ruiz-Herrera A, Cioffi MB, Eldridge MDB, Fukui K, Graves JAM, Griffin D, Grutzner F, Kratochvíl L, Miura I, Rovatsos M, Srikulnath K, Wapstra E, Ezaz T. Chromosomics: Bridging the gap between genomes and chromosomes. Genes. 2019 doi: 10.3390/genes10080627. PubMed DOI PMC

dos Santos RZ, Calegari RM, Silva DMZA, Ruiz-Ruano FJ, Melo S, Oliveira C, Foresti F, Uliano-Silva M, Porto-Foresti F, Utsunomia R. A long-term conserved satellite DNA that remains unexpanded in several genomes of Characiformes fish is actively transcribed. Genome Biol Evol. 2021 doi: 10.1093/gbe/evab002. PubMed DOI PMC

Rovatsos M, Kratochvíl L, Altmanová M, Pokorná MJ. Interstitial telomeric motifs in squamates reptiles: When the exceptions outnumber the rule. PLoS ONE. 2015 doi: 10.1371/journal.pone.0134985. PubMed DOI PMC

Kretschmer R, Goes CAG, Bertollo LAC, Ezaz T, Porto-Foresti F, Toma GA, Utsunomia R, Cioffi MB. Satellitome analysis illuminates the evolution of ZW sex chromosomes of Triportheidae fishes (Teleostei: Characiformes) Chromosoma. 2022 doi: 10.1007/s00412-022-00768-1. PubMed DOI

Novák P, Neumann JP, Steinhaisl J, Macas J. RepeatExplorer: a Galaxy-based web server for genome-wide characterization of eukaryotic repetitive elements from next-generation sequence reads. Bioinform. 2013 doi: 10.1093/bioinformatics/btt054. PubMed DOI

Novák P, Robledillo LA, Koblížková A, Vrbová I, Neumann P, Macas J. TAREAN: a computational tool for identification and characterization of satellite DNA from unassembled short reads. Nucleic Acids Res. 2017 doi: 10.1093/nar/gkx257. PubMed DOI PMC

Harris RS, Cechova M, Makova KD. Noise-cancelling repeat finder: uncovering tandem repeats in error-prone long-read sequencing data. Bioinform. 2019 doi: 10.1093/bioinformatics/btz484. PubMed DOI PMC

Vondrak T, Robledillo LA, Novák P, Koblížková A, Neumann P, Macas J. Characterization of repeat arrays in ultra-long nanopore reads reveals frequent origin of satellite DNA from retrotransposon-derived tandem repeats. Plant J. 2020 doi: 10.1111/tpj.14546. PubMed DOI PMC

Silva DMZ de A, Utsunomia R, Ruiz-Ruano FJ, Daniel SN, Porto-Foresti F, Hashimoto DT, Oliveira C, Camacho JPM, Foresti F. High-throughput analysis unveils a highly shared satellite DNA library among three species of fish genus Astyanax. Sci Rep. 2017 10.1038/s41598-017-12939-7. PubMed PMC

Kirov I, Gilyok M, Knyazev A, Fesenko I. Pilot satellitome analysis of the model plant, Physcomitrella patens, revealed a transcribed and high-copy IGS related tandem repeat. Comp Cytogenet. 2018 doi: 10.3897/CompCytogen.v12i4.31015. PubMed DOI PMC

Suárez-Santiago VN, Blanca G, Ruiz-Rejón M, Garrido-Ramos MA. Satellite-DNA evolutionary patterns under a complex evolutionary scenario: The case of Acrolophus subgroup (Centaurea L., Compositae) from the western Mediterranean. Gene. 2007 10.1016/j.gene.2007.09.001 PubMed

Chaves R, Ferreira D, Mendes-da-Silva A, Meles S, Adega F. FA-SAT Is an Old Satellite DNA Frozen in Several Bilateria Genomes. Genome Biol Evol. 2017 doi: 10.1093/gbe/evx212. PubMed DOI PMC

Peona V, Kutschera VE, Blom MPK, Irestedt M, Suh A. Satellite DNA evolution in Corvoidea inferred from short and long reads. Mol Ecol. 2022 doi: 10.1111/mec.16484. PubMed DOI

