Targeted Protein Degradation (TPD) for Immunotherapy: Understanding Proteolysis Targeting Chimera-Driven Ubiquitin-Proteasome Interactions
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, přehledy, práce podpořená grantem
PubMed
38990186
PubMed Central
PMC11342303
DOI
10.1021/acs.bioconjchem.4c00253
Knihovny.cz E-zdroje
- MeSH
- chiméra pro cílenou proteolýzu MeSH
- imunoterapie * metody MeSH
- lidé MeSH
- nádory terapie farmakoterapie imunologie metabolismus MeSH
- proteasomový endopeptidasový komplex * metabolismus MeSH
- proteolýza * účinky léků MeSH
- ubikvitin * metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- chiméra pro cílenou proteolýzu MeSH
- proteasomový endopeptidasový komplex * MeSH
- ubikvitin * MeSH
Targeted protein degradation or TPD, is rapidly emerging as a treatment that utilizes small molecules to degrade proteins that cause diseases. TPD allows for the selective removal of disease-causing proteins, including proteasome-mediated degradation, lysosome-mediated degradation, and autophagy-mediated degradation. This approach has shown great promise in preclinical studies and is now being translated to treat numerous diseases, including neurodegenerative diseases, infectious diseases, and cancer. This review discusses the latest advances in TPD and its potential as a new chemical modality for immunotherapy, with a special focus on the innovative applications and cutting-edge research of PROTACs (Proteolysis TArgeting Chimeras) and their efficient translation from scientific discovery to technological achievements. Our review also addresses the significant obstacles and potential prospects in this domain, while also offering insights into the future of TPD for immunotherapeutic applications.
Department of Biotechnology Heritage Institute of Technology Kolkata 700107 India
Department of Biotechnology Indian Institute of Technology Madras Chennai 600036 India
Zobrazit více v PubMed
Conforti L. The ion channel network in T lymphocytes, a target for immunotherapy. Clinical Immunology 2012, 142 (2), 105–106. 10.1016/j.clim.2011.11.009. PubMed DOI
Syn N. L.; Teng M. W. L.; Mok T. S. K.; Soo R. A. De-novo and acquired resistance to immune checkpoint targeting. Lancet Oncology 2017, 18 (12), e73110.1016/S1470-2045(17)30607-1. PubMed DOI
Barbari C.; Fontaine T.; Parajuli P.; Lamichhane N.; Jakubski S.; Lamichhane P.; Deshmukh R. R. Immunotherapies and Combination Strategies for Immuno-Oncology. International Journal of Molecular Sciences 2020, 21, 5009.10.3390/ijms21145009. PubMed DOI PMC
Sadeghi Rad H.; Monkman J.; Warkiani M. E.; Ladwa R.; O’Byrne K.; Rezaei N.; Kulasinghe A. Understanding the tumor microenvironment for effective immunotherapy. Medicinal Research Reviews 2021, 41 (3), 1474–1498. 10.1002/med.21765. PubMed DOI PMC
Seidel J. A.; Otsuka A.; Kabashima K.. Anti-PD-1 and Anti-CTLA-4 Therapies in Cancer: Mechanisms of Action, Efficacy, and Limitations. Frontiers in Oncology 2018, 8,10.3389/fonc.2018.00086. PubMed DOI PMC
Huang P.-W.; Chang J. W.-C. Immune checkpoint inhibitors win the 2018 Nobel Prize. Biomedical Journal 2019, 42 (5), 299–306. 10.1016/j.bj.2019.09.002. PubMed DOI PMC
Liebl M. C.; Hofmann T. G. Identification of responders to immune checkpoint therapy: which biomarkers have the highest value?. Journal of the European Academy of Dermatology and Venereology 2019, 33 (S8), 52–56. 10.1111/jdv.15992. PubMed DOI
Dey A.; Ghosh S.; Jha S.; Hazra S.; Srivastava N.; Chakraborty U.; Roy A. G. Recent advancement in breast cancer treatment using CAR T cell therapy:- A review. Advances in Cancer Biology - Metastasis 2023, 7, 100090.10.1016/j.adcanc.2023.100090. DOI
Miliotou N. A.; Papadopoulou C. L. CAR T-cell Therapy: A New Era in Cancer Immunotherapy. Current Pharmaceutical Biotechnology 2018, 19 (1), 5–18. 10.2174/1389201019666180418095526. PubMed DOI
Mirzaei H. R.; Jamali A.; Jafarzadeh L.; Masoumi E.; Alishah K.; Fallah Mehrjardi K.; Emami S. A. H.; Noorbakhsh F.; Till B. G.; Hadjati J. Construction and functional characterization of a fully human anti-CD19 chimeric antigen receptor (huCAR)-expressing primary human T cells. Journal of Cellular Physiology 2019, 234 (6), 9207–9215. 10.1002/jcp.27599. PubMed DOI
Mohanty R.; Chowdhury C. R.; Arega S.; Sen P.; Ganguly P.; Ganguly N. CAR T cell therapy: A new era for cancer treatment (Review). Oncol. Rep. 2019, 42 (6), 2183–2195. 10.3892/or.2019.7335. PubMed DOI
Zahavi D.; Weiner L. Monoclonal Antibodies in Cancer Therapy. Antibodies 2020, 9, 34.10.3390/antib9030034. PubMed DOI PMC
Li S.; Schmitz K. R.; Jeffrey P. D.; Wiltzius J. J. W.; Kussie P.; Ferguson K. M. Structural basis for inhibition of the epidermal growth factor receptor by cetuximab. Cancer Cell 2005, 7 (4), 301–311. 10.1016/j.ccr.2005.03.003. PubMed DOI
Di Gaetano N.; Cittera E.; Nota R.; Vecchi A.; Grieco V.; Scanziani E.; Botto M.; Introna M.; Golay J. e. Complement Activation Determines the Therapeutic Activity of Rituximab In Vivo 1. J. Immunol. 2003, 171 (3), 1581–1587. 10.4049/jimmunol.171.3.1581. PubMed DOI
Butterfield L. H. Cancer vaccines. BMJ: British Medical Journal 2015, 350, h988.10.1136/bmj.h988. PubMed DOI PMC
Saxena M.; van der Burg S. H.; Melief C. J. M.; Bhardwaj N. Therapeutic cancer vaccines. Nature Reviews Cancer 2021, 21 (6), 360–378. 10.1038/s41568-021-00346-0. PubMed DOI
Verma M. Personalized Medicine and Cancer. Journal of Personalized Medicine 2012, 2, 1–14. 10.3390/jpm2010001. PubMed DOI PMC
Diamandis M.; White N. M. A.; Yousef G. M. Personalized Medicine: Marking a New Epoch in Cancer Patient Management. Molecular Cancer Research 2010, 8 (9), 1175–1187. 10.1158/1541-7786.MCR-10-0264. PubMed DOI
Robert C. A decade of immune-checkpoint inhibitors in cancer therapy. Nat. Commun. 2020, 11 (1), 3801.10.1038/s41467-020-17670-y. PubMed DOI PMC
Rosenberg S. A.; Yang J. C.; Restifo N. P. Cancer immunotherapy: moving beyond current vaccines. Nature Medicine 2004, 10 (9), 909–915. 10.1038/nm1100. PubMed DOI PMC
