Characterization of repeat arrays in ultra-long nanopore reads reveals frequent origin of satellite DNA from retrotransposon-derived tandem repeats
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
31559657
PubMed Central
PMC7004042
DOI
10.1111/tpj.14546
Knihovny.cz E-zdroje
- Klíčová slova
- Lathyrus sativus, centromeres, fluorescence in situ hybridization (FISH), heterochromatin, long-range organization, nanopore sequencing, satellite DNA, sequence evolution, technical advance,
- MeSH
- centromera MeSH
- chromozomy rostlin MeSH
- DNA rostlinná genetika MeSH
- frekvence genu * MeSH
- genom rostlinný MeSH
- heterochromatin MeSH
- Lathyrus genetika MeSH
- molekulární evoluce MeSH
- nanopóry * MeSH
- retroelementy * MeSH
- satelitní DNA * MeSH
- tandemové repetitivní sekvence * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- DNA rostlinná MeSH
- heterochromatin MeSH
- retroelementy * MeSH
- satelitní DNA * MeSH
Amplification of monomer sequences into long contiguous arrays is the main feature distinguishing satellite DNA from other tandem repeats, yet it is also the main obstacle in its investigation because these arrays are in principle difficult to assemble. Here we explore an alternative, assembly-free approach that utilizes ultra-long Oxford Nanopore reads to infer the length distribution of satellite repeat arrays, their association with other repeats and the prevailing sequence periodicities. Using the satellite DNA-rich legume plant Lathyrus sativus as a model, we demonstrated this approach by analyzing 11 major satellite repeats using a set of nanopore reads ranging from 30 to over 200 kb in length and representing 0.73× genome coverage. We found surprising differences between the analyzed repeats because only two of them were predominantly organized in long arrays typical for satellite DNA. The remaining nine satellites were found to be derived from short tandem arrays located within LTR-retrotransposons that occasionally expanded in length. While the corresponding LTR-retrotransposons were dispersed across the genome, this array expansion occurred mainly in the primary constrictions of the L. sativus chromosomes, which suggests that these genome regions are favourable for satellite DNA accumulation.
Biology Centre Czech Academy of Sciences Branišovská 31 České Budějovice CZ 37005 Czech Republic
Faculty of Science University of South Bohemia České Budějovice Czech Republic
Zobrazit více v PubMed
Ambrožová, K. , Mandáková, T. , Bureš, P. , Neumann, P. , Leitch, I.J. , Koblízková, A. , Macas, J. and Lysák, M.A. (2010) Diverse retrotransposon families and an AT‐rich satellite DNA revealed in giant genomes of Fritillaria lilies. Ann. Bot. 107, 255–268. PubMed PMC
Ávila Robledillo, L. , Koblížková, A. , Novák, P. , Böttinger, K. , Vrbová, I. , Neumann, P. , Schubert, I. and Macas, J. (2018) Satellite DNA in Vicia faba is characterized by remarkable diversity in its sequence composition, association with centromeres, and replication timing. Sci. Rep. 8, 5838. PubMed PMC
Ceccarelli, M. , Sarri, V. , Polizzi, E. , Andreozzi, G. and Cionini, P.G. (2010) Characterization, evolution and chromosomal distribution of two satellite DNA sequence families in Lathyrus species. Cytogenet. Genome Res. 128, 236–244. PubMed
Cechova, M. and Harris, R.S. (2018) High inter‐ and intraspecific turnover of satellite repeats in great apes. bioRxiv. 10.1101/470054. DOI
Cohen, S. , Agmon, N. , Yacobi, K. , Mislovati, M. and Segal, D. (2005) Evidence for rolling circle replication of tandem genes in Drosophila . Nucleic Acids Res. 33, 4519–4526. PubMed PMC
Copenhaver, G.P. and Pikaard, C.S. (1996) Two‐dimensional RFLP analyses reveal megabase‐sized clusters of rRNA gene variants in Arabidopsis thaliana, suggesting local spreading of variants as the mode for gene homogenization during concerted evolution. Plant J. 9, 273–282. PubMed
Dias, G.B. , Svartman, M. , Delprat, A. , Ruiz, A. and Kuhn, G.C.S. (2014) Tetris is a foldback transposon that provided the building blocks for an emerging satellite DNA of Drosophila virilis . Genome Biol. Evol. 6, 1302–1313. PubMed PMC
van Dijk, E.L. , Jaszczyszyn, Y. , Naquin, D. and Thermes, C. (2018) The third revolution in sequencing technology. Trends Genet. 34, 666–681. PubMed
Dong, F. , Song, J. , Naess, S.K. , Helgeson, J.P. , Gebhardt, C. and Jiang, J. (2000) Development and applications of a set of chromosome‐specific cytogenetic DNA markers in potato. Theor. Appl. Genet. 101, 1001–1007.
