The fungicide propiconazole induces hepatic steatosis and activates PXR in a mouse model of diet-induced obesity
Language English Country Germany Media print-electronic
Document type Journal Article
Grant support
825762
H2020 Health
PubMed
39718591
DOI
10.1007/s00204-024-03942-9
PII: 10.1007/s00204-024-03942-9
Knihovny.cz E-resources
- Keywords
- Lipid metabolism, Liver, MASLD, Metabolism disrupting chemicals (MDCs), Nuclear receptors/PXR, Propiconazole,
- MeSH
- Diet, High-Fat * MeSH
- Insulin Resistance MeSH
- Liver drug effects metabolism pathology MeSH
- Disease Models, Animal MeSH
- Mice, Inbred C57BL * MeSH
- Mice MeSH
- Obesity * chemically induced MeSH
- Pregnane X Receptor * metabolism genetics MeSH
- Fungicides, Industrial * toxicity MeSH
- Triazoles * toxicity MeSH
- Triglycerides blood metabolism MeSH
- Dose-Response Relationship, Drug MeSH
- Fatty Liver * chemically induced MeSH
- Animals MeSH
- Check Tag
- Male MeSH
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Pregnane X Receptor * MeSH
- propiconazole MeSH Browser
- Fungicides, Industrial * MeSH
- Triazoles * MeSH
- Triglycerides MeSH
Propiconazole is a triazole fungicide previously shown to induce triglyceride accumulation in human liver HepaRG cells, potentially via activation of the Pregnane X Receptor (PXR). However, whether propiconazole can disrupt hepatic and whole-body metabolism in vivo is currently unknown. Therefore, we aimed to examine the metabolic effects of propiconazole in the context of metabolic dysfunction-associated steatotic liver disease (MASLD), obesity, and insulin resistance. To this end, male C57BL/6J mice were fed a high-fat diet for 20 weeks. During the last 10 weeks, mice additionally received vehicle, 0.04, 30, or 100 mg/kg body weight (bw)/day propiconazole via oral gavage. High-dose propiconazole, but not low or intermediate dose, reduced body weight gain and adipose tissue weight in obese mice. Mice receiving high-dose propiconazole displayed improved glucose tolerance and reduced levels of plasma triglycerides and cholesterol. Propiconazole dose-dependently increased liver weight and triglyceride levels and at high dose caused signs of hepatic inflammation. RNA sequencing on the liver revealed that propiconazole mainly induced PXR target genes. At intermediate and high dose, propiconazole induced pathways related to cell-cell interactions and inflammation, while oxidative phosphorylation was repressed by propiconazole. Comparison of gene regulation in wildtype and PXR knockout primary hepatocytes as well as gene reporter assays confirmed the activation of PXR by propiconazole. All in all, our data underscore the capacity of propiconazole to activate PXR in the liver and thereby promote the development of hepatic steatosis in vivo.