Blank C. U.; Haanen J. B.; Ribas A.; Schumacher T. N. The “cancer immunogram. Science 2016, 352 (6286), 658–660. 10.1126/science.aaf2834. PubMed DOI
Waldman A. D.; Fritz J. M.; Lenardo M. J. A guide to cancer immunotherapy: from T cell basic science to clinical practice. Nature Reviews Immunology 2020, 20 (11), 651–668. 10.1038/s41577-020-0306-5. PubMed DOI PMC
Rached L.; Laparra A.; Sakkal M.; Danlos F.-X.; Barlesi F.; Carbonnel F.; De Martin E.; Ducreux M.; Even C.; Le Pavec J.; et al. Toxicity of immunotherapy combinations with chemotherapy across tumor indications: Current knowledge and practical recommendations. Cancer Treatment Reviews 2024, 127, 102751.10.1016/j.ctrv.2024.102751. PubMed DOI
Wang L.; Xiao Y.; Luo Y.; Master R. P.; Mo J.; Kim M.-C.; Liu Y.; Maharjan C. K.; Patel U. M.; De U.; et al. PROTAC-mediated NR4A1 degradation as a novel strategy for cancer immunotherapy. Journal of Experimental Medicine 2024, 221 (3), e2023151910.1084/jem.20231519. PubMed DOI PMC
Hsia O.; Hinterndorfer M.; Cowan A. D.; Iso K.; Ishida T.; Sundaramoorthy R.; Nakasone M. A.; Imrichova H.; Schätz C.; Rukavina A.; et al. Targeted protein degradation via intramolecular bivalent glues. Nature 2024, 627 (8002), 204–211. 10.1038/s41586-024-07089-6. PubMed DOI PMC
Wang C.; Zhang Y.; Wu Y.; Xing D. Developments of CRBN-based PROTACs as potential therapeutic agents. Eur. J. Med. Chem. 2021, 225, 113749.10.1016/j.ejmech.2021.113749. PubMed DOI
Sakamoto K. M.; Kim K. B.; Kumagai A.; Mercurio F.; Crews C. M.; Deshaies R. J. Protacs: Chimeric molecules that target proteins to the Skp1-Cullin-F box complex for ubiquitination and degradation. Proc. Natl. Acad. Sci. U. S. A. 2001, 98 (15), 8554–8559. 10.1073/pnas.141230798. PubMed DOI PMC
Chirnomas D.; Hornberger K. R.; Crews C. M. Protein degraders enter the clinic — a new approach to cancer therapy. Nature Reviews Clinical Oncology 2023, 20 (4), 265–278. 10.1038/s41571-023-00736-3. PubMed DOI PMC
Zhong Y.; Chi F.; Wu H.; Liu Y.; Xie Z.; Huang W.; Shi W.; Qian H. Emerging targeted protein degradation tools for innovative drug discovery: From classical PROTACs to the novel and beyond. Eur. J. Med. Chem. 2022, 231, 114142.10.1016/j.ejmech.2022.114142. PubMed DOI
Békés M.; Langley D. R.; Crews C. M. PROTAC targeted protein degraders: the past is prologue. Nat. Rev. Drug Discovery 2022, 21 (3), 181–200. 10.1038/s41573-021-00371-6. PubMed DOI PMC
Liu Z.; Hu M.; Yang Y.; Du C.; Zhou H.; Liu C.; Chen Y.; Fan L.; Ma H.; Gong Y.; Xie Y. An overview of PROTACs: a promising drug discovery paradigm. Molecular Biomedicine 2022, 3 (1), 46.10.1186/s43556-022-00112-0. PubMed DOI PMC
Ahn G.; Banik S. M.; Miller C. L.; Riley N. M.; Cochran J. R.; Bertozzi C. R. LYTACs that engage the asialoglycoprotein receptor for targeted protein degradation. Nat. Chem. Biol. 2021, 17 (9), 937–946. 10.1038/s41589-021-00770-1. PubMed DOI PMC
Ghosh S.; Ramadas B.; Manna D. Targeted protein degradation using the lysosomal pathway. RSC Medicinal Chemistry 2022, 13 (12), 1476–1494. 10.1039/D2MD00273F. PubMed DOI PMC
Guenette R. G.; Yang S. W.; Min J.; Pei B.; Potts P. R. Target and tissue selectivity of PROTAC degraders. Chem. Soc. Rev. 2022, 51 (14), 5740–5756. 10.1039/D2CS00200K. PubMed DOI
Ciulli A.; Trainor N. A beginner’s guide to PROTACs and targeted protein degradation. Biochemist 2021, 43 (5), 74–79. 10.1042/bio_2021_148. DOI
Clift D.; So C.; McEwan W. A.; James L. C.; Schuh M. Acute and rapid degradation of endogenous proteins by Trim-Away. Nat. Protoc. 2018, 13 (10), 2149–2175. 10.1038/s41596-018-0028-3. PubMed DOI
Hirai K.; Yamashita H.; Tomoshige S.; Mishima Y.; Niwa T.; Ohgane K.; Ishii M.; Kanamitsu K.; Ikemi Y.; Nakagawa S.; et al. Conversion of a PROTAC Mutant Huntingtin Degrader into Small-Molecule Hydrophobic Tags Focusing on Drug-like Properties. ACS Med. Chem. Lett. 2022, 13 (3), 396–402. 10.1021/acsmedchemlett.1c00500. PubMed DOI PMC
Imaide S.; Riching K. M.; Makukhin N.; Vetma V.; Whitworth C.; Hughes S. J.; Trainor N.; Mahan S. D.; Murphy N.; Cowan A. D.; et al. Trivalent PROTACs enhance protein degradation via combined avidity and cooperativity. Nat. Chem. Biol. 2021, 17 (11), 1157–1167. 10.1038/s41589-021-00878-4. PubMed DOI PMC
Neklesa T.; Snyder L. B.; Willard R. R.; Vitale N.; Raina K.; Pizzano J.; Gordon D.; Bookbinder M.; Macaluso J.; Dong H.; et al. Abstract 5236: ARV-110: An androgen receptor PROTAC degrader for prostate cancer. Cancer Res. 2018, 78 (13_Supplement), 5236–5236. 10.1158/1538-7445.AM2018-5236. DOI
Nguyen T.-T.-L.; Kim J. W.; Choi H.-I.; Maeng H.-J.; Koo T.-S. Development of an LC-MS/MS Method for ARV-110, a PROTAC Molecule, and Applications to Pharmacokinetic Studies. Molecules 2022, 27, 1977.10.3390/molecules27061977. PubMed DOI PMC
Ohoka N.; Okuhira K.; Ito M.; Nagai K.; Shibata N.; Hattori T.; Ujikawa O.; Shimokawa K.; Sano O.; Koyama R.; et al. In Vivo Knockdown of Pathogenic Proteins via Specific and Nongenetic Inhibitor of Apoptosis Protein (IAP)-dependent Protein Erasers (SNIPERs)*. J. Biol. Chem. 2017, 292 (11), 4556–4570. 10.1074/jbc.M116.768853. PubMed DOI PMC
Steinebach C.; Lindner S.; Udeshi N. D.; Mani D. C.; Kehm H.; Köpff S.; Carr S. A.; Gütschow M.; Krönke J. Homo-PROTACs for the Chemical Knockdown of Cereblon. ACS Chem. Biol. 2018, 13 (9), 2771–2782. 10.1021/acschembio.8b00693. PubMed DOI
Zhang C.; Zeng Z.; Cui D.; He S.; Jiang Y.; Li J.; Huang J.; Pu K. Semiconducting polymer nano-PROTACs for activatable photo-immunometabolic cancer therapy. Nat. Commun. 2021, 12 (1), 2934.10.1038/s41467-021-23194-w. PubMed DOI PMC
Haridas V.; Dutta S.; Munjal A.; Singh S. Inhibitors to degraders: Changing paradigm in drug discovery. iScience 2024, 27 (5), 109574.10.1016/j.isci.2024.109574. PubMed DOI PMC
Raina K.; Lu J.; Qian Y.; Altieri M.; Gordon D.; Rossi A. M. K.; Wang J.; Chen X.; Dong H.; Siu K.; et al. PROTAC-induced BET protein degradation as a therapy for castration-resistant prostate cancer. Proc. Natl. Acad. Sci. U. S. A. 2016, 113 (26), 7124–7129. 10.1073/pnas.1521738113. PubMed DOI PMC
