Allosteric Antagonism of the Pregnane X Receptor (PXR): Current-State-of-the-Art and Prediction of Novel Allosteric Sites
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy, práce podpořená grantem
PubMed
36230936
PubMed Central
PMC9563780
DOI
10.3390/cells11192974
PII: cells11192974
Knihovny.cz E-zdroje
- Klíčová slova
- AF-2 site, BF-3 site, CAR, PAM-antagonist, PXR, allosteric site, pregnane X receptor,
- MeSH
- alosterické místo MeSH
- diabetes mellitus 2. typu * MeSH
- furylfuramid MeSH
- lidé MeSH
- ligandy MeSH
- pregnanový X receptor MeSH
- receptory cytoplazmatické a nukleární MeSH
- steroidní receptory * metabolismus MeSH
- xenobiotika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- furylfuramid MeSH
- ligandy MeSH
- pregnanový X receptor MeSH
- receptory cytoplazmatické a nukleární MeSH
- steroidní receptory * MeSH
- xenobiotika MeSH
The pregnane X receptor (PXR, NR1I2) is a xenobiotic-activated transcription factor with high levels of expression in the liver. It not only plays a key role in drug metabolism and elimination, but also promotes tumor growth, drug resistance, and metabolic diseases. It has been proposed as a therapeutic target for type II diabetes, metabolic syndrome, and inflammatory bowel disease, and PXR antagonists have recently been considered as a therapy for colon cancer. There are currently no PXR antagonists that can be used in a clinical setting. Nevertheless, due to the large and complex ligand-binding pocket (LBP) of the PXR, it is challenging to discover PXR antagonists at the orthosteric site. Alternative ligand binding sites of the PXR have also been proposed and are currently being studied. Recently, the AF-2 allosteric binding site of the PXR has been identified, with several compounds modulating the site discovered. Herein, we aimed to summarize our current knowledge of allosteric modulation of the PXR as well as our attempt to unlock novel allosteric sites. We describe the novel binding function 3 (BF-3) site of PXR, which is also common for other nuclear receptors. In addition, we also mention a novel allosteric site III based on in silico prediction. The identified allosteric sites of the PXR provide new insights into the development of safe and efficient allosteric modulators of the PXR receptor. We therefore propose that novel PXR allosteric sites might be promising targets for treating chronic metabolic diseases and some cancers.
Zobrazit více v PubMed
Moore D.D., Kato S., Xie W., Mangelsdorf D.J., Schmidt D.R., Xiao R., Kliewer S.A. International Union of Pharmacology. LXII. The NR1H and NR1I Receptors: Constitutive Androstane Receptor, Pregnene X Receptor, Farnesoid X Receptor α, Farnesoid X Receptor β, Liver X Receptor α, Liver X Receptor β, and Vitamin D Receptor. Pharmacol. Rev. 2006;58:742–759. doi: 10.1124/pr.58.4.6. PubMed DOI
Smutny T., Mani S., Pavek P. Post-translational and Post-transcriptional Modifications of Pregnane X Receptor (PXR) in Regulation of the Cytochrome P450 Superfamily. Curr. Drug Metab. 2013;14:1059–1069. doi: 10.2174/1389200214666131211153307. PubMed DOI PMC
Jumper J., Evans R., Pritzel A., Green T., Figurnov M., Ronneberger O., Tunyasuvunakool K., Bates R., Žídek A., Potapenko A., et al. Highly accurate protein structure prediction with AlphaFold. Nature. 2021;596:583–589. doi: 10.1038/s41586-021-03819-2. PubMed DOI PMC
Perrakis A., Sixma T.K. AI revolutions in biology. EMBO Rep. 2021;22:e54046. doi: 10.15252/embr.202154046. PubMed DOI PMC
Monzon V., Haft D.H., Bateman A. Folding the unfoldable: Using AlphaFold to explore spurious proteins. Bioinform. Adv. 2022;2:vbab043. doi: 10.1093/bioadv/vbab043. PubMed DOI PMC