See more in PubMed
Aleksunes LM, Klaassen CD (2012) Coordinated regulation of hepatic phase I and II drug-metabolizing genes and transporters using AhR-, CAR-, PXR-, PPARα-, and Nrf2-null mice. Drug Metab Dispos 40:1366–1379 PubMed DOI PMC
Allen JW, Wolf DC, George MH et al (2006) Toxicity profiles in mice treated with hepatotumorigenic and non-hepatotumorigenic triazole conazole fungicides: propiconazole, triadimefon, and myclobutanil. Toxicol Pathol 34:853–862 PubMed DOI
Arena M, Auteri D, EFSA et al (2017) Peer review of the pesticide risk assessment of the active substance propiconazole. EFSA J 15:04887
Attema B, Janssen AWF, Rijkers D et al (2022) Exposure to low-dose perfluorooctanoic acid promotes hepatic steatosis and disrupts the hepatic transcriptome in mice. Mol Metab 66:101602 PubMed DOI PMC
Bhat VS, Hester SD, Nesnow S, Eastmond DA (2013) Concordance of transcriptional and apical benchmark dose levels for conazole-induced liver effects in mice. Toxicol Sci 136:205–215 PubMed DOI
Bitter A, Rümmele P, Klein K et al (2015) Pregnane X receptor activation and silencing promote steatosis of human hepatic cells by distinct lipogenic mechanisms. Arch Toxicol 89:2089–2103 PubMed DOI
Blumberg B, Sabbagh W, Juguilon H et al (1998) SXR, a novel steroid and xenobioticsensing nuclear receptor. Genes Dev 12:3195–3205 PubMed DOI PMC
Bourgon R, Gentleman R, Huber W (2010) Independent filtering increases detection power for high-throughput experiments. Proc Natl Acad Sci U S A. https://doi.org/10.1073/pnas.0914005107 PubMed DOI PMC
Cai X, Young GM, Xie W (2021) The xenobiotic receptors PXR and CAR in liver physiology, an update. Biochimica Et Biophysica Acta (BBA)-Mole Basis Dis 1867:166101 DOI
Calkin AC, Tontonoz P (2012) Transcriptional integration of metabolism by the nuclear sterol-activated receptors LXR and FXR. Nat Rev Mol Cell Biol 13:213–224 PubMed DOI PMC
Carazo A, Dusek J, Holas O et al (2018) Teriflunomide is an indirect human constitutive androstane receptor (CAR) activator interacting with epidermal growth factor (EGF) signaling. Front Pharmacol 9:993 PubMed DOI PMC
Cave MC, Clair HB, Hardesty JE et al (2016) Nuclear receptors and nonalcoholic fatty liver disease. Biochimica Et Biophysica Acta (BBA)-Gene Regulat Mech 1859:1083–1099 DOI
Chávez-Talavera O, Tailleux A, Lefebvre P, Staels B (2017) Bile acid control of metabolism and inflammation in obesity, type 2 diabetes, dyslipidemia, and nonalcoholic fatty liver disease. Gastroenterology 152:1679–1694 PubMed DOI
Cui JY, Klaassen CD (2016) RNA-Seq reveals common and unique PXR-and CAR-target gene signatures in the mouse liver transcriptome. Biochimica Et Biophysica Acta (BBA)-Gene Regulat Mech 1859:1198–1217 DOI
Currie RA, Peffer RC, Goetz AK et al (2014) Phenobarbital and propiconazole toxicogenomic profiles in mice show major similarities consistent with the key role that constitutive androstane receptor (CAR) activation plays in their mode of action. Toxicology 321:80–88 PubMed DOI
Dauwe Y, Mary L, Oliviero F et al (2023) Steatosis and metabolic disorders associated with synergistic activation of the CAR/RXR heterodimer by pesticides. Cells 12:1201 PubMed DOI PMC
EFSA (2015) Reasoned opinion on the review of the existing maximum residue levels (MRLs) for propiconazole according to Article 12 of Regulation (EC) No 396/2005. EFSA J 13:3975 DOI
EFSA, Anastassiadou M, Bernasconi G, et al (2021) Evaluation of confirmatory data following the Article 12 MRL review for propiconazole. EFSA J 19:e06405 PubMed