Su W.; Tan M.; Wang Z.; Zhang J.; Huang W.; Song H.; Wang X.; Ran H.; Gao Y.; Nie G.; Wang H. Targeted Degradation of PD-L1 and Activation of the STING Pathway by Carbon-Dot-Based PROTACs for Cancer Immunotherapy. Angew. Chem., Int. Ed. 2023, 62 (11), e20221812810.1002/anie.202218128. PubMed DOI
Pike A.; Williamson B.; Harlfinger S.; Martin S.; McGinnity D. F. Optimising proteolysis-targeting chimeras (PROTACs) for oral drug delivery: a drug metabolism and pharmacokinetics perspective. Drug Discovery Today 2020, 25 (10), 1793–1800. 10.1016/j.drudis.2020.07.013. PubMed DOI
Buckley D. L.; Raina K.; Darricarrere N.; Hines J.; Gustafson J. L.; Smith I. E.; Miah A. H.; Harling J. D.; Crews C. M. HaloPROTACS: Use of Small Molecule PROTACs to Induce Degradation of HaloTag Fusion Proteins. ACS Chem. Biol. 2015, 10 (8), 1831–1837. 10.1021/acschembio.5b00442. PubMed DOI PMC
Los G. V.; Encell L. P.; McDougall M. G.; Hartzell D. D.; Karassina N.; Zimprich C.; Wood M. G.; Learish R.; Ohana R. F.; Urh M.; et al. HaloTag: A Novel Protein Labeling Technology for Cell Imaging and Protein Analysis. ACS Chem. Biol. 2008, 3 (6), 373–382. 10.1021/cb800025k. PubMed DOI
Duran-Frigola M.; Cigler M.; Winter G. E. Advancing Targeted Protein Degradation via Multiomics Profiling and Artificial Intelligence. J. Am. Chem. Soc. 2023, 145 (5), 2711–2732. 10.1021/jacs.2c11098. PubMed DOI PMC
Ward J. A.; Perez-Lopez C.; Mayor-Ruiz C. Biophysical and Computational Approaches to Study Ternary Complexes: A ‘Cooperative Relationship’ to Rationalize Targeted Protein Degradation. ChemBioChem. 2023, 24 (10), e20230016310.1002/cbic.202300163. PubMed DOI
Mullard A. Targeted protein degraders crowd into the clinic. Nature reviews. Drug discovery 2021, 20 (4), 247–250. 10.1038/d41573-021-00052-4. PubMed DOI
Wang X.; Qin Z.-L.; Li N.; Jia M.-Q.; Liu Q.-G.; Bai Y.-R.; Song J.; Yuan S.; Zhang S.-Y. Annual review of PROTAC degraders as anticancer agents in 2022. Eur. J. Med. Chem. 2024, 267, 116166.10.1016/j.ejmech.2024.116166. PubMed DOI
Zhao L.; Zhao J.; Zhong K.; Tong A.; Jia D. Targeted protein degradation: mechanisms, strategies and application. Signal Transduction and Targeted Therapy 2022, 7 (1), 113.10.1038/s41392-022-00966-4. PubMed DOI PMC
Hyun S.; Shin D. Chemical-Mediated Targeted Protein Degradation in Neurodegenerative Diseases. Life 2021, 11, 607.10.3390/life11070607. PubMed DOI PMC
Lecker S. H.; Goldberg A. L.; Mitch W. E. Protein Degradation by the Ubiquitin-Proteasome Pathway in Normal and Disease States. Journal of the American Society of Nephrology 2006, 17 (7), 1807–1819. 10.1681/ASN.2006010083. PubMed DOI
Grumati P.; Dikic I. Ubiquitin signaling and autophagy. J. Biol. Chem. 2018, 293 (15), 5404–5413. 10.1074/jbc.TM117.000117. PubMed DOI PMC
Ciechanover A. Intracellular protein degradation: from a vague idea thru the lysosome and the ubiquitin-proteasome system and onto human diseases and drug targeting. Cell Death & Differentiation 2005, 12 (9), 1178–1190. 10.1038/sj.cdd.4401692. PubMed DOI
Tanaka K.; Chiba T. The proteasome: a protein-destroying machine. Genes Cells 1998, 3 (8), 499–510. 10.1046/j.1365-2443.1998.00207.x. PubMed DOI
Vogel G. Gold Medal From Cellular Trash. Science 2004, 306 (5695), 400–401. 10.1126/science.306.5695.400b. PubMed DOI
Shrestha R.; Kaplan J.; Ward D. M.. Conventional and Secretory Lysosomes. In Encyclopedia of Cell Biology; Bradshaw R. A., Stahl P. D., Eds.; Academic Press, 2016; pp 225–234.
Pei J.; Wang G.; Feng L.; Zhang J.; Jiang T.; Sun Q.; Ouyang L. Targeting Lysosomal Degradation Pathways: New Strategies and Techniques for Drug Discovery. J. Med. Chem. 2021, 64 (7), 3493–3507. 10.1021/acs.jmedchem.0c01689. PubMed DOI
Kargbo R. B. Transforming Therapeutic Approaches with PROTAC Technology: New Targets and Potentials. ACS Med. Chem. Lett. 2024, 15 (5), 573–575. 10.1021/acsmedchemlett.4c00165. PubMed DOI PMC
Tsai J. M.; Nowak R. P.; Ebert B. L.; Fischer E. S. Targeted protein degradation: from mechanisms to clinic. Nat. Rev. Mol. Cell Biol. 2024, 10.1038/s41580-024-00729-9. PubMed DOI
Kong N. R.; Jones L. H. Clinical Translation of Targeted Protein Degraders. Clinical Pharmacology & Therapeutics 2023, 114 (3), 558–568. 10.1002/cpt.2985. PubMed DOI
Danilov A.; Tees M. T.; Patel K.; Wierda W. G.; Patel M.; Flinn I. W.; Latif T.; Ai W.; Thompson M. C.; Wang M. L.; et al. A First-in-Human Phase 1 Trial of NX-2127, a First-in-Class Bruton’s Tyrosine Kinase (BTK) Dual-Targeted Protein Degrader with Immunomodulatory Activity, in Patients with Relapsed/Refractory B Cell Malignancies. Blood 2023, 142 (Supplement 1), 4463–4463. 10.1182/blood-2023-179872. DOI
Starodub A.; Gollerkeri A.; De savi C.; Dey J.; Agarwal S.; Donohue S.; Perea R.; Klaus C.; Gollob J. Phase 1 study of KT-333, a targeted protein degrader, in patients with relapsed or refractory lymphomas, large granular lymphocytic leukemia, and solid tumors. Journal of Clinical Oncology 2022, 40 (16_suppl), TPS3171–TPS3171. 10.1200/JCO.2022.40.16_suppl.TPS3171. DOI
Ackerman L.; Acloque G.; Bacchelli S.; Schwartz H.; Feinstein B. J.; La Stella P.; Alavi A.; Gollerkeri A.; Davis J.; Campbell V.; et al. IRAK4 degrader in hidradenitis suppurativa and atopic dermatitis: a phase 1 trial. Nature Medicine 2023, 29 (12), 3127–3136. 10.1038/s41591-023-02635-7. PubMed DOI PMC
Li S.; Chen T.; Liu J.; Zhang H.; Li J.; Wang Z.; Shang G. PROTACs: Novel tools for improving immunotherapy in cancer. Cancer Letters 2023, 560, 216128.10.1016/j.canlet.2023.216128. PubMed DOI
Liu Z.; Zhang Y.; Xiang Y.; Kang X. Small-Molecule PROTACs for Cancer Immunotherapy. Molecules 2022, 27, 5439.10.3390/molecules27175439. PubMed DOI PMC
Burke M. R.; Smith A. R.; Zheng G.. Overcoming Cancer Drug Resistance Utilizing PROTAC Technology. Frontiers in Cell and Developmental Biology 2022, 10,10.3389/fcell.2022.872729. PubMed DOI PMC