Hall A., Chanteux H., Menochet K., Ledecq M., Schulze M.E.D. Designing Out PXR Activity on Drug Discovery Projects: A Review of Structure-Based Methods, Empirical and Computational Approaches. J. Med. Chem. 2021;64:6413–6522. doi: 10.1021/acs.jmedchem.0c02245. PubMed DOI
Wallace B.D., Betts L., Talmage G., Pollet R.M., Holman N.S., Redinbo M.R. Structural and Functional Analysis of the Human Nuclear Xenobiotic Receptor PXR in Complex with RXRα. J. Mol. Biol. 2013;425:2561–2577. doi: 10.1016/j.jmb.2013.04.012. PubMed DOI PMC
Rigalli J.P., Theile D., Nilles J., Weiss J. Regulation of PXR Function by Coactivator and Corepressor Proteins: Ligand Binding Is Just the Beginning. Cells. 2021;10:3137. doi: 10.3390/cells10113137. PubMed DOI PMC
Bauer B., Hartz A.M.S., Fricker G., Miller D.S. Pregnane X Receptor Up-Regulation of P-Glycoprotein Expression and Transport Function at the Blood-Brain Barrier. Mol. Pharmacol. 2004;66:413–419. PubMed
Xing Y., Yan J., Niu Y. PXR: A center of transcriptional regulation in cancer. Acta Pharm. Sin. B. 2020;10:197–206. doi: 10.1016/j.apsb.2019.06.012. PubMed DOI PMC
Lehmann J.M., McKee D.D., Watson M.A., Willson T.M., Moore J.T., Kliewer S.A. The human orphan nuclear receptor PXR is activated by compounds that regulate CYP3A4 gene expression and cause drug interactions. J. Clin. Investig. 1998;102:1016–1023. doi: 10.1172/JCI3703. PubMed DOI PMC
Kliewer S.A., Moore J.T., Wade L., Staudinger J.L., Watson M.A., Jones S.A., McKee D.D., Oliver B.B., Willson T.M., Zetterström R.H., et al. An Orphan Nuclear Receptor Activated by Pregnanes Defines a Novel Steroid Signaling Pathway. Cell. 1998;92:73–82. doi: 10.1016/S0092-8674(00)80900-9. PubMed DOI
Fukuen S., Fukuda T., Matsuda H., Sumida A., Yamamoto I., Inaba T., Azuma J. Identification of the novel splicing variants for the hPXR in human livers. Biochem. Biophys. Res. Commun. 2002;298:433–438. doi: 10.1016/S0006-291X(02)02469-5. PubMed DOI
Chan G.N.Y., Hoque M.T., Cummins C.L., Bendayan R. Regulation of P-glycoprotein by orphan nuclear receptors in human brain microvessel endothelial cells. J. Neurochem. 2011;118:163–175. doi: 10.1111/j.1471-4159.2011.07288.x. PubMed DOI
Atlas P. Nuclear Receptor Subfamily 1 Group I Member 2. [(accessed on 22 August 2022)]. Available online: https://www.proteinatlas.org/ENSG00000144852-NR1I2/tissue.
Nishimura M., Naito S., Yokoi T. Tissue-specific mRNA Expression Profiles of Human Nuclear Receptor Subfamilies. Drug Metab. Pharmacokinet. 2004;19:135–149. doi: 10.2133/dmpk.19.135. PubMed DOI
Oladimeji P.O., Chen T. PXR: More Than Just a Master Xenobiotic Receptor. Mol. Pharmacol. 2018;93:119–127. doi: 10.1124/mol.117.110155. PubMed DOI PMC
Creusot N., Gassiot M., Alaterre E., Chiavarina B., Grimaldi M., Boulahtouf A., Toporova L., Gerbal-Chaloin S., Daujat-Chavanieu M., Matheux A., et al. The Anti-Cancer Drug Dabrafenib Is a Potent Activator of the Human Pregnane X Receptor. Cells. 2020;9:1641. doi: 10.3390/cells9071641. PubMed DOI PMC
Feng F., Jiang Q., Cao S., Cao Y., Li R., Shen L., Zhu H., Wang T., Sun L., Liang E., et al. Pregnane X receptor mediates sorafenib resistance in advanced hepatocellular carcinoma. Biochim. Biophys. Acta (BBA)-Gen. Subj. 2018;1862:1017–1030. doi: 10.1016/j.bbagen.2018.01.011. PubMed DOI
Gwag T., Meng Z., Sui Y., Helsley R.N., Park S.H., Wang S., Greenberg R.N., Zhou C. Non-nucleoside reverse transcriptase inhibitor efavirenz activates PXR to induce hypercholesterolemia and hepatic steatosis. J. Hepatol. 2019;70:930–940. doi: 10.1016/j.jhep.2018.12.038. PubMed DOI PMC
Sinz M.W. Evaluation of pregnane X receptor (PXR)-mediated CYP3A4 drug-drug interactions in drug development. Drug Metab. Rev. 2013;45:3–14. doi: 10.3109/03602532.2012.743560. PubMed DOI
