Teriflunomide Is an Indirect Human Constitutive Androstane Receptor (CAR) Activator Interacting With Epidermal Growth Factor (EGF) Signaling
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
30364229
PubMed Central
PMC6193428
DOI
10.3389/fphar.2018.00993
Knihovny.cz E-zdroje
- Klíčová slova
- CAR, cytochrome P450, gene regulation, metabolism, nuclear receptor,
- Publikační typ
- časopisecké články MeSH
The constitutive androstane receptor (CAR) is a nuclear receptor involved mainly in xenobiotic and endobiotic metabolism regulation. CAR is activated directly by its ligands via the ligand binding domain (LBD) or indirectly by inhibition of the epidermal growth factor (EGF) signaling. We found that leflunomide (LEF) and its main metabolite teriflunomide (TER), both used for autoimmune diseases treatment, induce the prototype CAR target gene CYP2B6 in primary human hepatocytes. As TER was discovered to be an EGF receptor antagonist, we sought to determine if TER is an indirect activator of CAR. In primary human hepatocytes and in differentiated HepaRG cells, we found that LEF and TER up-regulate CAR target genes CYP2B6 and CYP3A4 mRNAs and enzymatic activities. TER stimulated CAR+A mutant translocation into the nucleus but neither LEF nor TER activated the CAR LBD, CAR3 variant or pregnane X receptor (PXR) in gene reporter assays. Interestingly, TER significantly up-regulated CAR mRNA expression, a result which could be a consequence of both EGF receptor and ELK-1 transcription factor inhibition by TER or by TER-mediated activation of glucocorticoid receptor (GR), an upstream hormonal regulator of CAR. We can conclude that TER is a novel indirect CAR activator which through EGF inhibition and GR activation controls both detoxification and some intermediary metabolism genes.
Department of Pharmaceutical Technology Faculty of Pharmacy Charles University Prague Czechia
Department of Pharmacology and Toxicology Faculty of Pharmacy Charles University Prague Czechia
Department of Social and Clinical Pharmacy Faculty of Pharmacy Charles University Prague Czechia
Zobrazit více v PubMed
Baes M., Gulick T., Choi H. S., Martinoli M. G., Simha D., Moore D. D. (1994). A new orphan member of the nuclear hormone receptor superfamily that interacts with a subset of retinoic acid response elements. Mol. Cell. Biol. 14 1544–1552. 10.1128/MCB.14.3.1544 PubMed DOI PMC
Carazo A., Pavek P. (2015). The use of the LanthaScreen TR-FRET CAR Coactivator assay in the characterization of Constitutive Androstane Receptor (CAR) inverse agonists. Sensors 15 9265–9276. 10.3390/s150409265 PubMed DOI PMC
Carazo Fernandez A., Smutny T., Hyrsova L., Berka K., Pavek P. (2015). Chrysin, baicalein and galangin are indirect activators of the human constitutive androstane receptor (CAR). Toxicol. Lett. 233 68–77. 10.1016/j.toxlet.2015.01.013 PubMed DOI
Chai S. C., Cherian M. T., Wang Y. M., Chen T. (2016). Small-molecule modulators of PXR and CAR. Biochim. Biophys. Acta 1859 1141–1154. 10.1016/j.bbagrm.2016.02.013 PubMed DOI PMC
Chen T., Tompkins L. M., Li L., Li H., Kim G., Zheng Y., et al. (2010). A single amino acid controls the functional switch of human constitutive androstane receptor (CAR) 1 to the xenobiotic-sensitive splicing variant CAR3. J. Pharmacol. Exp. Ther. 332 106–115. 10.1124/jpet.109.159210 PubMed DOI PMC
de Boussac H., Gondeau C., Briolotti P., Duret C., Treindl F., Romer M., et al. (2018). Epidermal growth factor represses constitutive androstane receptor expression in primary human hepatocytes and favors regulation by pregnane X receptor. Drug Metab. Dispos. 46 223–236. 10.1124/dmd.117.078683 PubMed DOI