Wang Y.; Zhang Y.; Su S.; Tamukong P.; Murali R.; Kim H. L. Stimulation of antitumor immunity by FoxP3-targeting PROTAC. Biomedicine & Pharmacotherapy 2023, 163, 114871.10.1016/j.biopha.2023.114871. PubMed DOI
Jensen S. M.; Potts G. K.; Ready D. B.; Patterson M. J.. Specific MHC-I Peptides Are Induced Using PROTACs. Frontiers in Immunology 2018, 9,10.3389/fimmu.2018.02697. PubMed DOI PMC
Moser S. C.; Voerman J. S. A.; Buckley D. L.; Winter G. E.; Schliehe C.. Acute Pharmacologic Degradation of a Stable Antigen Enhances Its Direct Presentation on MHC Class I Molecules. Frontiers in Immunology 2018, 8,10.3389/fimmu.2017.01920. PubMed DOI PMC
Massafra V.; Tundo S.; Dietzig A.; Ducret A.; Jost C.; Klein C.; Kontermann R. E.; Knoetgen H.; Steegmaier M.; Romagnani A.; Nagel Y. A. Proteolysis-Targeting Chimeras Enhance T Cell Bispecific Antibody-Driven T Cell Activation and Effector Function through Increased MHC Class I Antigen Presentation in Cancer Cells. J. Immunol. 2021, 207 (2), 493–504. 10.4049/jimmunol.2000252. PubMed DOI
Lee S. M.; Kang C. H.; Choi S. U.; Kim Y.; Hwang J. Y.; Jeong H. G.; Park C. H. A Chemical Switch System to Modulate Chimeric Antigen Receptor T Cell Activity through Proteolysis-Targeting Chimaera Technology. ACS Synth. Biol. 2020, 9 (5), 987–992. 10.1021/acssynbio.9b00476. PubMed DOI
Wu Y.; Pu C.; Fu Y.; Dong G.; Huang M.; Sheng C. NAMPT-targeting PROTAC promotes antitumor immunity via suppressing myeloid-derived suppressor cell expansion. Acta Pharmaceutica Sinica B 2022, 12 (6), 2859–2868. 10.1016/j.apsb.2021.12.017. PubMed DOI PMC
Wang C.; Zhang Y.; Deng J.; Liang B.; Xing D. Developments of PROTACs technology in immune-related diseases. Eur. J. Med. Chem. 2023, 249, 115127.10.1016/j.ejmech.2023.115127. PubMed DOI
Zou Z.-f.; Yang L.; Nie H.-j.; Gao J.; Lei S.-m.; Lai Y.; Zhang F.; Wagner E.; Yu H.-j.; Chen X.-h.; Xu Z.-a. Tumor-targeted PROTAC prodrug nanoplatform enables precise protein degradation and combination cancer therapy. Acta Pharmacologica Sinica 2024, 10.1038/s41401-024-01266-z. PubMed DOI PMC
Li J. W.; Zheng G.; Kaye F. J.; Wu L. PROTAC therapy as a new targeted therapy for lung cancer. Molecular Therapy 2023, 31 (3), 647–656. 10.1016/j.ymthe.2022.11.011. PubMed DOI PMC
Zhang C.; Liu Y.; Li G.; Yang Z.; Han C.; Sun X.; Sheng C.; Ding K.; Rao Y. Targeting the undruggables—the power of protein degraders. Science Bulletin 2024, 69, 1776.10.1016/j.scib.2024.03.056. PubMed DOI
Lu B.; Ye J. Commentary: PROTACs make undruggable targets druggable: Challenge and opportunity. Acta Pharmaceutica Sinica B 2021, 11 (10), 3335–3336. 10.1016/j.apsb.2021.07.017. PubMed DOI PMC
Taefehshokr S.; Parhizkar A.; Hayati S.; Mousapour M.; Mahmoudpour A.; Eleid L.; Rahmanpour D.; Fattahi S.; Shabani H.; Taefehshokr N. Cancer immunotherapy: Challenges and limitations. Pathology - Research and Practice 2022, 229, 153723.10.1016/j.prp.2021.153723. PubMed DOI
Anand U.; Dey A.; Chandel A. K. S.; Sanyal R.; Mishra A.; Pandey D. K.; De Falco V.; Upadhyay A.; Kandimalla R.; Chaudhary A.; et al. Cancer chemotherapy and beyond: Current status, drug candidates, associated risks and progress in targeted therapeutics. Genes & Diseases 2023, 10 (4), 1367–1401. 10.1016/j.gendis.2022.02.007. PubMed DOI PMC
Kaur S. D.; Bedi N.; Kumar D.; Kapoor D. N. PROTACs: Promising approach for anticancer therapy. Cancer Letters 2023, 556, 216065.10.1016/j.canlet.2023.216065. PubMed DOI
Simon S.; Labarriere N. PD-1 expression on tumor-specific T cells: Friend or foe for immunotherapy?. OncoImmunology 2018, 7 (1), e136482810.1080/2162402X.2017.1364828. PubMed DOI PMC
Han Y.; Liu D.; Li L. PD-1/PD-L1 pathway: current researches in cancer. Am. J. Cancer Res. 2020, 10 (3), 727–742. PubMed PMC
Liu J.; Chen Z.; Li Y.; Zhao W.; Wu J.; Zhang Z.. PD-1/PD-L1 Checkpoint Inhibitors in Tumor Immunotherapy. Frontiers in Pharmacology 2021, 1210.3389/fphar.2021.731798. PubMed DOI PMC
Wang Y.; Zhou Y.; Cao S.; Sun Y.; Dong Z.; Li C.; Wang H.; Yao Y.; Yu H.; Song X.; et al. In vitro and in vivo degradation of programmed cell death ligand 1 (PD-L1) by a proteolysis targeting chimera (PROTAC). Bioorganic Chemistry 2021, 111, 104833.10.1016/j.bioorg.2021.104833. PubMed DOI
Liu Y.; Zheng M.; Ma Z.; Zhou Y.; Huo J.; Zhang W.; Liu Y.; Guo Y.; Zhou X.; Li H.; Chen L. Design, synthesis, and evaluation of PD-L1 degraders to enhance T cell killing activity against melanoma. Chin. Chem. Lett. 2023, 34 (5), 107762.10.1016/j.cclet.2022.107762. DOI
Cheng B.; Ren Y.; Cao H.; Chen J. Discovery of novel resorcinol diphenyl ether-based PROTAC-like molecules as dual inhibitors and degraders of PD-L1. Eur. J. Med. Chem. 2020, 199, 112377.10.1016/j.ejmech.2020.112377. PubMed DOI
Dai M.-Y.; Shi Y.-Y.; Wang A.-J.; Liu X.-L.; Liu M.; Cai H.-B. High-potency PD-1/PD-L1 degradation induced by Peptide-PROTAC in human cancer cells. Cell Death & Disease 2022, 13 (11), 924.10.1038/s41419-022-05375-7. PubMed DOI PMC
Shi Y.-Y.; Wang A.-J.; Liu X.-L.; Dai M.-Y.; Cai H.-B.. Stapled peptide PROTAC induced significantly greater anti-PD-L1 effects than inhibitor in human cervical cancer cells. Frontiers in Immunology 2023, 14,10.3389/fimmu.2023.1193222. PubMed DOI PMC
Cotton A. D.; Nguyen D. P.; Gramespacher J. A.; Seiple I. B.; Wells J. A. Development of Antibody-Based PROTACs for the Degradation of the Cell-Surface Immune Checkpoint Protein PD-L1. J. Am. Chem. Soc. 2021, 143 (2), 593–598. 10.1021/jacs.0c10008. PubMed DOI PMC
Zhai L.; Bell A.; Ladomersky E.; Lauing K. L.; Bollu L.; Sosman J. A.; Zhang B.; Wu J. D.; Miller S. D.; Meeks J. J.; et al.Immunosuppressive IDO in Cancer: Mechanisms of Action, Animal Models, and Targeting Strategies. Frontiers in Immunology 2020, 1110.3389/fimmu.2020.01185. PubMed DOI PMC
Tang K.; Wu Y.-H.; Song Y.; Yu B. Indoleamine 2,3-dioxygenase 1 (IDO1) inhibitors in clinical trials for cancer immunotherapy. Journal of Hematology & Oncology 2021, 14 (1), 68.10.1186/s13045-021-01080-8. PubMed DOI PMC