Shukla S.J., Sakamuru S., Huang R., Moeller T.A., Shinn P., VanLeer D., Auld D.S., Austin C.P., Xia M. Identification of Clinically Used Drugs That Activate Pregnane X Receptors. Drug Metab. Dispos. 2011;39:151–159. doi: 10.1124/dmd.110.035105. PubMed DOI PMC
Wang Y.-M., Ong S.S., Chai S.C., Chen T. Role of CAR and PXR in xenobiotic sensing and metabolism. Expert Opin. Drug Metab. Toxicol. 2012;8:803–817. doi: 10.1517/17425255.2012.685237. PubMed DOI PMC
Ma X., Shah Y.M., Guo G.L., Wang T., Krausz K.W., Idle J.R., Gonzalez F.J. Rifaximin Is a Gut-Specific Human Pregnane X Receptor Activator. J. Pharmacol. Exp. Ther. 2007;322:391–398. doi: 10.1124/jpet.107.121913. PubMed DOI
Daujat-Chavanieu M., Gerbal-Chaloin S. Regulation of CAR and PXR Expression in Health and Disease. Cells. 2020;9:2395. doi: 10.3390/cells9112395. PubMed DOI PMC
Pondugula S.R., Pavek P., Mani S. Pregnane X Receptor and Cancer: Context-Specificity is Key. Nucl. Recep. Res. 2016;3:101198. doi: 10.11131/2016/101198. PubMed DOI PMC
Bansard L., Bouvet O., Moutin E., Le Gall G., Giammona A., Pothin E., Bacou M., Hassen-Khodja C., Bordignon B., Bourgaux J.F., et al. Niclosamide induces miR-148a to inhibit PXR and sensitize colon cancer stem cells to chemotherapy. Stem Cell Rep. 2022;17:835–848. doi: 10.1016/j.stemcr.2022.02.005. PubMed DOI PMC
Wang H., Venkatesh M., Li H., Goetz R., Mukherjee S., Biswas A., Zhu L., Kaubisch A., Wang L., Pullman J., et al. Pregnane X receptor activation induces FGF19-dependent tumor aggressiveness in humans and mice. J. Clin. Investig. 2011;121:3220–3232. doi: 10.1172/JCI41514. PubMed DOI PMC
Raynal C., Pascussi J.-M., Leguelinel G., Breuker C., Kantar J., Lallemant B., Poujol S., Bonnans C., Joubert D., Hollande F., et al. Pregnane × Receptor (PXR) expression in colorectal cancer cells restricts irinotecan chemosensitivity through enhanced SN-38 glucuronidation. Mol. Cancer. 2010;9:46. doi: 10.1186/1476-4598-9-46. PubMed DOI PMC
Planque C., Rajabi F., Grillet F., Finetti P., Bertucci F., Gironella M., Lozano J.J., Beucher B., Giraud J., Garambois V., et al. Pregnane X-receptor promotes stem cell-mediated colon cancer relapse. Oncotarget. 2016;7:56558–56573. doi: 10.18632/oncotarget.10646. PubMed DOI PMC
Niu X., Wu T., Li G., Gu X., Tian Y., Cui H. Insights into the critical role of the PXR in preventing carcinogenesis and chemotherapeutic drug resistance. Int. J. Biol. Sci. 2022;18:742–759. doi: 10.7150/ijbs.68724. PubMed DOI PMC
Lynch C., Sakamuru S., Huang R., Niebler J., Ferguson S.S., Xia M. Characterization of human pregnane X receptor activators identified from a screening of the Tox21 compound library. Biochem. Pharmacol. 2021;184:114368. doi: 10.1016/j.bcp.2020.114368. PubMed DOI PMC
Zhang J., Pavek P., Kamaraj R., Ren L., Zhang T. Dietary phytochemicals as modulators of human pregnane X receptor. Crit. Rev. Food Sci. Nutr. 2021:1–23. doi: 10.1080/10408398.2021.1995322. PubMed DOI
Karpale M., Hukkanen J., Hakkola J. Nuclear Receptor PXR in Drug-Induced Hypercholesterolemia. Cells. 2022;11:313. doi: 10.3390/cells11030313. PubMed DOI PMC
Sayaf K., Zanotto I., Russo F.P., Gabbia D., De Martin S. The Nuclear Receptor PXR in Chronic Liver Disease. Cells. 2021;11:61. doi: 10.3390/cells11010061. PubMed DOI PMC
Pondugula S.R., Mani S. Pregnane xenobiotic receptor in cancer pathogenesis and therapeutic response. Cancer Lett. 2013;328:1–9. doi: 10.1016/j.canlet.2012.08.030. PubMed DOI PMC
Chai S.C., Wright W.C., Chen T. Strategies for developing pregnane X receptor antagonists: Implications from metabolism to cancer. Med. Res. Rev. 2020;40:1061–1083. doi: 10.1002/med.21648. PubMed DOI PMC
Biswas A., Mani S., Redinbo M.R., Krasowski M.D., Li H., Ekins S. Elucidating the ‘Jekyll and Hyde’ Nature of PXR: The Case for Discovering Antagonists or Allosteric Antagonists. Pharm. Res. 2009;26:1807–1815. doi: 10.1007/s11095-009-9901-7. PubMed DOI PMC