di Masi A., De Marinis E., Ascenzi P., Marino M. (2009). Nuclear receptors CAR and PXR: molecular, functional, and biomedical aspects. Mol. Aspects Med. 30 297–343. 10.1016/j.mam.2009.04.002 PubMed DOI
Dong B., Saha P. K., Huang W., Chen W., Abu-Elheiga L. A., Wakil S. J., et al. (2009). Activation of nuclear receptor CAR ameliorates diabetes and fatty liver disease. Proc. Natl. Acad. Sci. U.S.A. 106 18831–18836. 10.1073/pnas.0909731106 PubMed DOI PMC
Dusek J., Carazo A., Trejtnar F., Hyrsova L., Holas O., Smutny T., et al. (2017). Steviol, an aglycone of steviol glycoside sweeteners, interacts with the pregnane X (PXR) and aryl hydrocarbon (AHR) receptors in detoxification regulation. Food Chem. Toxicol. 109 130–142. 10.1016/j.fct.2017.09.007 PubMed DOI
Faucette S. R., Zhang T. C., Moore R., Sueyoshi T., Omiecinski C. J., LeCluyse E. L., et al. (2007). Relative activation of human pregnane X receptor versus constitutive androstane receptor defines distinct classes of CYP2B6 and CYP3A4 inducers. J. Pharmacol. Exp. Ther. 320 72–80. 10.1124/jpet.106.112136 PubMed DOI PMC
Gao J., He J., Zhai Y., Wada T., Xie W. (2009). The constitutive androstane receptor is an anti-obesity nuclear receptor that improves insulin sensitivity. J. Biol. Chem. 284 25984–25992. 10.1074/jbc.M109.016808 PubMed DOI PMC
Gao J., Yan J., Xu M., Ren S., Xie W. (2015). CAR suppresses hepatic gluconeogenesis by facilitating the ubiquitination and degradation of PGC1alpha. Mol. Endocrinol. 29 1558–1570. 10.1210/me.2015-1145 PubMed DOI PMC
Ghosh S., Narla R. K., Zheng Y., Liu X. P., Jun X., Mao C., et al. (1999). Structure-based design of potent inhibitors of EGF-receptor tyrosine kinase as anti-cancer agents. Anticancer Drug Des. 14 403–410. PubMed
Ghosh S., Zheng Y., Jun X., Narla R. K., Mahajan S., Navara C., et al. (1998). Alpha-cyano-beta-hydroxy-beta-methyl-N-[4-(trifluoromethoxy)phenyl] propenamide: an inhibitor of the epidermal growth factor receptor tyrosine kinase with potent cytotoxic activity against breast cancer cells. Clin. Cancer Res. 4 2657–2668. PubMed
Hardesty J. E., Al-Eryani L., Wahlang B., Falkner K. C., Shi H., Jin J., et al. (2018). Epidermal growth factor receptor signaling disruption by endocrine and metabolic disrupting chemicals. Toxicol. Sci. 162 622–634. 10.1093/toxsci/kfy004 PubMed DOI PMC
Hardesty J. E., Wahlang B., Falkner K. C., Clair H. B., Clark B. J., Ceresa B. P., et al. (2017). Polychlorinated biphenyls disrupt hepatic epidermal growth factor receptor signaling. Xenobiotica 47 807–820. 10.1080/00498254.2016.1217572 PubMed DOI PMC
Honkakoski P., Zelko I., Sueyoshi T., Negishi M. (1998). The nuclear orphan receptor CAR-retinoid X receptor heterodimer activates the phenobarbital-responsive enhancer module of the CYP2B gene. Mol. Cell. Biol. 18 5652–5658. 10.1128/MCB.18.10.5652 PubMed DOI PMC
Hyrsova L., Smutny T., Carazo A., Moravcik S., Mandikova J., Trejtnar F., et al. (2016). The pregnane X receptor down-regulates organic cation transporter 1 (SLC22A1) in human hepatocytes by competing for (“squelching”) SRC-1 coactivator. Br. J. Pharmacol. 173 1703–1715. 10.1111/bph.13472 PubMed DOI PMC
Kanno Y., Suzuki M., Miyazaki Y., Matsuzaki M., Nakahama T., Kurose K., et al. (2007). Difference in nucleocytoplasmic shuttling sequences of rat and human constitutive active/androstane receptor. BBA Mol. Cell Res. 1773 934–944. 10.1016/j.bbamcr.2007.03.020 PubMed DOI
