Long Tandem Arrays of Cassandra Retroelements and Their Role in Genome Dynamics in Plants
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
BR05236574
Ministry of Education and Science of the Republic of Kazakhstan
PubMed
32331257
PubMed Central
PMC7215508
DOI
10.3390/ijms21082931
PII: ijms21082931
Knihovny.cz E-zdroje
- Klíčová slova
- 5S RNA gene, Cassandra TRIM, ectopic recombination, genome evolution, long tandem array, retrotransposon,
- MeSH
- chromozomy hmyzu MeSH
- fylogeneze MeSH
- genom rostlinný MeSH
- genomika metody MeSH
- interakce hostitele a parazita genetika MeSH
- koncové repetice * MeSH
- konformace nukleové kyseliny MeSH
- molekulární evoluce MeSH
- můry genetika MeSH
- rekombinace genetická MeSH
- retroelementy * MeSH
- RNA ribozomální 5S genetika MeSH
- rostliny genetika parazitologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- retroelementy * MeSH
- RNA ribozomální 5S MeSH
Retrotransposable elements are widely distributed and diverse in eukaryotes. Their copy number increases through reverse-transcription-mediated propagation, while they can be lost through recombinational processes, generating genomic rearrangements. We previously identified extensive structurally uniform retrotransposon groups in which no member contains the gag, pol, or env internal domains. Because of the lack of protein-coding capacity, these groups are non-autonomous in replication, even if transcriptionally active. The Cassandra element belongs to the non-autonomous group called terminal-repeat retrotransposons in miniature (TRIM). It carries 5S RNA sequences with conserved RNA polymerase (pol) III promoters and terminators in its long terminal repeats (LTRs). Here, we identified multiple extended tandem arrays of Cassandra retrotransposons within different plant species, including ferns. At least 12 copies of repeated LTRs (as the tandem unit) and internal domain (as a spacer), giving a pattern that resembles the cellular 5S rRNA genes, were identified. A cytogenetic analysis revealed the specific chromosomal pattern of the Cassandra retrotransposon with prominent clustering at and around 5S rDNA loci. The secondary structure of the Cassandra retroelement RNA is predicted to form super-loops, in which the two LTRs are complementary to each other and can initiate local recombination, leading to the tandem arrays of Cassandra elements. The array structures are conserved for Cassandra retroelements of different species. We speculate that recombination events similar to those of 5S rRNA genes may explain the wide variation in Cassandra copy number. Likewise, the organization of 5S rRNA gene sequences is very variable in flowering plants; part of what is taken for 5S gene copy variation may be variation in Cassandra number. The role of the Cassandra 5S sequences remains to be established.
Department of Agricultural Sciences University of Helsinki P O Box 27 FI 00014 Helsinki Finland
Institute of Evolution University of Haifa Mount Carmel Haifa 31905 Israel
Natural Resources Institute Finland Latokartanonkaari 9 FI 00790 Helsinki Finland
RSE National Center for Biotechnology Korgalzhyn Highway 13 5 Nur Sultan 010000 Kazakhstan
Zobrazit více v PubMed
Wicker T., Sabot F., Hua-Van A., Bennetzen J.L., Capy P., Chalhoub B., Flavell A., Leroy P., Morgante M., Panaud O., et al. A unified classification system for eukaryotic transposable elements. Nat. Rev. Genet. 2007;8:973–982. doi: 10.1038/nrg2165. PubMed DOI
Schulman A.H. Retrotransposon replication in plants. Curr. Opin. Virol. 2013;3:604–614. doi: 10.1016/j.coviro.2013.08.009. PubMed DOI