Li Y., Lin W., Wright W.C., Chai S.C., Wu J., Chen T. Building a Chemical Toolbox for Human Pregnane X Receptor Research: Discovery of Agonists, Inverse Agonists, and Antagonists Among Analogs Based on the Unique Chemical Scaffold of SPA70. J. Med. Chem. 2021;64:1733–1761. doi: 10.1021/acs.jmedchem.0c02201. PubMed DOI PMC
Watkins R.E., Wisely G.B., Moore L.B., Collins J.L., Lambert M.H., Williams S.P., Willson T.M., Kliewer S.A., Redinbo M.R. The human nuclear xenobiotic receptor PXR: Structural determinants of directed promiscuity. Science. 2001;292:2329–2333. doi: 10.1126/science.1060762. PubMed DOI
Lin W., Wang Y.M., Chai S.C., Lv L., Zheng J., Wu J., Zhang Q., Wang Y.D., Griffin P.R., Chen T. SPA70 is a potent antagonist of human pregnane X receptor. Nat. Commun. 2017;8:741. doi: 10.1038/s41467-017-00780-5. PubMed DOI PMC
Mustonen E.-K., Pantsar T., Rashidian A., Reiner J., Schwab M., Laufer S., Burk O. Target Hopping from Protein Kinases to PXR: Identification of Small-Molecule Protein Kinase Inhibitors as Selective Modulators of Pregnane X Receptor from TüKIC Library. Cells. 2022;11:1299. doi: 10.3390/cells11081299. PubMed DOI PMC
Ong S.S. Pregnane X Receptor in Drug Development. IntechOpen; London, UK: 2011. DOI
Motta S., Callea L., Giani Tagliabue S., Bonati L. Exploring the PXR ligand binding mechanism with advanced Molecular Dynamics methods. Sci. Rep. 2018;8:16207. doi: 10.1038/s41598-018-34373-z. PubMed DOI PMC
Huang P., Chandra V., Rastinejad F. Structural Overview of the Nuclear Receptor Superfamily: Insights into Physiology and Therapeutics. Annu. Rev. Physiol. 2010;72:247–272. doi: 10.1146/annurev-physiol-021909-135917. PubMed DOI PMC
Wu B., Li S., Dong D. 3D structures and ligand specificities of nuclear xenobiotic receptors CAR, PXR and VDR. Drug Discov. Today. 2013;18:574–581. doi: 10.1016/j.drudis.2013.01.001. PubMed DOI
Liu T., Beck J.P., Hao J. A concise review on hPXR ligand-recognizing residues and structure-based strategies to alleviate hPXR transactivation risk. RSC Med. Chem. 2022;13:129–137. doi: 10.1039/D1MD00348H. PubMed DOI PMC
Huber A.D., Wright W.C., Lin W., Majumder K., Low J.A., Wu J., Buchman C.D., Pintel D.J., Chen T. Mutation of a single amino acid of pregnane X receptor switches an antagonist to agonist by altering AF-2 helix positioning. Cell Mol. Life Sci. 2021;78:317–335. doi: 10.1007/s00018-020-03505-y. PubMed DOI PMC
Huber A.D., Li Y., Lin W., Galbraith A.N., Mishra A., Porter S.N., Wu J., Florke Gee R.R., Zhuang W., Pruett-Miller S.M., et al. SJPYT-195: A Designed Nuclear Receptor Degrader That Functions as a Molecular Glue Degrader of GSPT1. ACS Med. Chem. Lett. 2022;13:1311–1320. doi: 10.1021/acsmedchemlett.2c00223. PubMed DOI PMC
Zorba A., Nguyen C., Xu Y., Starr J., Borzilleri K., Smith J., Zhu H., Farley K.A., Ding W., Schiemer J., et al. Delineating the role of cooperativity in the design of potent PROTACs for BTK. Proc. Natl. Acad. Sci. USA. 2018;115:E7285–E7292. doi: 10.1073/pnas.1803662115. PubMed DOI PMC
Shimokawa K., Shibata N., Sameshima T., Miyamoto N., Ujikawa O., Nara H., Ohoka N., Hattori T., Cho N., Naito M. Targeting the Allosteric Site of Oncoprotein BCR-ABL as an Alternative Strategy for Effective Target Protein Degradation. ACS Med. Chem. Lett. 2017;8:1042–1047. doi: 10.1021/acsmedchemlett.7b00247. PubMed DOI PMC
Pettersen E.F., Goddard T.D., Huang C.C., Meng E.C., Couch G.S., Croll T.I., Morris J.H., Ferrin T.E. UCSF ChimeraX: Structure visualization for researchers, educators, and developers. Protein Sci. 2021;30:70–82. doi: 10.1002/pro.3943. PubMed DOI PMC
De Smet F., Christopoulos A., Carmeliet P. Allosteric targeting of receptor tyrosine kinases. Nat. Biotechnol. 2014;32:1113–1120. doi: 10.1038/nbt.3028. PubMed DOI