Goes CAG, dos Santos RZ, Aguiar WRC, Alves DCV, Silva DMZA, Foresti F, Oliveira C, Utsunomia R, Porto-Foresti F. Revealing the satellite DNA history in Psalidodon and Astyanax Characid fish by comparative satellitomics. Front Genet. 2022 doi: 10.3389/fgene.2022.884072. PubMed DOI PMC

Henikoff S, Ahmad K, Malik HS. The centromere paradox: Stable inheritance with rapidly evolving DNA. Science. 2001 doi: 10.1126/science.1062939. PubMed DOI

Navajas-Pérez R, de la Herrán R, Jamilena M, Lozano R, Rejón CR, Rejón MR, Garrido-Ramos MA. Reduced rates of sequence evolution of Y-linked satellite DNA in Rumex (Polygonaceae) J Mol Evol. 2005 doi: 10.1007/s00239-004-0199-0. PubMed DOI

Mravinac B, Plohl M, Meštrović N, Ugarković Ð. Sequence of PRAT satellite DNA “frozen” in some Coleopteran species. J Mol Evol. 2002 doi: 10.1007/s00239-001-0079-9. PubMed DOI

Garrido-Ramos MA, Jamilena M, Lozano R, Rejón CR, Rejón MR. The EcoRI centromeric satellite DNA of the Sparidae family (Pisces, Perciformes) contains a sequence motive common to other vertebrate centromeric satellite DNAs. Cytogenet Genome Res. 1995 doi: 10.1159/000134137. PubMed DOI

Mravinac B, Plohl M, Ugarković Đ. Preservation and high sequence conservation of satellite DNAs suggest functional constraints. J Mol Evol. 2005 doi: 10.1007/s00239-004-0342-y. PubMed DOI

Schueler MG, Swanson W, Thomas PJ, NISC Comparative Sequencing Program, Green ED. Adaptive evolution of foundation kinetochore proteins in primates. Mol Biol Evol. 2010 10.1093/molbev/msq043. PubMed PMC

Fachinetti D, Han JS, McMahon MA, Ly P, Abdullah A, Wong AJ. DNA Sequence-specific binding of CENP-B enhances the fidelity of human centromere function. Dev Cell. 2015 doi: 10.1016/j.devcel.2015.03.020. PubMed DOI PMC

de la Herrán R, Fontana F, Lanfredi M, Congiu L, Leis M, Rossi R, Ruiz Rejón C, Ruiz Rejón M, Garrido-Ramos MA. Slow Rates of Evolution and Sequence Homogenization in an Ancient Satellite DNA Family of Sturgeons. Mol Biol Evol. 2001;18(3):432–436. doi: 10.1093/oxfordjournals.molbev.a003820. PubMed DOI

Robles F, de la Herrán R, Ludwig A, Rejón CR, Rejón MR, Garrido-Ramos MA. Evolution of ancient satellite DNAs in sturgeon genomes. Gene. 2004 doi: 10.1016/j.gene.2004.06.001. PubMed DOI

Plohl M, Petrović V, Luchetti A, Ricci A, Šatović E, Passamonti M, Mantovani B. Long-term conservation vs high sequence divergence: the case of an extraordinarily old satellite DNA in bivalve mollusk. Heredity. 2010 doi: 10.1038/hdy.2009.141. PubMed DOI

Lorite P, Muñoz-López M, Carrillo JA, Sanllorente O, Mora P, Tinaut A, Torres MI, Palomeque T. Concerted evolution, a slow process for ant satellite DNA: study of the satellite DNA in the Aphaenogaster genus (Hymenoptera, Formicidae) Org Divers Evol. 2017 doi: 10.1038/hdy.2009.141. DOI

Halbach R, Miesen P, Joosten J, Taşköprü E, Rondeel I, Pennings B, Vogels CBF, Merkling SH, Joenraadt CJ, Lambrechts L, van Riji RP. A satellite repeat-derived piRNA controls embryonic development of Aedes. Nature. 2020 doi: 10.1038/s41586-020-2159-2. PubMed DOI PMC

Brochu CA. Phylogenetic approaches toward Crocodylian history. Annu Rev Earth Planet Sci. 2003 doi: 10.1146/annurev.earth.31.100901.141308. DOI

Grigg G, Seebacher F, Franklin CE. Crocodilian Biology and Evolution. 1. Surrey Beatty: Chipping Norton; 2001.