Arkhipova I.R., Yushenova I.A. Giant transposons in eukaryotes: Is bigger better? Genome Biol. Evol. 2019;11:906–918. doi: 10.1093/gbe/evz041. PubMed DOI PMC
Sultana T., Zamborlini A., Cristofari G., Lesage P. Integration site selection by retroviruses and transposable elements in eukaryotes. Nat. Rev. Genet. 2017;18:292–308. doi: 10.1038/nrg.2017.7. PubMed DOI
Cordaux R., Batzer M.A. The impact of retrotransposons on human genome evolution. Nat. Rev. Genet. 2009;10:691–703. doi: 10.1038/nrg2640. PubMed DOI PMC
Wicker T., Schulman A.H., Tanskanen J., Spannagl M., Twardziok S., Mascher M., Springer N.M., Li Q., Waugh R., Li C., et al. The repetitive landscape of the 5100 mbp barley genome. Mobile DNA. 2017;8:22. doi: 10.1186/s13100-017-0102-3. PubMed DOI PMC
Kapitonov V.V., Jurka J. Helitrons on a roll: Eukaryotic rolling-circle transposons. Trends Genet. 2007;23:521–529. doi: 10.1016/j.tig.2007.08.004. PubMed DOI
Shams I., Raskina O. Intraspecific and intraorganismal copy number dynamics of retrotransposons and tandem repeat in Aegilops speltoides tausch (poaceae, triticeae) Protoplasma. 2018;255:1023–1038. doi: 10.1007/s00709-018-1212-6. PubMed DOI
Presting G.G. Centromeric retrotransposons and centromere function. Curr. Opin. Genet. Dev. 2018;49:79–84. doi: 10.1016/j.gde.2018.03.004. PubMed DOI
Pollak Y., Zelinger E., Raskina O. Repetitive DNA in the architecture, repatterning, and diversification of the genome of aegilops speltoides tausch (poaceae, triticeae) Front. Plant Sci. 2018;9:1779. doi: 10.3389/fpls.2018.01779. PubMed DOI PMC
Bilinski P., Han Y., Hufford M.B., Lorant A., Zhang P., Estep M.C., Jiang J., Ross-Ibarra J. Genomic abundance is not predictive of tandem repeat localization in grass genomes. PLoS ONE. 2017;12:e0177896. doi: 10.1371/journal.pone.0177896. PubMed DOI PMC
Sharma A., Wolfgruber T.K., Presting G.G. Tandem repeats derived from centromeric retrotransposons. BMC Genom. 2013;14:142. doi: 10.1186/1471-2164-14-142. PubMed DOI PMC
Ahmed M., Liang P. Transposable elements are a significant contributor to tandem repeats in the human genome. Comp. Funct. Genom. 2012;2012:947089. doi: 10.1155/2012/947089. PubMed DOI PMC
Sanchez D.H., Gaubert H., Drost H.G., Zabet N.R., Paszkowski J. High-frequency recombination between members of an ltr retrotransposon family during transposition bursts. Nat. Commun. 2017;8:1283. doi: 10.1038/s41467-017-01374-x. PubMed DOI PMC
Belyayev A., Kalendar R., Brodsky L., Nevo E., Schulman A.H., Raskina O. Transposable elements in a marginal plant population: Temporal fluctuations provide new insights into genome evolution of wild diploid wheat. Mobile DNA. 2010;1 doi: 10.1186/1759-8753-1-6. PubMed DOI PMC
Hastings P.J., Lupski J.R., Rosenberg S.M., Ira G. Mechanisms of change in gene copy number. Nat. Rev. Genet. 2009;10:551–564. doi: 10.1038/nrg2593. PubMed DOI PMC
Eickbush T.H., Eickbush D.G. Finely orchestrated movements: Evolution of the ribosomal rna genes. Genetics. 2007;175:477–485. doi: 10.1534/genetics.107.071399. PubMed DOI PMC
Michel A.H., Kornmann B., Dubrana K., Shore D. Spontaneous rdna copy number variation modulates sir2 levels and epigenetic gene silencing. Genes Dev. 2005;19:1199–1210. doi: 10.1101/gad.340205. PubMed DOI PMC
Lyckegaard E.M., Clark A.G. Ribosomal DNA and stellate gene copy number variation on the y chromosome of drosophila melanogaster. Proc. Natl. Acad. Sci. USA. 1989;86:1944–1948. doi: 10.1073/pnas.86.6.1944. PubMed DOI PMC
Stults D.M., Killen M.W., Pierce H.H., Pierce A.J. Genomic architecture and inheritance of human ribosomal rna gene clusters. Genome Res. 2008;18:13–18. doi: 10.1101/gr.6858507. PubMed DOI PMC