Hu M.; Zhou W.; Wang Y.; Yao D.; Ye T.; Yao Y.; Chen B.; Liu G.; Yang X.; Wang W.; Xie Y. Discovery of the first potent proteolysis targeting chimera (PROTAC) degrader of indoleamine 2,3-dioxygenase 1. Acta Pharmaceutica Sinica B 2020, 10 (10), 1943–1953. 10.1016/j.apsb.2020.02.010. PubMed DOI PMC
Bollu L. R.; Bommi P. V.; Monsen P. J.; Zhai L.; Lauing K. L.; Bell A.; Kim M.; Ladomersky E.; Yang X.; Platanias L. C.; et al. Identification and Characterization of a Novel Indoleamine 2,3-Dioxygenase 1 Protein Degrader for Glioblastoma. J. Med. Chem. 2022, 65 (23), 15642–15662. 10.1021/acs.jmedchem.2c00771. PubMed DOI PMC
Pal Singh S.; Dammeijer F.; Hendriks R. W. Role of Bruton’s tyrosine kinase in B cells and malignancies. Molecular Cancer 2018, 17 (1), 57.10.1186/s12943-018-0779-z. PubMed DOI PMC
Hendriks R. W.; Yuvaraj S.; Kil L. P. Targeting Bruton’s tyrosine kinase in B cell malignancies. Nature Reviews Cancer 2014, 14 (4), 219–232. 10.1038/nrc3702. PubMed DOI
Honigberg L. A.; Smith A. M.; Sirisawad M.; Verner E.; Loury D.; Chang B.; Li S.; Pan Z.; Thamm D. H.; Miller R. A.; Buggy J. J. The Bruton tyrosine kinase inhibitor PCI-32765 blocks B-cell activation and is efficacious in models of autoimmune disease and B-cell malignancy. Proc. Natl. Acad. Sci. U. S. A. 2010, 107 (29), 13075–13080. 10.1073/pnas.1004594107. PubMed DOI PMC
Arthur R.; Valle-Argos B.; Steele A. J.; Packham G. Development of PROTACs to address clinical limitations associated with BTK-targeted kinase inhibitors. Exploration of Targeted Anti-tumor Therapy 2020, 1 (3), 131–152. 10.37349/etat.2020.00009. PubMed DOI PMC
Buhimschi A. D.; Armstrong H. A.; Toure M.; Jaime-Figueroa S.; Chen T. L.; Lehman A. M.; Woyach J. A.; Johnson A. J.; Byrd J. C.; Crews C. M. Targeting the C481S Ibrutinib-Resistance Mutation in Bruton’s Tyrosine Kinase Using PROTAC-Mediated Degradation. Biochemistry 2018, 57 (26), 3564–3575. 10.1021/acs.biochem.8b00391. PubMed DOI
Jaime-Figueroa S.; Buhimschi A. D.; Toure M.; Hines J.; Crews C. M. Design, synthesis and biological evaluation of Proteolysis Targeting Chimeras (PROTACs) as a BTK degraders with improved pharmacokinetic properties. Bioorg. Med. Chem. Lett. 2020, 30 (3), 126877.10.1016/j.bmcl.2019.126877. PubMed DOI PMC
Sun Y.; Zhao X.; Ding N.; Gao H.; Wu Y.; Yang Y.; Zhao M.; Hwang J.; Song Y.; Liu W.; Rao Y. PROTAC-induced BTK degradation as a novel therapy for mutated BTK C481S induced ibrutinib-resistant B-cell malignancies. Cell Research 2018, 28 (7), 779–781. 10.1038/s41422-018-0055-1. PubMed DOI PMC
Zhang J.; Che J.; Luo X.; Wu M.; Kan W.; Jin Y.; Wang H.; Pang A.; Li C.; Huang W.; et al. Structural Feature Analyzation Strategies toward Discovery of Orally Bioavailable PROTACs of Bruton’s Tyrosine Kinase for the Treatment of Lymphoma. J. Med. Chem. 2022, 65 (13), 9096–9125. 10.1021/acs.jmedchem.2c00324. PubMed DOI
Kanumuri R.; Kumar Pasupuleti S.; Burns S. S.; Ramdas B.; Kapur R. Targeting SHP2 phosphatase in hematological malignancies. Expert Opinion on Therapeutic Targets 2022, 26 (4), 319–332. 10.1080/14728222.2022.2066518. PubMed DOI PMC
Sodir N. M.; Pathria G.; Adamkewicz J. I.; Kelley E. H.; Sudhamsu J.; Merchant M.; Chiarle R.; Maddalo D. SHP2: A Pleiotropic Target at the Interface of Cancer and Its Microenvironment. Cancer Discovery 2023, 13 (11), 2339–2355. 10.1158/2159-8290.CD-23-0383. PubMed DOI PMC
Wang M.; Lu J.; Wang M.; Yang C.-Y.; Wang S. Discovery of SHP2-D26 as a First, Potent, and Effective PROTAC Degrader of SHP2 Protein. J. Med. Chem. 2020, 63 (14), 7510–7528. 10.1021/acs.jmedchem.0c00471. PubMed DOI
Miao J.; Bai Y.; Miao Y.; Qu Z.; Dong J.; Zhang R.-Y.; Aggarwal D.; Jassim B. A.; Nguyen Q.; Zhang Z.-Y. Discovery of a SHP2 Degrader with In Vivo Anti-Tumor Activity. Molecules 2023, 28, 6947.10.3390/molecules28196947. PubMed DOI PMC
Yang X.; Wang Z.; Pei Y.; Song N.; Xu L.; Feng B.; Wang H.; Luo X.; Hu X.; Qiu X.; et al. Discovery of thalidomide-based PROTAC small molecules as the highly efficient SHP2 degraders. Eur. J. Med. Chem. 2021, 218, 113341.10.1016/j.ejmech.2021.113341. PubMed DOI
Zheng M.; Liu Y.; Wu C.; Yang K.; Wang Q.; Zhou Y.; Chen L.; Li H. Novel PROTACs for degradation of SHP2 protein. Bioorganic Chemistry 2021, 110, 104788.10.1016/j.bioorg.2021.104788. PubMed DOI
Vemulapalli V.; Donovan K. A.; Seegar T. C. M.; Rogers J. M.; Bae M.; Lumpkin R. J.; Cao R.; Henke M. T.; Ray S. S.; Fischer E. S.; et al. Targeted Degradation of the Oncogenic Phosphatase SHP2. Biochemistry 2021, 60 (34), 2593–2609. 10.1021/acs.biochem.1c00377. PubMed DOI PMC
Wang Z.-Q.; Zhang Z.-C.; Wu Y.-Y.; Pi Y.-N.; Lou S.-H.; Liu T.-B.; Lou G.; Yang C. Bromodomain and extraterminal (BET) proteins: biological functions, diseases, and targeted therapy. Signal Transduction and Targeted Therapy 2023, 8 (1), 420.10.1038/s41392-023-01647-6. PubMed DOI PMC
Wang N.; Wu R.; Tang D.; Kang R. The BET family in immunity and disease. Signal Transduction and Targeted Therapy 2021, 6 (1), 23.10.1038/s41392-020-00384-4. PubMed DOI PMC
Zengerle M.; Chan K.-H.; Ciulli A. Selective Small Molecule Induced Degradation of the BET Bromodomain Protein BRD4. ACS Chem. Biol. 2015, 10 (8), 1770–1777. 10.1021/acschembio.5b00216. PubMed DOI PMC
Qin C.; Hu Y.; Zhou B.; Fernandez-Salas E.; Yang C.-Y.; Liu L.; McEachern D.; Przybranowski S.; Wang M.; Stuckey J.; et al. Discovery of QCA570 as an Exceptionally Potent and Efficacious Proteolysis Targeting Chimera (PROTAC) Degrader of the Bromodomain and Extra-Terminal (BET) Proteins Capable of Inducing Complete and Durable Tumor Regression. J. Med. Chem. 2018, 61 (15), 6685–6704. 10.1021/acs.jmedchem.8b00506. PubMed DOI PMC
Fiskus W.; Mill C. P.; Perera D.; Birdwell C.; Deng Q.; Yang H.; Lara B. H.; Jain N.; Burger J.; Ferrajoli A.; et al. BET proteolysis targeted chimera-based therapy of novel models of Richter Transformation-diffuse large B-cell lymphoma. Leukemia 2021, 35 (9), 2621–2634. 10.1038/s41375-021-01181-w. PubMed DOI PMC