Elder, J.F. and Turner, B.J. (1995) Concerted evolution of repetitive DNA sequences in eukaryotes. Q. Rev. Biol. 70, 297–320. PubMed
Garrido‐Ramos, M.A. (2015) Satellite DNA in plants: more than just rubbish. Cytogenet. Genome Res. 146, 153–170. PubMed
Garrido‐Ramos, M.A. (2017) Satellite DNA: An evolving topic. Genes (Basel), 8, 230. PubMed PMC
Gong, Z. , Wu, Y. , Koblížková, A. et al . (2012) Repeatless and repeat‐based centromeres in potato: implications for centromere evolution. Plant Cell, 24, 3559–3574. PubMed PMC
Harris, R.S. (2007) Improved pairwise alignment of genomic. DNA. Doctoral Thesis, The Pennsylvania State University.
Hartley, G. , O’Neill, R. , Hartley, G. and O’Neill, R.J. (2019) Centromere repeats: hidden gems of the genome. Genes (Basel), 10, 223. PubMed PMC
Heckmann, S. , Macas, J. , Kumke, K. et al . (2013) The holocentric species Luzula elegans shows interplay between centromere and large‐scale genome organization. Plant J. 73, 555–565. PubMed
Henikoff, J.G. , Thakur, J. , Kasinathan, S. and Henikoff, S. (2015) A unique chromatin complex occupies young alpha‐satellite arrays of human centromeres. Sci. Adv. 1, e1400234. PubMed PMC
Herzel, H. , Weiss, O. and Trifonov, E.N. (1999) 10–11 bp periodicities in complete genomes reflect protein structure and DNA folding. Bioinformatics, 15, 187–193. PubMed
Jain, M. , Olsen, H.E. , Turner, D.J. et al . (2018) Linear assembly of a human centromere on the Y chromosome. Nat. Biotechnol. 36, 321–323. PubMed PMC
Kato, A. , Albert, P.S. , Vega, J.M. and Birchler, J.A. (2006) Sensitive fluorescence in situ hybridization signal detection in maize using directly labeled probes produced by high concentration DNA polymerase nick translation. Biotech. Histochem. 81, 71–78. PubMed
Khost, D.E. , Eickbush, D.G. and Larracuente, A.M. (2017) Single‐molecule sequencing resolves the detailed structure of complex satellite DNA loci in Drosophila melanogaster . Genome Res. 27, 709–721. PubMed PMC
Kielbasa, S.M. , Wan, R. , Sato, K. , Kiebasa, S.M. , Horton, P. and Frith, M.C. (2011) Adaptive seeds tame genomic sequence comparison. Genome Res. 21, 487–493. PubMed PMC
Kit, S. (1961) Equilibrium sedimentation in density gradients of DNA preparations from animal tissues. J. Mol. Biol. 3, 711–716. PubMed
Krumsiek, J. , Arnold, R. and Rattei, T. (2007) Gepard: a rapid and sensitive tool for creating dotplots on genome scale. Bioinformatics, 23, 1026–1028. PubMed
Kubát, Z. , Zlůvová, J. , Vogel, I. , Kováčová, V. , Cermák, T. , Cegan, R. , Hobza, R. , Vyskot, B. and Kejnovský, E. (2014) Possible mechanisms responsible for absence of a retrotransposon family on a plant Y chromosome. New Phytol. 202, 662–678. PubMed
Kuzminov, A. (2016) Chromosomal replication complexity: a novel DNA metrics and genome instability factor. PLOS Genet. 12, e1006229. PubMed PMC
Li, W. (1997) The study of correlation structures of DNA sequences: a critical review. Comput. Chem. 21, 257–271. PubMed
Ma, J. and Jackson, S.A. (2006) Retrotransposon accumulation and satellite amplification mediated by segmental duplication facilitate centromere expansion in rice. Genome Res. 16, 251–259. PubMed PMC
Macas, J. and Neumann, P. (2007) Ogre elements – a distinct group of plant Ty3/gypsy‐like retrotransposons. Gene, 390, 108–16. PubMed
Macas, J. , Mészáros, T. and Nouzová, M. (2002) PlantSat: a specialized database for plant satellite repeats. Bioinformatics, 18, 28–35. PubMed
Macas, J. , Navrátilová, A. and Mészáros, T. (2003) Sequence subfamilies of satellite repeats related to rDNA intergenic spacer are differentially amplified on Vicia sativa chromosomes. Chromosoma, 112, 152–158. PubMed