Paco A., Freitas R., Vieira-da-Silva A. Conversion of DNA sequences: From a transposable element to a tandem repeat or to a gene. Genes. 2019;10:1014. doi: 10.3390/genes10121014. PubMed DOI PMC
Wicker T., Gundlach H., Spannagl M., Uauy C., Borrill P., Ramirez-Gonzalez R.H., De Oliveira R., International Wheat Genome Sequencing C., Mayer K.F.X., Paux E., et al. Impact of transposable elements on genome structure and evolution in bread wheat. Genome Biol. 2018;19:103. doi: 10.1186/s13059-018-1479-0. PubMed DOI PMC
Zervudacki J., Yu A., Amesefe D., Wang J., Drouaud J., Navarro L., Deleris A. Transcriptional control and exploitation of an immune-responsive family of plant retrotransposons. FEBS J. 2018;37 doi: 10.15252/embj.201798482. PubMed DOI PMC
Kojima K.K. Structural and sequence diversity of eukaryotic transposable elements. Genes Genet. Syst. 2018;94:233–252. doi: 10.1266/ggs.18-00024. PubMed DOI
Kalendar R., Vicient C.M., Peleg O., Anamthawat-Jonsson K., Bolshoy A., Schulman A.H. Large retrotransposon derivatives: Abundant, conserved but nonautonomous retroelements of barley and related genomes. Genetics. 2004;166:1437–1450. doi: 10.1534/genetics.166.3.1437. PubMed DOI PMC
Witte C.P., Le Q.H., Bureau T., Kumar A. Terminal-repeat retrotransposons in miniature (trim) are involved in restructuring plant genomes. Proc. Natl. Acad. Sci. USA. 2001;98:13778–13783. doi: 10.1073/pnas.241341898. PubMed DOI PMC
Satovic E., Luchetti A., Pasantes J.J., Garcia-Souto D., Cedilak A., Mantovani B., Plohl M. Terminal-repeat retrotransposons in miniature (trims) in bivalves. Sci. Rep. 2019;9:19962. doi: 10.1038/s41598-019-56502-y. PubMed DOI PMC
Xia C., Zhang L., Zou C., Gu Y., Duan J., Zhao G., Wu J., Liu Y., Fang X., Gao L., et al. A trim insertion in the promoter of ms2 causes male sterility in wheat. Nat. Commun. 2017;8:15407. doi: 10.1038/ncomms15407. PubMed DOI PMC
Schorn A.J., Gutbrod M.J., LeBlanc C., Martienssen R. Ltr-retrotransposon control by trna-derived small rnas. Cell. 2017;170:61–71 e11. doi: 10.1016/j.cell.2017.06.013. PubMed DOI PMC
Kalendar R., Tanskanen J., Chang W., Antonius K., Sela H., Peleg O., Schulman A.H. Cassandra retrotransposons carry independently transcribed 5s rna. Proc. Natl. Acad. Sci. USA. 2008;105:5833–5838. doi: 10.1073/pnas.0709698105. PubMed DOI PMC
Antonius-Klemola K., Kalendar R., Schulman A.H. Trim retrotransposons occur in apple and are polymorphic between varieties but not sports. Theor. Appl. Genet. 2006;112:999–1008. doi: 10.1007/s00122-005-0203-0. PubMed DOI
Vondrak T., Avila Robledillo L., Novak P., Koblizkova A., Neumann P., Macas J. Characterization of repeat arrays in ultra-long nanopore reads reveals frequent origin of satellite DNA from retrotransposon-derived tandem repeats. Plant J. 2020;101:484–500. doi: 10.1111/tpj.14546. PubMed DOI PMC
Mitsuhashi S., Frith M.C., Mizuguchi T., Miyatake S., Toyota T., Adachi H., Oma Y., Kino Y., Mitsuhashi H., Matsumoto N. Tandem-genotypes: Robust detection of tandem repeat expansions from long DNA reads. Genome Biol. 2019;20:58. doi: 10.1186/s13059-019-1667-6. PubMed DOI PMC
Nevo E. “Evolution canyon,” a potential microscale monitor of global warming across life. Proc. Natl. Acad. Sci. USA. 2012;109:2960–2965. doi: 10.1073/pnas.1120633109. PubMed DOI PMC
Kalendar R., Tanskanen J., Immonen S., Nevo E., Schulman A.H. Genome evolution of wild barley (hordeum spontaneum) by bare-1 retrotransposon dynamics in response to sharp microclimatic divergence. Proc. Natl. Acad. Sci. USA. 2000;97:6603–6607. doi: 10.1073/pnas.110587497. PubMed DOI PMC
Kimber G., Feldman M. Wild Wheat, An Introduction. Vol. 353. College of Agriculture University of Missouri; Columbia, MO, USA: 1987. p. 142.