Brochu CA, Sumrall CD, Theodor JM. When clocks (and communities) collide: Estimating divergence time from molecules and the fossil record. J Paleontol. 2004 doi: 10.1666/0022-3360(2004)078<0001:WCACCE>2.02CO;2. DOI

Bronzati M, Montefeltro FC, Langer MC. Diversification events and the effects of mass extinction on Crocodyliformes evolutionary history. R Soc Open Sci. 2015 doi: 10.1098/rsos.140385. PubMed DOI PMC

Janke A, Arnason U. The complete mitochondrial genome of Alligator mississippiensis and the separation between recent Archosauria (birds and crocodiles) Mol Biol Evol. 1997 doi: 10.1093/oxfordjournals.molbev.a025736. PubMed DOI

Iwabe N, Hara Y, Kumazawa Y, Shibamoto K, Saito Y, Miyata T, Katoh K. Sister group relationship of turtles to the bird-crocodilian clade revealed by nuclear DNA-coded proteins. Mol Biol Evol. 2005 doi: 10.1093/molbev/msi075. PubMed DOI

Green RE, Braun EL, Armstrong J, Earl D, Nguyen N, Hickey G, Vandewege MW, St John JA, Capella-Gutiérrez S, Castoe TA. Three crocodilian genomes reveal ancestral patterns of evolution among archosaurs. Science. 2014 doi: 10.1126/science.1254449. PubMed DOI PMC

The Reptile Database. Richmond, USA. 1995. http://www.reptile-database.org Accessed 29 March 2023.

Oaks JR. A time-calibrated species tree of Crocodylia reveals a recent radiation of the true crocodiles. Evolution. 2011 doi: 10.1111/j.1558-5646.2011.01373.x. PubMed DOI

Oliveira VCS, Altmanová M, Viana PF, Ezaz T, Bertollo LAC, Ráb P, Liehr T, Al-Rikabi A, Feldberg E, Hatanaka T, et al. Revisiting the karyotypes of Alligators and Caimans (Crocodylia, Alligatoridae) after a half-century delay: Bridging the gap in the chromosomal evolution of Reptiles. Cells. 2021 doi: 10.3390/cells10061397. PubMed DOI PMC

Wan Q-H, Pan S-K, Hu L, Zhu Y, Xu P-W, Xia J-Q, Chen H, He G-Y, He J, Ni X-W, et al. Genome analysis and signature discovery for diving and sensory properties of the endangered Chinese alligator. Cell Rese. 2013 doi: 10.1038/cr.2013.104. PubMed DOI PMC

Rice ES, Kohno S, John JS, Pham S, Howard J, Lareau LF, O’Connell BL, Hickey G, Armstrong J, Deran A, et al. Improved genome assembly of American alligator genome reveals conserved architecture of estrogen signaling. Genome Res. 2017 doi: 10.1101/gr.213595.116. PubMed DOI PMC

Romanenko SA, Prokopov DY, Proskuryakova AA, Davletshina GI, Tupikin AE, Kasai F, Ferguson-Smith MA, Trifonov VA. The Cytogenetic Map of the Nile Crocodile (Crocodylus niloticus, Crocodylidae, Reptilia) with Fluorescence In Situ Localization of Major Repetitive DNAs. Int J Mol Sci. 2022 doi: 10.3390/ijms232113063. PubMed DOI PMC

Kawagoshi T, Nishida C, Ota H, Kumazawa Y, Endo H, Matsuda Y. Molecular structures of centromeric heterochromatin and karyotypic evolution in the Siamese crocodile (Crocodylus siamensis) (Crocodylidae, Crocodylia) Chromosome Res. 2008 doi: 10.1007/s10577-008-1263-1. PubMed DOI

Camacho JPM, Cabrero J, López-León MD, Martín-Peciña M, Perfectti F, Garrido-Ramos MA Ruiz-Ruano FJ. Satellitome comparison of two oedipodine grasshoppers highlights the contingent nature of satellite DNA evolution. BMC Biology 2022 10.1186/s12915-021-01216-9. PubMed PMC

Ruiz-Ruano FJ, Navarro-Domínguez B, Camacho JPM, Garrido-Ramos MA. Characterization of the satellitome in lower vascular plants: the case of the endangered fern Vandenboschia speciosa. Ann Bot. 2019 doi: 10.1093/aob/mcy192. PubMed DOI PMC

Montiel EE, Mora P, Rico-Porras JM, Palomeque T, Lorite P. Satellitome of the red palm weevil, Rhynchophorus ferrugineus (Coleoptera: Curculionidae), the most diverse among insects. Front Ecol Evol. 2022 doi: 10.3389/fevo.2022.826808. DOI