Elcombe CR, Peffer RC, Wolf DC et al (2014) Mode of action and human relevance analysis for nuclear receptor-mediated liver toxicity: a case study with phenobarbital as a model constitutive androstane receptor (CAR) activator. Crit Rev Toxicol 44:64–82 PubMed DOI
Fragki S, Dirven H, Fletcher T et al (2021) Systemic PFOS and PFOA exposure and disturbed lipid homeostasis in humans: what do we know and what not? Crit Rev Toxicol 51:141–164 PubMed DOI
Frankish A, Diekhans M, Ferreira A-M et al (2019) GENCODE reference annotation for the human and mouse genomes. Nucleic Acids Res 47:D766–D773. https://doi.org/10.1093/nar/gky955 PubMed DOI
Ghisari M, Long M, Tabbo A, Bonefeld-Jørgensen EC (2015) Effects of currently used pesticides and their mixtures on the function of thyroid hormone and aryl hydrocarbon receptor in cell culture. Toxicol Appl Pharmacol 284:292–303 PubMed DOI
Goetz AK, Dix DJ (2009) Toxicogenomic effects common to triazole antifungals and conserved between rats and humans. Toxicol Appl Pharmacol 238:80–89 PubMed DOI
Grün F, Blumberg B (2006) Environmental obesogens: organotins and endocrine disruption via nuclear receptor signaling. Endocrinology 147:s50–s55 PubMed DOI
Gwag T, Meng Z, Sui Y et al (2019) Non-nucleoside reverse transcriptase inhibitor efavirenz activates PXR to induce hypercholesterolemia and hepatic steatosis. J Hepatol 70:930–940 PubMed DOI PMC
He J, Gao J, Xu M et al (2013) PXR ablation alleviates diet-induced and genetic obesity and insulin resistance in mice. Diabetes 62:1876–1887 PubMed DOI PMC
Heindel JJ, Vom Saal FS, Blumberg B et al (2015) Parma consensus statement on metabolic disruptors. Environ Health 14:54. https://doi.org/10.1186/s12940-015-0042-7 PubMed DOI PMC
Heindel JJ, Blumberg B, Cave M et al (2017) Metabolism disrupting chemicals and metabolic disorders. Reprod Toxicol 68:3–33 PubMed DOI
Heise T, Schmidt F, Knebel C et al (2015) Hepatotoxic effects of (tri) azole fungicides in a broad dose range. Arch Toxicol 89:2105–2117 PubMed DOI
Hester SD, Wolf DC, Nesnow S, Thai S-F (2006) Transcriptional profiles in liver from rats treated with tumorigenic and non-tumorigenic triazole conazole fungicides: propiconazole, triadimefon, and myclobutanil. Toxicol Pathol 34:879–894 PubMed DOI
Jones SA, Moore LB, Shenk JL et al (2000) The pregnane X receptor: a promiscuous xenobiotic receptor that has diverged during evolution. Mol Endocrinol 14:27–39 PubMed DOI
Kanehisa M, Furumichi M, Tanabe M et al (2017) KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res 45:D353–D361 PubMed DOI
Karpale M, Käräjämäki AJ, Kummu O et al (2021) Activation of pregnane X receptor induces atherogenic lipids and PCSK9 by a SREBP2-mediated mechanism. Br J Pharmacol 178:2461–2481 PubMed DOI
Karpale M, Hukkanen J, Hakkola J (2022) Nuclear receptor PXR in drug-induced hypercholesterolemia. Cells 11:313 PubMed DOI PMC
Karpale M, Kummu O, Kärkkäinen O et al (2023) Pregnane X receptor activation remodels glucose metabolism to promote NAFLD development in obese mice. Mol Metab 76:101779 PubMed DOI PMC
Kersten S, Desvergne B, Wahli W (2000) Roles of PPARs in health and disease. Nature 405:421–424 PubMed DOI
Knebel C, Kebben J, Eberini I et al (2018a) Propiconazole is an activator of AHR and causes concentration additive effects with an established AHR ligand. Arch Toxicol 92:3471–3486 PubMed DOI
Knebel C, Neeb J, Zahn E et al (2018b) Unexpected effects of propiconazole, tebuconazole, and their mixture on the receptors CAR and PXR in human liver cells. Toxicol Sci 163:170–181 PubMed DOI
Knebel C, Buhrke T, Süssmuth R et al (2019a) Pregnane X receptor mediates steatotic effects of propiconazole and tebuconazole in human liver cell lines. Arch Toxicol 93:1311–1322 PubMed DOI