Lu J.; Qian Y.; Altieri M.; Dong H.; Wang J.; Raina K.; Hines J.; Winkler J. D.; Crew A. P.; Coleman K.; Crews C. M. Hijacking the E3 Ubiquitin Ligase Cereblon to Efficiently Target BRD4. Chemistry & Biology 2015, 22 (6), 755–763. 10.1016/j.chembiol.2015.05.009. PubMed DOI PMC
Zhang H.; Li G.; Zhang Y.; Shi J.; Yan B.; Tang H.; Chen S.; Zhang J.; Wen P.; Wang Z.; et al.Targeting BET Proteins With a PROTAC Molecule Elicits Potent Anticancer Activity in HCC Cells. Frontiers in Oncology 2020, 9,10.3389/fonc.2019.01471. PubMed DOI PMC
Ding M.; Shao Y.; Sun D.; Meng S.; Zang Y.; Zhou Y.; Li J.; Lu W.; Zhu S. Design, synthesis, and biological evaluation of BRD4 degraders. Bioorg. Med. Chem. 2023, 78, 117134.10.1016/j.bmc.2022.117134. PubMed DOI
Liang T.; Wang F.; Elhassan R. M.; Cheng Y.; Tang X.; Chen W.; Fang H.; Hou X. Targeting histone deacetylases for cancer therapy: Trends and challenges. Acta Pharmaceutica Sinica B 2023, 13 (6), 2425–2463. 10.1016/j.apsb.2023.02.007. PubMed DOI PMC
Smalley J. P.; Baker I. M.; Pytel W. A.; Lin L.-Y.; Bowman K. J.; Schwabe J. W. R.; Cowley S. M.; Hodgkinson J. T. Optimization of Class I Histone Deacetylase PROTACs Reveals that HDAC1/2 Degradation is Critical to Induce Apoptosis and Cell Arrest in Cancer Cells. J. Med. Chem. 2022, 65 (7), 5642–5659. 10.1021/acs.jmedchem.1c02179. PubMed DOI PMC
Lu Y.; Sun D.; Xiao D.; Shao Y.; Su M.; Zhou Y.; Li J.; Zhu S.; Lu W. Design, Synthesis, and Biological Evaluation of HDAC Degraders with CRBN E3 Ligase Ligands. Molecules 2021, 26, 7241.10.3390/molecules26237241. PubMed DOI PMC
Patel U.; Smalley J. P.; Hodgkinson J. T. PROTAC chemical probes for histone deacetylase enzymes. RSC Chemical Biology 2023, 4 (9), 623–634. 10.1039/D3CB00105A. PubMed DOI PMC
Cheng B.; Pan W.; Xiao Y.; Ding Z.; Zhou Y.; Fei X.; Liu J.; Su Z.; Peng X.; Chen J. HDAC-targeting epigenetic modulators for cancer immunotherapy. Eur. J. Med. Chem. 2024, 265, 116129.10.1016/j.ejmech.2024.116129. PubMed DOI
Smalley J. P.; Cowley S. M.; Hodgkinson J. T. MDM2 Antagonist Idasanutlin Reduces HDAC1/2 Abundance and Corepressor Partners but Not HDAC3. ACS Med. Chem. Lett. 2024, 15 (1), 93–98. 10.1021/acsmedchemlett.3c00449. PubMed DOI PMC
Cao F.; de Weerd S.; Chen D.; Zwinderman M. R. H.; van der Wouden P. E.; Dekker F. J. Induced protein degradation of histone deacetylases 3 (HDAC3) by proteolysis targeting chimera (PROTAC). Eur. J. Med. Chem. 2020, 208, 112800.10.1016/j.ejmech.2020.112800. PubMed DOI
Xiao Y.; Wang J.; Zhao L. Y.; Chen X.; Zheng G.; Zhang X.; Liao D. Discovery of histone deacetylase 3 (HDAC3)-specific PROTACs. Chem. Commun. 2020, 56 (68), 9866–9869. 10.1039/D0CC03243C. PubMed DOI PMC
Qian S.; Wei Z.; Yang W.; Huang J.; Yang Y.; Wang J.. The role of BCL-2 family proteins in regulating apoptosis and cancer therapy. Frontiers in Oncology 2022, 12,10.3389/fonc.2022.985363. PubMed DOI PMC
Wang Z.; He N.; Guo Z.; Niu C.; Song T.; Guo Y.; Cao K.; Wang A.; Zhu J.; Zhang X.; Zhang Z. Proteolysis Targeting Chimeras for the Selective Degradation of Mcl-1/Bcl-2 Derived from Nonselective Target Binding Ligands. J. Med. Chem. 2019, 62 (17), 8152–8163. 10.1021/acs.jmedchem.9b00919. PubMed DOI
Khan S.; Zhang X.; Lv D.; Zhang Q.; He Y.; Zhang P.; Liu X.; Thummuri D.; Yuan Y.; Wiegand J. S.; et al. A selective BCL-XL PROTAC degrader achieves safe and potent antitumor activity. Nature Medicine 2019, 25 (12), 1938–1947. 10.1038/s41591-019-0668-z. PubMed DOI PMC
Lv D.; Pal P.; Liu X.; Jia Y.; Thummuri D.; Zhang P.; Hu W.; Pei J.; Zhang Q.; Zhou S.; et al. Development of a BCL-xL and BCL-2 dual degrader with improved anti-leukemic activity. Nat. Commun. 2021, 12 (1), 6896.10.1038/s41467-021-27210-x. PubMed DOI PMC
Nayak D.; Lv D.; Yuan Y.; Zhang P.; Hu W.; Nayak A.; Ruben E. A.; Lv Z.; Sung P.; Hromas R.; et al. Development and crystal structures of a potent second-generation dual degrader of BCL-2 and BCL-xL. Nat. Commun. 2024, 15 (1), 2743.10.1038/s41467-024-46922-4. PubMed DOI PMC
Pouwels S.; Sakran N.; Graham Y.; Leal A.; Pintar T.; Yang W.; Kassir R.; Singhal R.; Mahawar K.; Ramnarain D. Non-alcoholic fatty liver disease (NAFLD): a review of pathophysiology, clinical management and effects of weight loss. BMC Endocrine Disorders 2022, 22 (1), 63.10.1186/s12902-022-00980-1. PubMed DOI PMC
Yang Y.; Jn-Simon N.; Hu W.; Zhang P.; Zheng G.; Pi L.; He Y.; Zhou D. Abstract B009: A liver-tropic BCL-xL PROTAC effectively clears senescent hepatocytes and prevents NASH-driven HCC in mice. Cancer Res. 2023, 83 (2_Supplement_1), B009–B009. 10.1158/1538-7445.AGCA22-B009. DOI
Lujambio A.; Sarobe P. Metformin keeps CD8+ T cells active and moving in NASH-HCC immunotherapy. Journal of Hepatology 2022, 77 (3), 593–595. 10.1016/j.jhep.2022.05.038. PubMed DOI
Pinter M.; Pinato D. J.; Ramadori P.; Heikenwalder M. NASH and Hepatocellular Carcinoma: Immunology and Immunotherapy. Clin. Cancer Res. 2023, 29 (3), 513–520. 10.1158/1078-0432.CCR-21-1258. PubMed DOI PMC
BasuRay S.; Wang Y.; Smagris E.; Cohen J. C.; Hobbs H. H. Accumulation of PNPLA3 on lipid droplets is the basis of associated hepatic steatosis. Proc. Natl. Acad. Sci. U. S. A. 2019, 116 (19), 9521–9526. 10.1073/pnas.1901974116. PubMed DOI PMC
Qi M.; Zhong H.; Cheng Z.; Chen S.; Xiao H.; Shang J.; Chen L.; Sun J. Discovery of NAFLD-Improving Agents by Promoting the Degradation of Keap1. J. Med. Chem. 2023, 66 (13), 9184–9200. 10.1021/acs.jmedchem.3c00822. PubMed DOI
Wang F.; Zhan Y.; Li M.; Wang L.; Zheng A.; Liu C.; Wang H.; Wang T. Cell-Permeable PROTAC Degraders against KEAP1 Efficiently Suppress Hepatic Stellate Cell Activation through the Antioxidant and Anti-Inflammatory Pathway. ACS Pharmacology & Translational Science 2023, 6 (1), 76–87. 10.1021/acsptsci.2c00165. PubMed DOI PMC
Park S. Y.; Gurung R.; Hwang J. H.; Kang J.-H.; Jung H. J.; Zeb A.; Hwang J.-I.; Park S. J.; Maeng H.-J.; Shin D.; Oh S. H. Development of KEAP1-targeting PROTAC and its antioxidant properties: In vitro and in vivo. Redox Biology 2023, 64, 102783.10.1016/j.redox.2023.102783. PubMed DOI PMC