Kawamoto T., Sueyoshi T., Zelko I., Moore R., Washburn K., Negishi M. (1999). Phenobarbital-responsive nuclear translocation of the receptor CAR in induction of the CYP2B gene. Mol. Cell. Biol. 19 6318–6322. 10.1128/MCB.19.9.6318 PubMed DOI PMC
Keen H. I., Conaghan P. G., Tett S. E. (2013). Safety evaluation of leflunomide in rheumatoid arthritis. Expert Opin. Drug Saf. 12 581–588. 10.1517/14740338.2013.798299 PubMed DOI
Krausova L., Stejskalova L., Wang H., Vrzal R., Dvorak Z., Mani S., et al. (2011). Metformin suppresses pregnane X receptor (PXR)-regulated transactivation of CYP3A4 gene. Biochem. Pharmacol. 82 1771–1780. 10.1016/j.bcp.2011.08.023 PubMed DOI PMC
Li D., Mackowiak B., Brayman T. G., Mitchell M., Zhang L., Huang S. M., et al. (2015). Genome-wide analysis of human constitutive androstane receptor (CAR) transcriptome in wild-type and CAR-knockout HepaRG cells. Biochem. Pharmacol. 98 190–202. 10.1016/j.bcp.2015.08.087 PubMed DOI PMC
Li H., Chen T., Cottrell J., Wang H. (2009). Nuclear translocation of adenoviral-enhanced yellow fluorescent protein-tagged-human constitutive androstane receptor (hCAR): a novel tool for screening hCAR activators in human primary hepatocytes. Drug Metab. Dispos. 37 1098–1106. 10.1124/dmd.108.026005 PubMed DOI PMC
Li L., Sinz M. W., Zimmermann K., Wang H. (2012). An insulin-like growth factor 1 receptor inhibitor induces CYP3A4 expression through a pregnane X receptor-independent, noncanonical constitutive androstane receptor-related mechanism. J. Pharmacol. Exp. Ther. 340 688–697. 10.1124/jpet.111.188854 PubMed DOI PMC
Lynch C., Pan Y., Li L., Ferguson S. S., Xia M., Swaan P. W., et al. (2013). Identification of novel activators of constitutive androstane receptor from FDA-approved drugs by integrated computational and biological approaches. Pharm. Res. 30 489–501. 10.1007/s11095-012-0895-1 PubMed DOI PMC
Mackowiak B., Wang H. (2016). Mechanisms of xenobiotic receptor activation: direct vs. indirect. Biochim. Biophys. Acta 1859 1130–1140. 10.1016/j.bbagrm.2016.02.006 PubMed DOI PMC
Miao J., Fang S., Bae Y., Kemper J. K. (2006). Functional inhibitory cross-talk between constitutive androstane receptor and hepatic nuclear factor-4 in hepatic lipid/glucose metabolism is mediated by competition for binding to the DR1 motif and to the common coactivators, GRIP-1 and PGC-1alpha. J. Biol. Chem. 281 14537–14546. 10.1074/jbc.M510713200 PubMed DOI
Molnar F., Kublbeck J., Jyrkkarinne J., Prantner V., Honkakoski P. (2013). An update on the constitutive androstane receptor (CAR). Drug Metabol. Drug. Interact. 28 79–93. 10.1515/dmdi-2013-0009 PubMed DOI
Moore L. B., Parks D. J., Jones S. A., Bledsoe R. K., Consler T. G., Stimmel J. B., et al. (2000). Orphan nuclear receptors constitutive androstane receptor and pregnane X receptor share xenobiotic and steroid ligands. J. Biol. Chem. 275 15122–15127. 10.1074/jbc.M001215200 PubMed DOI
Mutoh S., Osabe M., Inoue K., Moore R., Pedersen L., Perera L., et al. (2009). Dephosphorylation of threonine 38 is required for nuclear translocation and activation of human xenobiotic receptor CAR (NR1I3). J. Biol. Chem. 284 34785–34792. 10.1074/jbc.M109.048108 PubMed DOI PMC
Mutoh S., Sobhany M., Moore R., Perera L., Pedersen L., Sueyoshi T., et al. (2013). Phenobarbital indirectly activates the constitutive active androstane receptor (CAR) by inhibition of epidermal growth factor receptor signaling. Sci. Signal. 6:ra31. 10.1126/scisignal.2003705 PubMed DOI PMC