Gregory K.J., Sexton P.M., Christopoulos A. Overview of receptor allosterism. Curr. Protoc. Pharmacol. 2000;11:1–21. doi: 10.1002/0471141755.ph0121s51. PubMed DOI
Christopoulos A., Kenakin T. G protein-coupled receptor allosterism and complexing. Pharmacol. Rev. 2002;54:323–374. doi: 10.1124/pr.54.2.323. PubMed DOI
Smith N.J., Milligan G. Allostery at G Protein-Coupled Receptor Homo- and Heteromers: Uncharted Pharmacological Landscapes. Pharmacol. Rev. 2010;62:701–725. doi: 10.1124/pr.110.002667. PubMed DOI PMC
Conn P.J., Christopoulos A., Lindsley C.W. Allosteric modulators of GPCRs: A novel approach for the treatment of CNS disorders. Nat. Rev. Drug Discov. 2009;8:41–54. doi: 10.1038/nrd2760. PubMed DOI PMC
Christopoulos A. Advances in G Protein-Coupled Receptor Allostery: From Function to Structure. Mol. Pharmacol. 2014;86:463–478. doi: 10.1124/mol.114.094342. PubMed DOI
Lewis J.A., Scott S.A., Lavieri R., Buck J.R., Selvy P.E., Stoops S.L., Armstrong M.D., Brown H.A., Lindsley C.W. Design and synthesis of isoform-selective phospholipase D (PLD) inhibitors. Part I: Impact of alternative halogenated privileged structures for PLD1 specificity. Bioorg. Med. Chem. Lett. 2009;19:1916–1920. doi: 10.1016/j.bmcl.2009.02.057. PubMed DOI PMC
Cao A.M., Quast R.B., Fatemi F., Rondard P., Pin J.P., Margeat E. Allosteric modulators enhance agonist efficacy by increasing the residence time of a GPCR in the active state. Nat. Commun. 2021;12:5426. doi: 10.1038/s41467-021-25620-5. PubMed DOI PMC
Reddy G.S., Kamaraj R., Hossain K.A., Kumar J.S., Thirupataiah B., Medishetti R., Sushma Sri N., Misra P., Pal M. Amberlyst-15 catalysed synthesis of novel indole derivatives under ultrasound irradiation: Their evaluation as serotonin 5-HT2C receptor agonists. Bioorg. Chem. 2021;116:105380. doi: 10.1016/j.bioorg.2021.105380. PubMed DOI
Burford N.T., Clark M.J., Wehrman T.S., Gerritz S.W., Banks M., O’Connell J., Traynor J.R., Alt A. Discovery of positive allosteric modulators and silent allosteric modulators of the mu-opioid receptor. Proc. Natl. Acad. Sci. USA. 2013;110:10830–10835. doi: 10.1073/pnas.1300393110. PubMed DOI PMC
Kenakin T., Strachan R.T. PAM-Antagonists: A Better Way to Block Pathological Receptor Signaling? Trends Pharmacol. Sci. 2018;39:748–765. doi: 10.1016/j.tips.2018.05.001. PubMed DOI
Fasciani I., Petragnano F., Aloisi G., Marampon F., Carli M., Scarselli M., Maggio R., Rossi M. Allosteric Modulators of G Protein-Coupled Dopamine and Serotonin Receptors: A New Class of Atypical Antipsychotics. Pharmaceuticals. 2020;13:388. doi: 10.3390/ph13110388. PubMed DOI PMC
Allosteric Database (ASD) Nuclear Hormone Receptor >> 202 Modulators. [(accessed on 14 May 2022)]. Available online: http://mdl.shsmu.edu.cn/ASD/module/modulators/modulators.jsp.
Changeux J.P., Christopoulos A. Allosteric Modulation as a Unifying Mechanism for Receptor Function and Regulation. Cell. 2016;166:1084–1102. doi: 10.1016/j.cell.2016.08.015. PubMed DOI
Moore T.W., Mayne C.G., Katzenellenbogen J.A. Minireview: Not Picking Pockets: Nuclear Receptor Alternate-Site Modulators (NRAMs) Mol. Endocrinol. 2010;24:683–695. doi: 10.1210/me.2009-0362. PubMed DOI PMC
Chen Y., Li J., Wu Z., Liu G., Li H., Tang Y., Li W. Computational Insight into the Allosteric Activation Mechanism of Farnesoid X Receptor. J. Chem. Inf. Model. 2020;60:1540–1550. doi: 10.1021/acs.jcim.9b00914. PubMed DOI
Gabler M., Kramer J., Schmidt J., Pollinger J., Weber J., Kaiser A., Lohr F., Proschak E., Schubert-Zsilavecz M., Merk D. Allosteric modulation of the farnesoid X receptor by a small molecule. Sci. Rep. 2018;8:6846. doi: 10.1038/s41598-018-25158-5. PubMed DOI PMC