Smyth E. M.; Grosser T.; Wang M.; Yu Y.; FitzGerald G. A. Prostanoids in health and disease. J. Lipid Res. 2009, 50, S423–S428. 10.1194/jlr.R800094-JLR200. PubMed DOI PMC
Vane J. R.; Bakhle Y. S.; Botting R. M. CYCLOOXYGENASES 1 AND 2. Annual Review of Pharmacology and Toxicology 1998, 38 (1), 97–120. 10.1146/annurev.pharmtox.38.1.97. PubMed DOI
Pu D.; Yin L.; Huang L.; Qin C.; Zhou Y.; Wu Q.; Li Y.; Zhou Q.; Li L.. Cyclooxygenase-2 Inhibitor: A Potential Combination Strategy With Immunotherapy in Cancer. Frontiers in Oncology 2021, 11,10.3389/fonc.2021.637504. PubMed DOI PMC
Pelly V. S.; Moeini A.; Roelofsen L. M.; Bonavita E.; Bell C. R.; Hutton C.; Blanco-Gomez A.; Banyard A.; Bromley C. P.; Flanagan E.; et al. Anti-Inflammatory Drugs Remodel the Tumor Immune Environment to Enhance Immune Checkpoint Blockade Efficacy. Cancer Discovery 2021, 11 (10), 2602–2619. 10.1158/2159-8290.CD-20-1815. PubMed DOI PMC
Zhang C.; He S.; Zeng Z.; Cheng P.; Pu K. Smart Nano-PROTACs Reprogram Tumor Microenvironment for Activatable Photo-metabolic Cancer Immunotherapy. Angew. Chem., Int. Ed. 2022, 61 (8), e20211495710.1002/anie.202114957. PubMed DOI
Darnell J. E. Validating Stat3 in cancer therapy. Nature Medicine 2005, 11 (6), 595–596. 10.1038/nm0605-595. PubMed DOI
Wang Y.; Shen Y.; Wang S.; Shen Q.; Zhou X. The role of STAT3 in leading the crosstalk between human cancers and the immune system. Cancer Letters 2018, 415, 117–128. 10.1016/j.canlet.2017.12.003. PubMed DOI PMC
Zhou H.; Bai L.; Xu R.; Zhao Y.; Chen J.; McEachern D.; Chinnaswamy K.; Wen B.; Dai L.; Kumar P.; et al. Structure-Based Discovery of SD-36 as a Potent, Selective, and Efficacious PROTAC Degrader of STAT3 Protein. J. Med. Chem. 2019, 62 (24), 11280–11300. 10.1021/acs.jmedchem.9b01530. PubMed DOI PMC
Bai L.; Zhou H.; Xu R.; Zhao Y.; Chinnaswamy K.; McEachern D.; Chen J.; Yang C.-Y.; Liu Z.; Wang M.; et al. A Potent and Selective Small-Molecule Degrader of STAT3 Achieves Complete Tumor Regression In Vivo. Cancer Cell 2019, 36 (5), 498–511. 10.1016/j.ccell.2019.10.002. PubMed DOI PMC
Lin P.; Chen Z.; Lu Y.; Shi H.; Lin J. PJ-001, a small-molecule proteolysis-targeting chimera, ameliorates atopic dermatitis-like inflammation in mice by inhibiting the JAK2/STAT3 pathway and repairing the skin barrier. Exp Ther Med. 2024, 27 (4), 176.10.3892/etm.2024.12464. PubMed DOI PMC
Nunes J.; McGonagle G. A.; Eden J.; Kiritharan G.; Touzet M.; Lewell X.; Emery J.; Eidam H.; Harling J. D.; Anderson N. A. Targeting IRAK4 for Degradation with PROTACs. ACS Med. Chem. Lett. 2019, 10 (7), 1081–1085. 10.1021/acsmedchemlett.9b00219. PubMed DOI PMC
Zhang J.; Fu L.; Shen B.; Liu Y.; Wang W.; Cai X.; Kong L.; Yan Y.; Meng R.; Zhang Z.; et al. Assessing IRAK4 Functions in ABC DLBCL by IRAK4 Kinase Inhibition and Protein Degradation. Cell Chemical Biology 2020, 27 (12), 1500–1509. 10.1016/j.chembiol.2020.08.010. PubMed DOI
Yokoo H.; Shibata N.; Naganuma M.; Murakami Y.; Fujii K.; Ito T.; Aritake K.; Naito M.; Demizu Y. Development of a Hematopoietic Prostaglandin D Synthase-Degradation Inducer. ACS Med. Chem. Lett. 2021, 12 (2), 236–241. 10.1021/acsmedchemlett.0c00605. PubMed DOI PMC
Yokoo H.; Shibata N.; Endo A.; Ito T.; Yanase Y.; Murakami Y.; Fujii K.; Hamamura K.; Saeki Y.; Naito M.; et al. Discovery of a Highly Potent and Selective Degrader Targeting Hematopoietic Prostaglandin D Synthase via In Silico Design. J. Med. Chem. 2021, 64 (21), 15868–15882. 10.1021/acs.jmedchem.1c01206. PubMed DOI
Zhang P.; Wang W.; Guo M.; Zhou L.; Dong G.; Xu D.; Sheng C. Discovery of potent NAMPT-Targeting PROTACs using FK866 as the warhead. Bioorg. Med. Chem. Lett. 2023, 92, 129393.10.1016/j.bmcl.2023.129393. PubMed DOI
Zhu X.; Liu H.; Chen L.; Wu C.; Liu X.; Cang Y.; Jiang B.; Yang X.; Fan G. Addressing the Enzyme-independent tumor-promoting function of NAMPT via PROTAC-mediated degradation. Cell Chemical Biology 2022, 29 (11), 1616–1629. 10.1016/j.chembiol.2022.10.007. PubMed DOI
Bi K.; Cheng J.; He S.; Fang Y.; Huang M.; Sheng C.; Dong G. Discovery of Highly Potent Nicotinamide Phosphoribosyltransferase Degraders for Efficient Treatment of Ovarian Cancer. J. Med. Chem. 2023, 66 (1), 1048–1062. 10.1021/acs.jmedchem.2c01990. PubMed DOI
Cheng J.; He S.; Xu J.; Huang M.; Dong G.; Sheng C. Making Protein Degradation Visible: Discovery of Theranostic PROTACs for Detecting and Degrading NAMPT. J. Med. Chem. 2022, 65 (23), 15725–15737. 10.1021/acs.jmedchem.2c01243. PubMed DOI
Wang F.; Dong G.; Ding M.; Yu N.; Sheng C.; Li J. Dual-Programmable Semiconducting Polymer NanoPROTACs for Deep-Tissue Sonodynamic-Ferroptosis Activatable Immunotherapy. Small 2024, 20 (8), 2306378.10.1002/smll.202306378. PubMed DOI
He S.; Fang Y.; Zhu Y.; Ma Z.; Dong G.; Sheng C. Drugtamer-PROTAC Conjugation Strategy for Targeted PROTAC Delivery and Synergistic Antitumor Therapy. Advanced Science 2024, 11 (25), 2401623.10.1002/advs.202401623. PubMed DOI PMC
Lu T.; Chen F.; Yao J.; Bu Z.; Kyani A.; Liang B.; Chen S.; Zheng Y.; Liang H.; Neamati N.; Liu Y. Design of FK866-Based Degraders for Blocking the Nonenzymatic Functions of Nicotinamide Phosphoribosyltransferase. J. Med. Chem. 2024, 67 (10), 8099–8121. 10.1021/acs.jmedchem.4c00193. PubMed DOI
Bondeson D. P.; Mares A.; Smith I. E. D.; Ko E.; Campos S.; Miah A. H.; Mulholland K. E.; Routly N.; Buckley D. L.; Gustafson J. L.; et al. Catalytic in vivo protein knockdown by small-molecule PROTACs. Nat. Chem. Biol. 2015, 11 (8), 611–617. 10.1038/nchembio.1858. PubMed DOI PMC
Mares A.; Miah A. H.; Smith I. E. D.; Rackham M.; Thawani A. R.; Cryan J.; Haile P. A.; Votta B. J.; Beal A. M.; Capriotti C.; et al. Extended pharmacodynamic responses observed upon PROTAC-mediated degradation of RIPK2. Communications Biology 2020, 3 (1), 140.10.1038/s42003-020-0868-6. PubMed DOI PMC