Raskina O., Belyayev A., Nevo E. Quantum speciation in aegilops: Molecular cytogenetic evidence from rdna cluster variability in natural populations. Proc. Natl. Acad. Sci. USA. 2004;101:14818–14823. doi: 10.1073/pnas.0405817101. PubMed DOI PMC
Raskina O. Transposable elements in the organization and diversification of the genome of Aegilops speltoides tausch (poaceae, triticeae) Int. J. Genom. 2018;2018:4373089. doi: 10.1155/2018/4373089. PubMed DOI PMC
Belyayev A. Bursts of transposable elements as an evolutionary driving force. J. Evol. Biol. 2014;27:2573–2584. doi: 10.1111/jeb.12513. PubMed DOI
Hosid E., Brodsky L., Kalendar R., Raskina O., Belyayev A. Diversity of long terminal repeat retrotransposon genome distribution in natural populations of the wild diploid wheat aegilops speltoides. Genetics. 2012;190:263–412. doi: 10.1534/genetics.111.134643. PubMed DOI PMC
Vicient C.M., Jaaskelainen M.J., Kalendar R., Schulman A.H. Active retrotransposons are a common feature of grass genomes. Plant Physiol. 2001;125:1283–1292. doi: 10.1104/pp.125.3.1283. PubMed DOI PMC
Vicient C.M., Kalendar R., Schulman A.H. Envelope-class retrovirus-like elements are widespread, transcribed and spliced, and insertionally polymorphic in plants. Genome Res. 2001;11:2041–2049. doi: 10.1101/gr.193301. PubMed DOI PMC
Smykal P., Kalendar R., Ford R., Macas J., Griga M. Evolutionary conserved lineage of angela-family retrotransposons as a genome-wide microsatellite repeat dispersal agent. Heredity. 2009;103:157–167. doi: 10.1038/hdy.2009.45. PubMed DOI
Moisy C., Schulman A.H., Kalendar R., Buchmann J.P., Pelsy F. The tvv1 retrotransposon family is conserved between plant genomes separated by over 100 million years. Theor. Appl. Genet. 2014;127:1223–1235. doi: 10.1007/s00122-014-2293-z. PubMed DOI
Kalendar R., Amenov A., Daniyarov A. Use of retrotransposon-derived genetic markers to analyse genomic variability in plants. Functional Plant Biology. 2019;46:15–29. doi: 10.1071/FP18098. PubMed DOI
Panaud O. Horizontal transfers of transposable elements in eukaryotes: The flying genes. Comptes Rendus Biol. 2016;339:296–299. doi: 10.1016/j.crvi.2016.04.013. PubMed DOI
Yoshida S., Kim S., Wafula E.K., Tanskanen J., Kim Y.M., Honaas L., Yang Z., Spallek T., Conn C.E., Ichihashi Y., et al. Genome sequence of striga asiatica provides insight into the evolution of plant parasitism. Curr. Biol. 2019;29:3041–3052 e3044. doi: 10.1016/j.cub.2019.07.086. PubMed DOI
Bernard G., Chan C.X., Ragan M.A. Alignment-free microbial phylogenomics under scenarios of sequence divergence, genome rearrangement and lateral genetic transfer. Sci. Rep. 2016;6:28970. doi: 10.1038/srep28970. PubMed DOI PMC
Yin H., Du J., Li L., Jin C., Fan L., Li M., Wu J., Zhang S. Comparative genomic analysis reveals multiple long terminal repeats, lineage-specific amplification, and frequent interelement recombination for cassandra retrotransposon in pear (pyrus bretschneideri rehd.) Genome Biol. Evol. 2014;6:1423–1436. doi: 10.1093/gbe/evu114. PubMed DOI PMC
Gao D., Li Y., Kim K.D., Abernathy B., Jackson S.A. Landscape and evolutionary dynamics of terminal repeat retrotransposons in miniature in plant genomes. Genome Biol. 2016;17:7. doi: 10.1186/s13059-015-0867-y. PubMed DOI PMC