Knebel C, Heise T, Zanger UM et al (2019b) The azole fungicide tebuconazole affects human CYP1A1 and CYP1A2 expression by an aryl hydrocarbon receptor-dependent pathway. Food Chem Toxicol 123:481–491 PubMed DOI
Krammer J, Digel M, Ehehalt F et al (2011) Overexpression of CD36 and acyl-CoA synthetases FATP2, FATP4 and ACSL1 increases fatty acid uptake in human hepatoma cells. Int J Med Sci 8:599 PubMed DOI PMC
Lapinskas PJ, Brown S, Leesnitzer LM et al (2005) Role of PPARα in mediating the effects of phthalates and metabolites in the liver. Toxicology 207:149–163 PubMed DOI
Lasch A, Marx-Stoelting P, Braeuning A, Lichtenstein D (2021) More than additive effects on liver triglyceride accumulation by combinations of steatotic and non-steatotic pesticides in HepaRG cells. Arch Toxicol 95:1397–1411 PubMed DOI PMC
Law CW, Chen Y, Shi W, Smyth GK (2014) voom: precision weights unlock linear model analysis tools for RNA-seq read counts. Genome Biol 15:R29. https://doi.org/10.1186/gb-2014-15-2-r29 PubMed DOI PMC
Le Maire A, Grimaldi M, Roecklin D et al (2009) Activation of RXR–PPAR heterodimers by organotin environmental endocrine disruptors. EMBO Rep 10:367–373 PubMed DOI PMC
Lee SM, Muratalla J, Diaz-Ruiz A et al (2021) Rosiglitazone requires hepatocyte PPARγ expression to promote steatosis in male mice with diet-induced obesity. Endocrinology 162:bqab175 PubMed DOI PMC
Lee BP, Dodge JL, Terrault NA (2024) National prevalence estimates for steatotic liver disease and subclassifications using consensus nomenclature. Hepatology 79:666–673 PubMed DOI
Lemaire G, Mnif W, Pascussi J-M et al (2006) Identification of new human pregnane X receptor ligands among pesticides using a stable reporter cell system. Toxicol Sci 91:501–509 PubMed DOI
Liu R, Holik AZ, Su S, et al (2015) Why weight? Modelling sample and observational level variability improves power in RNAseq analyses. Nucleic Acids Res 43:e97 PubMed DOI PMC
Luisier R, Lempiäinen H, Scherbichler N et al (2014) Phenobarbital induces cell cycle transcriptional responses in mouse liver humanized for constitutive androstane and pregnane x receptors. Toxicol Sci 139:501–511 PubMed DOI
Ma Y, Liu D (2012) Activation of pregnane X receptor by pregnenolone 16 α-carbonitrile prevents high-fat diet-induced obesity in AKR/J mice. PLoS ONE 7:e38734 PubMed DOI PMC
Marx-Stoelting P, Knebel C, Braeuning A (2020) The connection of azole fungicides with xeno-sensing nuclear receptors, drug metabolism and hepatotoxicity. Cells 9:1192 PubMed DOI PMC
Morton T, Camp J, Van Deusen B, Williams C (2019) US EPA propiconazole human health risk assessment-122101. US EPA
Nakamura K, Moore R, Negishi M, Sueyoshi T (2007) Nuclear pregnane X receptor cross-talk with FoxA2 to mediate drug-induced regulation of lipid metabolism in fasting mouse liver. J Biol Chem 282:9768–9776 PubMed DOI
Patro R, Duggal G, Love MI et al (2017) Salmon provides fast and bias-aware quantification of transcript expression. Nat Methods 14:417–419. https://doi.org/10.1038/nmeth.4197 PubMed DOI PMC
Rinella ME, Lazarus JV, Ratziu V et al (2023) A multisociety Delphi consensus statement on new fatty liver disease nomenclature. Hepatology 78:1966–1986 PubMed DOI
Ritchie ME, Phipson B, Wu D et al (2015) limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res 43:e47–e47. https://doi.org/10.1093/nar/gkv007 PubMed DOI PMC
Robinson MD, Oshlack A (2010) A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol 11:R25. https://doi.org/10.1186/gb-2010-11-3-r25 PubMed DOI PMC
Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26:139–140. https://doi.org/10.1093/bioinformatics/btp616 PubMed DOI