Oh K. J., Han H. S., Kim M. J., Koo S. H. (2013). CREB and FoxO1: two transcription factors for the regulation of hepatic gluconeogenesis. BMB Rep. 46 567–574. 10.5483/BMBRep.2013.46.12.248 PubMed DOI PMC
Osabe M., Negishi M. (2011). Active ERK1/2 protein interacts with the phosphorylated nuclear constitutive active/androstane receptor (CAR; NR1I3), repressing dephosphorylation and sequestering CAR in the cytoplasm. J. Biol. Chem. 286 35763–35769. 10.1074/jbc.M111.284596 PubMed DOI PMC
Pascussi J. M., Gerbal-Chaloin S., Fabre J. M., Maurel P., Vilarem M. J. (2000). Dexamethasone enhances constitutive androstane receptor expression in human hepatocytes: consequences on cytochrome P450 gene regulation. Mol. Pharmacol. 58 1441–1450. 10.1124/mol.58.6.1441 PubMed DOI
Rezen T., Tamasi V., Lovgren-Sandblom A., Bjorkhem I., Meyer U. A., Rozman D. (2009). Effect of CAR activation on selected metabolic pathways in normal and hyperlipidemic mouse livers. BMC Genomics 10:384. 10.1186/1471-2164-10-384 PubMed DOI PMC
Rojas M., Yao S., Lin Y. Z. (1996). Controlling epidermal growth factor (EGF)-stimulated Ras activation in intact cells by a cell-permeable peptide mimicking phosphorylated EGF receptor. J. Biol. Chem. 271 27456–27461. 10.1074/jbc.271.44.27456 PubMed DOI
Rulcova A., Prokopova I., Krausova L., Bitman M., Vrzal R., Dvorak Z., et al. (2010). Stereoselective interactions of warfarin enantiomers with the pregnane X nuclear receptor in gene regulation of major drug-metabolizing cytochrome P450 enzymes. J. Thromb. Haemost. 8 2708–2717. 10.1111/j.1538-7836.2010.04036.x PubMed DOI
Sapio L., Gallo M., Illiano M., Chiosi E., Naviglio D., Spina A., et al. (2017). The natural cAMP elevating compound forskolin in cancer therapy: is it time? J. Cell. Physiol. 232 922–927. 10.1002/jcp.25650 PubMed DOI
Shizu R., Osabe M., Perera L., Moore R., Sueyoshi T., Negishi M. (2017). Phosphorylated nuclear receptor CAR forms a homodimer to repress its constitutive activity for ligand activation. Mol. Cell. Biol. 37:e00649-16. 10.1128/MCB.00649-16 PubMed DOI PMC
Tolson A. H., Li H., Eddington N. D., Wang H. (2009). Methadone induces the expression of hepatic drug-metabolizing enzymes through the activation of pregnane X receptor and constitutive androstane receptor. Drug Metab. Dispos. 37 1887–1894. 10.1124/dmd.109.027854 PubMed DOI PMC
Tzameli I., Pissios P., Schuetz E. G., Moore D. D. (2000). The xenobiotic compound 1,4-bis[2-(3,5-dichloropyridyloxy)]benzene is an agonist ligand for the nuclear receptor CAR. Mol. Cell. Biol. 20 2951–2958. 10.1128/MCB.20.9.2951-2958.2000 PubMed DOI PMC
Wang H., Faucette S., Moore R., Sueyoshi T., Negishi M., LeCluyse E. (2004). Human constitutive androstane receptor mediates induction of CYP2B6 gene expression by phenytoin. J. Biol. Chem. 279 29295–29301. 10.1074/jbc.M400580200 PubMed DOI
Yan J., Chen B., Lu J., Xie W. (2015). Deciphering the roles of the constitutive androstane receptor in energy metabolism. Acta Pharmacol. Sin. 36 62–70. 10.1038/aps.2014.102 PubMed DOI PMC
Yarushkin A. A., Kachaylo E. M., Pustylnyak V. O. (2013). The constitutive androstane receptor activator 4-[(4R,6R)-4,6-diphenyl-1,3-dioxan-2-yl]-N,N-dimethylaniline inhibits the gluconeogenic genes PEPCK and G6Pase through the suppression of HNF4alpha and FOXO1 transcriptional activity. Br. J. Pharmacol. 168 1923–1932. 10.1111/bph.12090 PubMed DOI PMC
Yu L., Wang Z., Huang M., Li Y., Zeng K., Lei J., et al. (2016). Evodia alkaloids suppress gluconeogenesis and lipogenesis by activating the constitutive androstane receptor. Biochim. Biophys. Acta 1859 1100–1111. 10.1016/j.bbagrm.2015.10.001 PubMed DOI