Macas, J. , Navrátilová, A. and Koblížková, A. (2006) Sequence homogenization and chromosomal localization of VicTR‐B satellites differ between closely related Vicia species. Chromosoma, 115, 437–447. PubMed
Macas, J. , Neumann, P. and Navrátilová, A. (2007) Repetitive DNA in the pea (Pisum sativum L.) genome: comprehensive characterization using 454 sequencing and comparison to soybean and Medicago truncatula . BMC Genomics, 8, 427. PubMed PMC
Macas, J. , Koblížková, A. , Navrátilová, A. and Neumann, P. (2009) Hypervariable 3′UTR region of plant LTR‐retrotransposons as a source of novel satellite repeats. Gene, 448, 198–206. PubMed
Macas, J. , Novák, P. , Pellicer, J. et al . (2015) In depth characterization of repetitive DNA in 23 plant genomes reveals sources of genome size variation in the legume tribe Fabeae . PLoS One, 10, e0143424. PubMed PMC
McGurk, M.P. and Barbash, D.A. (2018) Double insertion of transposable elements provides a substrate for the evolution of satellite DNA. Genome Res. 28, 714–725. PubMed PMC
McMurry, T.L. and Politis, D.N. (2010) Banded and tapered estimates for autocovariance matrices and the linear process bootstrap. J. Time Ser. Anal. 31, 471–482.
Meštrović, N. , Mravinac, B. , Pavlek, M. , Vojvoda‐Zeljko, T. , Šatović, E. and Plohl, M. (2015) Structural and functional liaisons between transposable elements and satellite DNAs. Chromosom. Res. 23, 583–596. PubMed
Metzker, M.L. (2009) Sequencing technologies ‐ the next generation. Nat. Rev. Genet. 11, 31–46. PubMed
Mitsuhashi, S. , Frith, M.C. , Mizuguchi, T. et al . (2019) Tandem‐genotypes : robust detection of tandem repeat expansions from long DNA reads. Genome Biol. 20, 58. PubMed PMC
Murray, M.G. and Thompson, W.F. (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res. 8, 4321–4326. PubMed PMC
Navrátilová, A. , Koblížková, A. and Macas, J. (2008) Survey of extrachromosomal circular DNA derived from plant satellite repeats. BMC Plant Biol. 8, 90. PubMed PMC
Neumann, P. , Koblížková, A. , Navrátilová, A. and Macas, J. (2006) Significant expansion of Vicia pannonica genome size mediated by amplification of a single type of giant retroelement. Genetics, 173, 1047–56. PubMed PMC
Neumann, P. , Pavlíková, Z. , Koblížková, A. , Fuková, I. , Jedličková, V. , Novák, P. and Macas, J. (2015) Centromeres off the hook: massive changes in centromere size and structure following duplication of CenH3 gene in Fabeae species. Mol. Biol. Evol. 32, 1862–1879. PubMed PMC
Neumann, P. , Schubert, V. , Fuková, I. , Manning, J.E. , Houben, A. and Macas, J. (2016) Epigenetic histone marks of extended meta‐polycentric centromeres of Lathyrus and Pisum chromosomes. Front. Plant Sci. 7, 234. PubMed PMC
Neumann, P. , Novák, P. , Hoštáková, N. and Macas, J. (2019) Systematic survey of plant LTR‐retrotransposons elucidates phylogenetic relationships of their polyprotein domains and provides a reference for element classification. Mob. DNA, 10, 1. PubMed PMC
Novák, P. , Neumann, P. and Macas, J. (2010) Graph‐based clustering and characterization of repetitive sequences in next‐generation sequencing data. BMC Bioinformatics, 11, 378. PubMed PMC
Novák, P. , Ávila Robledillo, L. , Koblížková, A. , Vrbová, I. , Neumann, P. and Macas, J. (2017) TAREAN: a computational tool for identification and characterization of satellite DNA from unassembled short reads. Nucleic Acids Res. 45, e111. PubMed PMC
Peona, V. , Weissensteiner, M.H. and Suh, A. (2018) How complete are ‘complete’ genome assemblies? ‐ an avian perspective. Mol. Ecol. Resour. 18, 1188–1195. PubMed
Plohl, M. , Meštrović, N. and Mravinac, B. (2014) Centromere identity from the DNA point of view. Chromosoma, 123, 313–325. PubMed PMC