Smith U, Kahn BB (2016) Adipose tissue regulates insulin sensitivity: role of adipogenesis, de novo lipogenesis and novel lipids. J Intern Med 280:465–475 PubMed DOI PMC
Smyth GK (2004) Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol 3:1–25. https://doi.org/10.2202/1544-6115.1027 DOI
Soneson C, Love MI, Robinson MD (2015) Differential analyses for RNA-seq: transcript-level estimates improve gene-level inferences. F1000Res 4:1521. https://doi.org/10.12688/f1000research.7563.1 PubMed DOI
Spruiell K, Richardson RM, Cullen JM et al (2014) Role of pregnane X receptor in obesity and glucose homeostasis in male mice. J Biol Chem 289:3244–3261 PubMed DOI
Stahlhut RW, van Wijngaarden E, Dye TD et al (2007) Concentrations of urinary phthalate metabolites are associated with increased waist circumference and insulin resistance in adult US males. Environ Health Perspect 115:876–882 PubMed DOI PMC
Sun G, Thai S-F, Tully DB et al (2005) Propiconazole-induced cytochrome P450 gene expression and enzymatic activities in rat and mouse liver. Toxicol Lett 155:277–287 PubMed DOI
Takeuchi S, Iida M, Yabushita H et al (2008) In vitro screening for aryl hydrocarbon receptor agonistic activity in 200 pesticides using a highly sensitive reporter cell line, DR-EcoScreen cells, and in vivo mouse liver cytochrome P450–1A induction by propanil, diuron and linuron. Chemosphere 74:155–165 PubMed DOI
Wada T, Gao J, Xie W (2009) PXR and CAR in energy metabolism. Trends Endocrinol Metab 20:273–279 PubMed DOI
Ward WO, Delker DA, Hester SD et al (2006) Transcriptional profiles in liver from mice treated with hepatotumorigenic and nonhepatotumorigenic triazole conazole fungicides: propiconazole, triadimefon, and myclobutanil. Toxicol Pathol 34:863–878 PubMed DOI
Warrilow AG, Parker JE, Kelly DE, Kelly SL (2013) Azole affinity of sterol 14α-demethylase (CYP51) enzymes from Candida albicans and Homo sapiens. Antimicrob Agents Chemother 57:1352–1360 PubMed DOI PMC
Wei P, Zhang J, Egan-Hafley M et al (2000) The nuclear receptor CAR mediates specific xenobiotic induction of drug metabolism. Nature 407:920–923 PubMed DOI
Willson TM, Kliewer SA (2002) PXR, CAR and drug metabolism. Nat Rev Drug Discov 1:259–266 PubMed DOI
Wilson CG, Tran JL, Erion DM et al (2016) Hepatocyte-specific disruption of CD36 attenuates fatty liver and improves insulin sensitivity in HFD-fed mice. Endocrinology 157:570–585 PubMed DOI
Wu Q, Li G, Zhao C-Y, et al (2023) Association between phthalate exposure and obesity risk: a meta-analysis of observational studies. Environ Toxicol Pharmacol 102:104240 PubMed DOI
Xie W, Barwick JL, Downes M et al (2000) Humanized xenobiotic response in mice expressing nuclear receptor SXR. Nature 406:435–439 PubMed DOI
Younossi Z, Tacke F, Arrese M et al (2019) Global perspectives on nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. Hepatology 69:2672–2682 PubMed DOI
Zahn E, Wolfrum J, Knebel C et al (2018) Mixture effects of two plant protection products in liver cell lines. Food Chem Toxicol 112:299–309 PubMed DOI
Zhou J, Zhai Y, Mu Y et al (2006) A novel pregnane X receptor-mediated and sterol regulatory element-binding protein-independent lipogenic pathway. J Biol Chem 281:15013–15020 PubMed DOI
Zhou J, Febbraio M, Wada T et al (2008) Hepatic fatty acid transporter Cd36 is a common target of LXR, PXR, and PPARγ in promoting steatosis. Gastroenterology 134:556–567 PubMed DOI
Zhou C, King N, Chen KY, Breslow JL (2009) Activation of PXR induces hypercholesterolemia in wild-type and accelerates atherosclerosis in apoE deficient mice [S]. J Lipid Res 50:2004–2013 PubMed DOI PMC