Vicient C., Kalendar R., Schulman A. Variability, recombination, and mosaic evolution of the barley bare-1 retrotransposon. J. Mol. Evol. 2005;61:275–291. doi: 10.1007/s00239-004-0168-7. PubMed DOI
Shang Y., Yang F., Schulman A.H., Zhu J., Jia Y., Wang J., Zhang X.Q., Jia Q., Hua W., Yang J., et al. Gene deletion in barley mediated by ltr-retrotransposon bare. Sci. Rep. 2017;7:43766. doi: 10.1038/srep43766. PubMed DOI PMC
Sabot F., Schulman A.H. Template switching can create complex ltr retrotransposon insertions in triticeae genomes. BMC Genom. 2007;8:247. doi: 10.1186/1471-2164-8-247. PubMed DOI PMC
Raskina O., Brodsky L., Belyayev A. Tandem repeats on an eco-geographical scale: Outcomes from the genome of aegilops speltoides. Chromosome Res. 2011;19:607–623. doi: 10.1007/s10577-011-9220-9. PubMed DOI
Raskina O., Belyayev A., Nevo E. Activity of the en/spm-like transposons in meiosis as a base for chromosome repatterning in a small, isolated, peripheral population of aegilops speltoides tausch. Chromosome Res. 2004;12:153–161. doi: 10.1023/B:CHRO.0000013168.61359.43. PubMed DOI
Zuker M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 2003;31:3406–3415. doi: 10.1093/nar/gkg595. PubMed DOI PMC
Rose R., Golosova O., Sukhomlinov D., Tiunov A., Prosperi M. Flexible design of multiple metagenomics classification pipelines with ugene. Bioinformatics. 2019;35:1963–1965. doi: 10.1093/bioinformatics/bty901. PubMed DOI
Lemoine F., Correia D., Lefort V., Doppelt-Azeroual O., Mareuil F., Cohen-Boulakia S., Gascuel O. Ngphylogeny.Fr: New generation phylogenetic services for non-specialists. Nucleic Acids Res. 2019;47:W260–W265. doi: 10.1093/nar/gkz303. PubMed DOI PMC
Kalendar R., Khassenov B., Ramanculov E., Samuilova O., Ivanov K.I. Fastpcr: An in silico tool for fast primer and probe design and advanced sequence analysis. Genomics. 2017;109:312–319. doi: 10.1016/j.ygeno.2017.05.005. PubMed DOI
Kalendar R., Tselykh T.V., Khassenov B., Ramanculov E.M. Introduction on using the fastpcr software and the related java web tools for pcr and oligonucleotide assembly and analysis. Methods Mol. Biol. 2017;1620:33–64. doi: 10.1007/978-1-4939-7060-5_2. PubMed DOI
Kalendar R., Muterko A., Shamekova M., Zhambakin K. In silico pcr tools for a fast primer, probe, and advanced searching. Methods Mol. Biol. 2017;1620:1–31. doi: 10.1007/978-1-4939-7060-5_1. PubMed DOI
Corpet F. Multiple sequence alignment with hierarchical clustering. Nucleic Acids Res. 1988;16:10881–10890. doi: 10.1093/nar/16.22.10881. PubMed DOI PMC
Kalendar R. Universal DNA Isolation Protocol. Protocols.io; Berkeley, CA, USA: 2019. DOI
Kalendar R., Shustov A.V., Seppänen M.M., Schulman A.H., Stoddard F.L. Palindromic sequence-targeted (pst) pcr: A rapid and efficient method for high-throughput gene characterization and genome walking. Sci. Rep. 2019;9:17707. doi: 10.1038/s41598-019-54168-0. PubMed DOI PMC
Taketa S., Ando H., Takeda K., Harrison G.E., Heslop-Harrison J.S. The distribution, organization and evolution of two abundant and widespread repetitive DNA sequences in the genus hordeum. Theor. Appl. Genet. 2000;100:169–176. doi: 10.1007/s001220050023. DOI
Baum B.R., Bailey L.G. The 5s rrna gene sequence variation in wheats and some polyploid wheat progenitors (poaceae: Triticeae) Genet. Resour Crop Ev. 2001;48:35–51. doi: 10.1023/A:1011263107219. DOI