Delfosse V., Dendele B., Huet T., Grimaldi M., Boulahtouf A., Gerbal-Chaloin S., Beucher B., Roecklin D., Muller C., Rahmani R., et al. Synergistic activation of human pregnane X receptor by binary cocktails of pharmaceutical and environmental compounds. Nat. Commun. 2015;6:8089. doi: 10.1038/ncomms9089. PubMed DOI PMC
Wang Y., Chirgadze N.Y., Briggs S.L., Khan S., Jensen E.V., Burris T.P. A second binding site for hydroxytamoxifen within the coactivator-binding groove of estrogen receptor β. Proc. Natl. Acad. Sci. USA. 2006;103:9908–9911. doi: 10.1073/pnas.0510596103. PubMed DOI PMC
Hughes T.S., Giri P.K., de Vera I.M., Marciano D.P., Kuruvilla D.S., Shin Y., Blayo A.L., Kamenecka T.M., Burris T.P., Griffin P.R., et al. An alternate binding site for PPARgamma ligands. Nat. Commun. 2014;5:3571. doi: 10.1038/ncomms4571. PubMed DOI PMC
Delfosse V., Huet T., Harrus D., Granell M., Bourguet M., Gardia-Parège C., Chiavarina B., Grimaldi M., Le Mével S., Blanc P., et al. Mechanistic insights into the synergistic activation of the RXR–PXR heterodimer by endocrine disruptor mixtures. Proc. Natl. Acad. Sci. USA. 2021;118:e2020551118. doi: 10.1073/pnas.2020551118. PubMed DOI PMC
Lane J.R., Sexton P.M., Christopoulos A. Bridging the gap: Bitopic ligands of G-protein-coupled receptors. Trends Pharmacol. Sci. 2013;34:59–66. doi: 10.1016/j.tips.2012.10.003. PubMed DOI
Zhang C., Wu J., Chen Q., Tan H., Huang F., Guo J., Zhang X., Yu H., Shi W. Allosteric binding on nuclear receptors: Insights on screening of non-competitive endocrine-disrupting chemicals. Environ. Int. 2022;159:107009. doi: 10.1016/j.envint.2021.107009. PubMed DOI
Pavek P. Pregnane X Receptor (PXR)-Mediated Gene Repression and Cross-Talk of PXR with Other Nuclear Receptors via Coactivator Interactions. Front. Pharmacol. 2016;7:456. doi: 10.3389/fphar.2016.00456. PubMed DOI PMC
La Sala G., Gunnarsson A., Edman K., Tyrchan C., Hogner A., Frolov A.I. Unraveling the Allosteric Cross-Talk between the Coactivator Peptide and the Ligand-Binding Site in the Glucocorticoid Receptor. J. Chem. Inf. Model. 2021;61:3667–3680. doi: 10.1021/acs.jcim.1c00323. PubMed DOI
Fischer A., Smieško M. Allosteric Binding Sites On Nuclear Receptors: Focus On Drug Efficacy and Selectivity. Int. J. Mol. Sci. 2020;21:534. doi: 10.3390/ijms21020534. PubMed DOI PMC
Wärnmark A., Treuter E., Wright A.P.H., Gustafsson J.-A.k. Activation Functions 1 and 2 of Nuclear Receptors: Molecular Strategies for Transcriptional Activation. Mol. Endocrinol. 2003;17:1901–1909. doi: 10.1210/me.2002-0384. PubMed DOI
Wang H., Huang H., Li H., Teotico D.G., Sinz M., Baker S.D., Staudinger J., Kalpana G., Redinbo M.R., Mani S. Activated pregnenolone X-receptor is a target for ketoconazole and its analogs. Clin. Cancer Res. 2007;13:2488–2495. doi: 10.1158/1078-0432.CCR-06-1592. PubMed DOI
Huang H., Wang H., Sinz M., Zoeckler M., Staudinger J., Redinbo M.R., Teotico D.G., Locker J., Kalpana G.V., Mani S. Inhibition of drug metabolism by blocking the activation of nuclear receptors by ketoconazole. Oncogene. 2007;26:258–268. doi: 10.1038/sj.onc.1209788. PubMed DOI
Wang H., Li H., Moore L.B., Johnson M.D., Maglich J.M., Goodwin B., Ittoop O.R., Wisely B., Creech K., Parks D.J., et al. The phytoestrogen coumestrol is a naturally occurring antagonist of the human pregnane X receptor. Mol. Endocrinol. 2008;22:838–857. doi: 10.1210/me.2007-0218. PubMed DOI PMC
Ekins S., Kholodovych V., Ai N., Sinz M., Gal J., Gera L., Welsh W.J., Bachmann K., Mani S. Computational discovery of novel low micromolar human pregnane X receptor antagonists. Mol. Pharmacol. 2008;74:662–672. doi: 10.1124/mol.108.049437. PubMed DOI
Venkatesh M., Wang H., Cayer J., Leroux M., Salvail D., Das B., Wrobel J.E., Mani S. In vivo and in vitro characterization of a first-in-class novel azole analog that targets pregnane X receptor activation. Mol. Pharmacol. 2011;80:124–135. doi: 10.1124/mol.111.071787. PubMed DOI PMC