De Roeck, A. , De Coster, W. , Bossaerts, L. et al . (2018) Accurate characterization of expanded tandem repeat length and sequence through whole genome long‐read sequencing on PromethION. bioRxiv, 439026 10.1101/439026 PubMed DOI PMC
Ruiz‐Ruano, F.J. , López‐León, M.D. , Cabrero, J. and Camacho, J.P.M. (2016) High‐throughput analysis of the satellitome illuminates satellite DNA evolution. Sci. Rep. 6, 28333. PubMed PMC
Schindelhauer, D. and Schwarz, T. (2002) Evidence for a fast, intrachromosomal conversion mechanism from mapping of nucleotide variants within a homogeneous alpha‐satellite DNA array. Genome Res. 12, 1815–1826. PubMed PMC
Sharma, D. , Issac, B. , Raghava, G.P.S. and Ramaswamy, R. (2004) Spectral Repeat Finder (SRF): identification of repetitive sequences using Fourier transformation. Bioinformatics, 20, 1405–1412. PubMed
Smith, G.P. (1976) Evolution of repeated DNA sequences by unequal crossover. Science, 191, 528–535. PubMed
Sonnhammer, E.L. and Durbin, R. (1995) A dot‐matrix program with dynamic threshold control suited for genomic DNA and protein sequence analysis. Gene, 167, GC1‐10. PubMed
Stephan, W. (1986) Recombination and the evolution of satellite DNA. Genet. Res. 47, 167–174. PubMed
Stephan, W. and Cho, S. (1994) Possible role of natural selection in the formation of tandem‐repetitive noncoding DNA. Genetics, 136, 333–341. PubMed PMC
Thorvaldsdóttir, H. , Robinson, J.T. and Mesirov, J.P. (2013) Integrative Genomics Viewer (IGV): High‐performance genomics data visualization and exploration. Brief. Bioinform. 14, 178–192. PubMed PMC
Valeri, M.P. , Dias, G.B. , Pereira, V.D.S. , Campos Silva Kuhn, G. and Svartman, M. (2018) An eutherian intronic sequence gave rise to a major satellite DNA in Platyrrhini . Biol. Lett. 14, 20170686. PubMed PMC
Venables, W.N. and Ripley, B.D. (2002) Modern Applied Statistics with S. 4th edn. New York, NY: Springer.
Vershinin, A.V. and Heslop‐Harrison, J.S. (1998) Comparative analysis of the nucleosomal structure of rye, wheat and their relatives. Plant Mol. Biol. 36, 149–161. PubMed
Vyskot, B. and Hobza, R. (2015) The genomics of plant sex chromosomes. Plant Sci. 236, 126–135. PubMed
Walsh, J.B. (1987) Persistence of tandem arrays: implications for satellite and simple‐sequence DNAs. Genetics, 115, 553–567. PubMed PMC
Weissensteiner, M.H. , Pang, A.W.C. , Bunikis, I. , Höijer, I. , Vinnere‐Petterson, O. , Suh, A. and Wolf, J.B.W. (2017) Combination of short‐read, long‐read, and optical mapping assemblies reveals large‐scale tandem repeat arrays with population genetic implications. Genome Res. 27, 697–708. PubMed PMC
Weiss‐Schneeweiss, H. , Leitch, A.R. , McCann, J. , Jang, T.‐S. and Macas, J. (2015) Employing next generation sequencing to explore the repeat landscape of the plant genome In Next Generation Sequencing in Plant Systematics. Regnum Vegetabile 157 (Hörandl E. and Appelhans M., eds). Königstein, Germany: Koeltz Scientific Books, pp. 155–179.
The genetic mechanism of B chromosome drive in rye illuminated by chromosome-scale assembly
A chromosome-scale reference genome of grasspea (Lathyrus sativus)
Evolution of ancient satellite DNAs in extant alligators and caimans (Crocodylia, Reptilia)
Fast satellite DNA evolution in Nothobranchius annual killifishes
Disruption of the standard kinetochore in holocentric Cuscuta species
The giant diploid faba genome unlocks variation in a global protein crop
The Role of Satellite DNAs in Genome Architecture and Sex Chromosome Evolution in Crambidae Moths
Fundamentally different repetitive element composition of sex chromosomes in Rumex acetosa
Long Tandem Arrays of Cassandra Retroelements and Their Role in Genome Dynamics in Plants