Utsunomia R, Silva DMZA, Ruiz-Ruano FJ, Goes CAG, Melo S, Ramos LP, Oliveira C, Porto-Foresti F, Foresti F, Hashimoto DT. Satellitome landscape analysis of Megaleporinus macrocephalus (Teleostei, Anostomidae) reveals intense accumulation of satellite sequences on the heteromorphic sex chromosome. Scientific Rep. 2019 doi: 10.1038/s41598-019-42383-8. PubMed DOI PMC

Ruiz-Ruano FJ, Cabrero J, López-León MD, Sánchez A, Camacho JPM. Quantitative sequence characterization for repetitive DNA content in the supernumerary chromosome of the migratory locust. Chromosoma. 2018 doi: 10.1007/s00412-017-0644-7. PubMed DOI

Valeri MP, Dias GB, Pereira VS, Kuhn GCS, Svartman M. An eutherian intronic sequence gave rise to a major satellite DNA in Platyrrhini. Biol Lett. 2018 doi: 10.1098/rsbl.2017.0686. PubMed DOI PMC

Fry K, Salser W. Nucleotide sequences of HS-α satellite DNA from kangaroo rat Dipodomys ordii and characterization of similar sequences in other rodents. Cell. 1977 doi: 10.1016/0092-8674(77)90170-2. PubMed DOI

Capriglione T. Repetitive DNA as a tool to study the phylogeny of cold-blooded vertebrates. In: Olmo E, Redi CA, editors. Chromosomes Today. Switzerland: Birkhäuser; 2000. pp. 183–194.

Capriglione T, Cardone A, Odierna G, Olmo E. Further data on the occurrence and evolution of satellite DNA families in the lacertid genome. Chromosome Res. 1994 doi: 10.1007/BF01552726. PubMed DOI

Rudykh IA, Grechko VV, Kramerov DA, Darevskiĭ IS. Distribution of HindIII-repeats in genomes of Caucasian lizards of the Lacerta species reflect their phylogenetic affiliation. Dokl Akad Nauk. 1999;367:563–566. PubMed

Ciobanu DG, Grechko VV, Darevsky IS. Molecular evolution of satellite DNA CLsat in lizards from the genus Darevskia (Sauria: Lacertidae): Correlation with species diversity. Russ J Genet. 2003;39:1292–1305. doi: 10.1023/B:RUGE.0000004145.00165.ee. PubMed DOI

Ciobanu DG, Grechko VV, Darevsky IS, Kramerov DA. New satellite DNA in Lacerta s. str. lizards (Sauria: Lacertidae): Evolutionary pathways and phylogenetic impact. J Exp Zool. 2004 10.1002/jez.b.21014. PubMed

Grechko VV, Ciobanu DG, Darevsky IS, Kramerov DA. Satellite DNA of lizards of the genus Lacerta s. str. (the group L. agilis), the family Lacertidae. Dokl Biochem Biophys. 2005 10.1007/s10628-005-0029-3. PubMed

Olmo E, Capriglione T, Odierna G. Different genomic evolutionary rates in the various reptile lineages. Gene. 2002 doi: 10.1016/s0378-1119(02)00685-6. PubMed DOI

Stornioli JHF, Goes CAG, Calegari RM, dos Santos RZ, Giglio LM, Foresti F, Oliveira C, Penitente M, Porto-Foresti F, Utsunomia R. The B chromosomes of Prochilodus lineatus (Teleostei, Characiformes) are highly enriched in satellite DNAs. Cells. 2021 doi: 10.3390/cells10061527. PubMed DOI PMC

Iwata A, Tek AL, Richard MMS, Abernathy B, Fonsêca A, Schmutz J, Chen NWG, Thareau V, Magdelenat G, Li Y, et al. Identification and characterization of functional centromeres of the common bean. Plant J. 2013 doi: 10.1111/tpj.12269. PubMed DOI

Shang W-H, Hori T, Toyoda A, Kato J, Popendorf K, Sakakibara A, Fukagawa T. Chickens possess centromeres with both extended tandem repeats and short non-tandem-repetitive sequences. Genome Res. 2010 doi: 10.1101/gr.106245.110. PubMed DOI PMC