Ekins S., Chang C., Mani S., Krasowski M.D., Reschly E.J., Iyer M., Kholodovych V., Ai N., Welsh W.J., Sinz M., et al. Human pregnane X receptor antagonists and agonists define molecular requirements for different binding sites. Mol. Pharmacol. 2007;72:592–603. doi: 10.1124/mol.107.038398. PubMed DOI
Burk O., Kuzikov M., Kronenberger T., Jeske J., Keminer O., Thasler W.E., Schwab M., Wrenger C., Windshügel B. Identification of approved drugs as potent inhibitors of pregnane X receptor activation with differential receptor interaction profiles. Arch. Toxicol. 2018;92:1435–1451. doi: 10.1007/s00204-018-2165-4. PubMed DOI
Krausova L., Stejskalova L., Wang H., Vrzal R., Dvorak Z., Mani S., Pavek P. Metformin suppresses pregnane X receptor (PXR)-regulated transactivation of CYP3A4 gene. Biochem. Pharmacol. 2011;82:1771–1780. doi: 10.1016/j.bcp.2011.08.023. PubMed DOI PMC
Chen Y., Tang Y., Robbins G.T., Nie D. Camptothecin attenuates cytochrome P450 3A4 induction by blocking the activation of human pregnane X receptor. J. Pharmacol. Exp. Ther. 2010;334:999–1008. doi: 10.1124/jpet.110.168294. PubMed DOI PMC
Zhou C., Poulton E.J., Grun F., Bammler T.K., Blumberg B., Thummel K.E., Eaton D.L. The dietary isothiocyanate sulforaphane is an antagonist of the human steroid and xenobiotic nuclear receptor. Mol. Pharmacol. 2007;71:220–229. doi: 10.1124/mol.106.029264. PubMed DOI
Carazo A., Dusek J., Holas O., Skoda J., Hyrsova L., Smutny T., Soukup T., Dosedel M., Pávek P. Teriflunomide Is an Indirect Human Constitutive Androstane Receptor (CAR) Activator Interacting with Epidermal Growth Factor (EGF) Signaling. Front. Pharmacol. 2018;9:993. doi: 10.3389/fphar.2018.00993. PubMed DOI PMC
Kronenberger T., Keminer O., Wrenger C., Windshügel B. Drug Discovery and Development: From Molecules to Medicine. InTech; London, UK: 2015. Nuclear Receptor Modulators—Current Approaches and Future Perspectives. DOI
Abbott K.L., Chaudhury C.S., Chandran A., Vishveshwara S., Dvorak Z., Jiskrova E., Poulikova K., Vyhlidalova B., Mani S., Pondugula S.R. Belinostat, at Its Clinically Relevant Concentrations, Inhibits Rifampicin-Induced CYP3A4 and MDR1 Gene Expression. Mol. Pharmacol. 2019;95:324–334. doi: 10.1124/mol.118.114587. PubMed DOI PMC
Lack N.A., Axerio-Cilies P., Tavassoli P., Han F.Q., Chan K.H., Feau C., Leblanc E., Guns E.T., Guy R.K., Rennie P.S., et al. Targeting the Binding Function 3 (BF3) Site of the Human Androgen Receptor through Virtual Screening. J. Med. Chem. 2011;54:8563–8573. doi: 10.1021/jm201098n. PubMed DOI PMC
Slagsvold T., Kraus I., Bentzen T., Palvimo J., Saatcioglu F. Mutational Analysis of the Androgen Receptor AF-2 (Activation Function 2) Core Domain Reveals Functional and Mechanistic Differences of Conserved Residues Compared with Other Nuclear Receptors. Mol. Endocrinol. 2000;14:1603–1617. doi: 10.1210/mend.14.10.0544. PubMed DOI
Estebanez-Perpina E., Arnold L.A., Nguyen P., Rodrigues E.D., Mar E., Bateman R., Pallai P., Shokat K.M., Baxter J.D., Guy R.K., et al. A surface on the androgen receptor that allosterically regulates coactivator binding. Proc. Natl. Acad. Sci. USA. 2007;104:16074–16079. doi: 10.1073/pnas.0708036104. PubMed DOI PMC
Buzon V., Carbo L.R., Estruch S.B., Fletterick R.J., Estebanez-Perpina E. A conserved surface on the ligand binding domain of nuclear receptors for allosteric control. Mol. Cell Endocrinol. 2012;348:394–402. doi: 10.1016/j.mce.2011.08.012. PubMed DOI
Grosdidier S., Carbo L.R., Buzon V., Brooke G., Nguyen P., Baxter J.D., Bevan C., Webb P., Estebanez-Perpina E., Fernandez-Recio J. Allosteric conversation in the androgen receptor ligand-binding domain surfaces. Mol. Endocrinol. 2012;26:1078–1090. doi: 10.1210/me.2011-1281. PubMed DOI PMC
Kumar R., McEwan I.J. Nuclear Receptors: From Structure to the Clinic. 1st ed. Springer International Publishing; Cham, Switzerland: 2015. p. 1. DOI
Gallastegui N., Estébanez-Perpiñá E. Thinking Outside the Box: Alternative Binding Sites in the Ligand Binding Domain of Nuclear Receptors. In: McEwan I.J., Kumar R., editors. Nuclear Receptors: From Structure to the Clinic. Springer International Publishing; Cham, Switzerland: 2015. pp. 179–203. DOI
Jehle K., Cato L., Neeb A., Muhle-Goll C., Jung N., Smith E.W., Buzon V., Carbó L.R., Estébanez-Perpiñá E., Schmitz K., et al. Coregulator Control of Androgen Receptor Action by a Novel Nuclear Receptor-binding Motif. J. Biol. Chem. 2014;289:8839–8851. doi: 10.1074/jbc.M113.534859. PubMed DOI PMC
Xu X.J., Su J.G., Bizzarri A.R., Cannistraro S., Liu M., Zeng Y., Chen W.Z., Wang C.X. Detection of persistent organic pollutants binding modes with androgen receptor ligand binding domain by docking and molecular dynamics. BMC Struct. Biol. 2013;13:16. doi: 10.1186/1472-6807-13-16. PubMed DOI PMC
Hirte S., Burk O., Tahir A., Schwab M., Windshügel B., Kirchmair J. Development and Experimental Validation of Regularized Machine Learning Models Detecting New, Structurally Distinct Activators of PXR. Cells. 2022;11:1253. doi: 10.3390/cells11081253. PubMed DOI PMC
Huang W., Lu S., Huang Z., Liu X., Mou L., Luo Y., Zhao Y., Liu Y., Chen Z., Hou T., et al. Allosite: A method for predicting allosteric sites. Bioinformatics. 2013;29:2357–2359. doi: 10.1093/bioinformatics/btt399. PubMed DOI
Zha J., Li M., Kong R., Lu S., Zhang J. Explaining and Predicting Allostery with Allosteric Database and Modern Analytical Techniques. J. Mol. Biol. 2022;434:167481. doi: 10.1016/j.jmb.2022.167481. PubMed DOI
Gupta R., Srivastava D., Sahu M., Tiwari S., Ambasta R.K., Kumar P. Artificial intelligence to deep learning: Machine intelligence approach for drug discovery. Mol. Divers. 2021;25:1315–1360. doi: 10.1007/s11030-021-10217-3. PubMed DOI PMC
Huang M., Song K., Liu X., Lu S., Shen Q., Wang R., Gao J., Hong Y., Li Q., Ni D., et al. AlloFinder: A strategy for allosteric modulator discovery and allosterome analyses. Nucleic Acids Res. 2018;46:W451–W458. doi: 10.1093/nar/gky374. PubMed DOI PMC
Yang L., Li T., Li S., Wu Y., Shi X., Jin H., Liu Z., Zhao Y., Zhang L., Lee H.C., et al. Rational Design and Identification of Small-Molecule Allosteric Inhibitors of CD38. ChemBioChem. 2019;20:2485–2493. doi: 10.1002/cbic.201900169. PubMed DOI
Bonhaus D.W., Stefanich E., Loury D.N., Hsu S.A., Eglen R.M., Wong E.H. Allosteric interactions among agonists and antagonists at 5-hydroxytryptamine3 receptors. J. Neurochem. 1995;65:104–110. doi: 10.1046/j.1471-4159.1995.65010104.x. PubMed DOI
Saito M., Tsukuda M. Review of palonosetron: Emerging data distinguishing it as a novel 5-HT(3) receptor antagonist for chemotherapy-induced nausea and vomiting. Expert Opin. Pharmacother. 2010;11:1003–1014. doi: 10.1517/14656561003705746. PubMed DOI
Grundmann M., Bender E., Schamberger J., Eitner F. Pharmacology of Free Fatty Acid Receptors and Their Allosteric Modulators. Int. J. Mol. Sci. 2021;22:1763. doi: 10.3390/ijms22041763. PubMed DOI PMC
Li L., Welch M.A., Li Z., Mackowiak B., Heyward S., Swaan P.W., Wang H. Mechanistic Insights of Phenobarbital-Mediated Activation of Human but Not Mouse Pregnane X Receptor. Mol. Pharmacol. 2019;96:345–354. doi: 10.1124/mol.119.116616. PubMed DOI PMC
Sinz M., Kim S., Zhu Z., Chen T., Anthony M., Dickinson K., Rodrigues A.D. Evaluation of 170 xenobiotics as transactivators of human pregnane X receptor (hPXR) and correlation to known CYP3A4 drug interactions. Curr. Drug Metab. 2006;7:375–388. doi: 10.2174/138920006776873535. PubMed DOI