Mravinac B, Plohl M. Parallelism in evolution of highly repetitive DNAs in sibling species. Mol Biol Evol. 2010 doi: 10.1093/molbev/msq068. PubMed DOI

Lanfredi M, Congiu L, Garrido-Ramos MA, de la Herrán R, Leis M, Chicca M, Rossi R, Tagliavini J, Rejón CR, Rejón MR, et al. Chromosomal location and evolution of a satellite DNA family in seven sturgeon species. Chromosome Res. 2001 doi: 10.1023/a:1026739616749. PubMed DOI

Garrido-Ramos MA. Satellite DNA in Plants: More than just rubbish. Cytogenet Genome Res. 2015 doi: 10.1159/000437008. PubMed DOI

Mook C. The skull characters of Crocodylus megarhinus Andrews. Am Mus Novit. 1927;289:1–8.

Sill WD. The Zoogeography of the Crocodilia. Copeia. 1968;1:76–88. doi: 10.2307/1441553. DOI

Cohen MM, Clark HF. The somatic chromosomes of five crocodilian species. Cytogenet. 1967 doi: 10.1159/000129941. PubMed DOI

Cohen MM, Gans C. The chromosomes of the Order Crocodilia. Cytogenet. 1970 doi: 10.1159/000130080. PubMed DOI

Mannion PD, Chiarenza AA, Godoy PL, Cheah YN. Spatiotemporal sampling patterns in the 230 million year fossil record of terrestrial crocodylomorphs and their impact on diversity. 2019. Palaeontol. 10.5061/dryad.668950m.

Stubbs TL, Pierce SE, Elsler A, Anderson PSL, Rayfield EJ, Benton MJ. Ecological opportunity and the rise and fall of crocodylomorph evolutionary innovation. Proc Royal Soc B. 2021 doi: 10.1098/rspb.2021.0069. PubMed DOI PMC

Brusatte SL, Benton MJ, Ruta M, Lloyd GT. Superiority, competition, and opportunism in the evolutionary radiation of Dinosaurs. Science. 2008 doi: 10.1126/science.1161833. PubMed DOI

Toljagic O, Butler R. Triassic-Jurassic mass extinction as trigger for the Mesozoic radiation of crocodylomorphs. Biol Lett. 2013 doi: 10.1098/rsbl.2013.0095. PubMed DOI PMC

Markwick PJ. Crocodilian diversity in space and time: the role of climate in paleoecology and its implication for understanding K/T extinctions. Paleobiology. 1998;24:470–497. doi: 10.1017/S009483730002011X. DOI

Viana PF, Ribeiro LB, Lima T, de Carvalho VT, Vogt RC, Gross MC, Feldberg E. An optimized protocol for obtaining mitotic chromosomes from cultured reptilian lymphocytes. Nucleus. 2016 doi: 10.1007/s13237-016-0174-3. DOI

Johnson Pokorná M, Altmanová M, Rovatsos M, Velenský P, Vodiˇcka R, Rehák I, Kratochvíl L. First description of the karyotype and sex chromosomes in the Komodo dragon (Varanus komodoensis) Cytogenet Genome Res. 2016 doi: 10.1159/000447340. PubMed DOI

Sambrook J, Russell DW. Molecular Cloning, A Laboratory Manual. 3. New York: Cold Spring Harbor Laboratory Press; 2001.

Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinform. 2014 doi: 10.1093/bioinformatics/btu170. PubMed DOI PMC

Schmieder R, Edwards R. Quality control and preprocessing of metagenomic datasets. Bioinform. 2011 doi: 10.1093/bioinformatics/btr026. PubMed DOI PMC

Smit AFA, Hubley R, Green P. RepeatMasker Open-4.0 2013–2015. http://www.repeatmasker.org. Accessed at 17/03/2023

Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004 doi: 10.1093/nar/gkh340. PubMed DOI PMC

Seibt KM, Schmidt T, Heitkam T. FlexiDot: highly customizable, ambiguity-aware dotplots for visual sequence analyses. Bioinform. 2018 doi: 10.1093/bioinformatics/bty395. PubMed DOI

Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012 doi: 10.1038/nmeth.1923. PubMed DOI PMC

Yano CF, Bertollo LAC, Cioffi MB. Fish-FISH: Molecular Cytogenetics in Fish Species. In: Liehr T, editor. Fluorescence In Situ Hybridization (FISH)—Application Guide. Berlin: Springer; 2017. pp. 429–444.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...