Miah A. H.; Smith I. E. D.; Rackham M.; Mares A.; Thawani A. R.; Nagilla R.; Haile P. A.; Votta B. J.; Gordon L. J.; Watt G.; et al. Optimization of a Series of RIPK2 PROTACs. J. Med. Chem. 2021, 64 (17), 12978–13003. 10.1021/acs.jmedchem.1c01118. PubMed DOI
Chan K.; Sathyamurthi P. S.; Queisser M. A.; Mullin M.; Shrives H.; Coe D. M.; Burley G. A. Antibody-Proteolysis Targeting Chimera Conjugate Enables Selective Degradation of Receptor-Interacting Serine/Threonine-Protein Kinase 2 in HER2+ Cell Lines. Bioconjugate Chem. 2023, 34 (11), 2049–2054. 10.1021/acs.bioconjchem.3c00366. PubMed DOI PMC
Schiedel M.; Herp D.; Hammelmann S.; Swyter S.; Lehotzky A.; Robaa D.; Oláh J.; Ovádi J.; Sippl W.; Jung M. Chemically Induced Degradation of Sirtuin 2 (Sirt2) by a Proteolysis Targeting Chimera (PROTAC) Based on Sirtuin Rearranging Ligands (SirReals). J. Med. Chem. 2018, 61 (2), 482–491. 10.1021/acs.jmedchem.6b01872. PubMed DOI
Schiedel M.; Lehotzky A.; Szunyogh S.; Oláh J.; Hammelmann S.; Wössner N.; Robaa D.; Einsle O.; Sippl W.; Ovádi J.; Jung M. HaloTag-Targeted Sirtuin-Rearranging Ligand (SirReal) for the Development of Proteolysis-Targeting Chimeras (PROTACs) against the Lysine Deacetylase Sirtuin 2 (Sirt2)**. ChemBioChem. 2020, 21 (23), 3371–3376. 10.1002/cbic.202000351. PubMed DOI PMC
Hong J. Y.; Jing H.; Price I. R.; Cao J.; Bai J. J.; Lin H. Simultaneous Inhibition of SIRT2 Deacetylase and Defatty-Acylase Activities via a PROTAC Strategy. ACS Med. Chem. Lett. 2020, 11 (11), 2305–2311. 10.1021/acsmedchemlett.0c00423. PubMed DOI PMC
Hou D.; Yu T.; Lu X.; Hong J. Y.; Yang M.; Zi Y.; Ho T. T.; Lin H. Sirt2 inhibition improves gut epithelial barrier integrity and protects mice from colitis. Proc. Natl. Acad. Sci. U. S. A. 2024, 121 (18), e231983312110.1073/pnas.2319833121. PubMed DOI PMC
Sharma C.; Donu D.; Curry A. M.; Barton E.; Cen Y. Multifunctional activity-based chemical probes for sirtuins. RSC Adv. 2023, 13 (17), 11771–11781. 10.1039/D3RA02133E. PubMed DOI PMC
Danishuddin; Jamal M. S.; Song K.-S.; Lee K.-W.; Kim J.-J.; Park Y.-M. Revolutionizing Drug Targeting Strategies: Integrating Artificial Intelligence and Structure-Based Methods in PROTAC Development. Pharmaceuticals 2023, 16, 1649.10.3390/ph16121649. PubMed DOI PMC
Weng G.; Li D.; Kang Y.; Hou T. Integrative Modeling of PROTAC-Mediated Ternary Complexes. J. Med. Chem. 2021, 64 (21), 16271–16281. 10.1021/acs.jmedchem.1c01576. PubMed DOI
Rao A.; Tunjic T. M.; Brunsteiner M.; Müller M.; Fooladi H.; Gasbarri C.; Weber N. Bayesian optimization for ternary complex prediction (BOTCP). Artificial Intelligence in the Life Sciences 2023, 3, 100072.10.1016/j.ailsci.2023.100072. DOI
Bai N.; Riching K. M.; Makaju A.; Wu H.; Acker T. M.; Ou S.-C.; Zhang Y.; Shen X.; Bulloch D. N.; Rui H.; et al. Modeling the CRL4A ligase complex to predict target protein ubiquitination induced by cereblon-recruiting PROTACs. J. Biol. Chem. 2022, 298 (4), 101653.10.1016/j.jbc.2022.101653. PubMed DOI PMC
Zheng S.; Tan Y.; Wang Z.; Li C.; Zhang Z.; Sang X.; Chen H.; Yang Y. Accelerated rational PROTAC design via deep learning and molecular simulations. Nature Machine Intelligence 2022, 4 (9), 739–748. 10.1038/s42256-022-00527-y. DOI
Nowak R. P.; DeAngelo S. L.; Buckley D.; He Z.; Donovan K. A.; An J.; Safaee N.; Jedrychowski M. P.; Ponthier C. M.; Ishoey M.; et al. Plasticity in binding confers selectivity in ligand-induced protein degradation. Nat. Chem. Biol. 2018, 14 (7), 706–714. 10.1038/s41589-018-0055-y. PubMed DOI PMC
Li F.; Hu Q.; Zhang X.; Sun R.; Liu Z.; Wu S.; Tian S.; Ma X.; Dai Z.; Yang X.; et al. DeepPROTACs is a deep learning-based targeted degradation predictor for PROTACs. Nat. Commun. 2022, 13 (1), 7133.10.1038/s41467-022-34807-3. PubMed DOI PMC
Testa A.; Hughes S. J.; Lucas X.; Wright J. E.; Ciulli A. Structure-Based Design of a Macrocyclic PROTAC. Angew. Chem., Int. Ed. 2020, 59 (4), 1727–1734. 10.1002/anie.201914396. PubMed DOI PMC
Zaidman D.; Prilusky J.; London N. PRosettaC: Rosetta Based Modeling of PROTAC Mediated Ternary Complexes. J. Chem. Inf. Model. 2020, 60 (10), 4894–4903. 10.1021/acs.jcim.0c00589. PubMed DOI PMC
Gazorpak M.; Hugentobler K. M.; Paul D.; Germain P.-L.; Kretschmer M.; Ivanova I.; Frei S.; Mathis K.; Rudolf R.; Mompart Barrenechea S.; et al. Harnessing PROTAC technology to combat stress hormone receptor activation. Nat. Commun. 2023, 14 (1), 8177.10.1038/s41467-023-44031-2. PubMed DOI PMC
Zhao H. Structural Basis of Conformational Dynamics in the PROTAC-Induced Protein Degradation. ChemMedChem. 2024, e20240017110.1002/cmdc.202400171. PubMed DOI
Cantrill C.; Chaturvedi P.; Rynn C.; Petrig Schaffland J.; Walter I.; Wittwer M. B. Fundamental aspects of DMPK optimization of targeted protein degraders. Drug Discovery Today 2020, 25 (6), 969–982. 10.1016/j.drudis.2020.03.012. PubMed DOI
Goracci L.; Desantis J.; Valeri A.; Castellani B.; Eleuteri M.; Cruciani G. Understanding the Metabolism of Proteolysis Targeting Chimeras (PROTACs): The Next Step toward Pharmaceutical Applications. J. Med. Chem. 2020, 63 (20), 11615–11638. 10.1021/acs.jmedchem.0c00793. PubMed DOI PMC
Liu X.; Ciulli A. Proximity-Based Modalities for Biology and Medicine. ACS Central Science 2023, 9 (7), 1269–1284. 10.1021/acscentsci.3c00395. PubMed DOI PMC
DeGoey D. A.; Chen H.-J.; Cox P. B.; Wendt M. D. Beyond the Rule of 5: Lessons Learned from AbbVie’s Drugs and Compound Collection. J. Med. Chem. 2018, 61 (7), 2636–2651. 10.1021/acs.jmedchem.7b00717. PubMed DOI
Price E.; Weinheimer M.; Rivkin A.; Jenkins G.; Nijsen M.; Cox P. B.; DeGoey D. Beyond Rule of Five and PROTACs in Modern Drug Discovery: Polarity Reducers, Chameleonicity, and the Evolving Physicochemical Landscape. J. Med. Chem. 2024, 67 (7), 5683–5698. 10.1021/acs.jmedchem.3c02332. PubMed DOI
Ishida T.; Ciulli A. E3 Ligase Ligands for PROTACs: How They Were Found and How to Discover New Ones. SLAS Discovery 2021, 26 (4), 484–502. 10.1177/2472555220965528. PubMed DOI PMC
Yamamoto J.; Ito T.; Yamaguchi Y.; Handa H. Discovery of CRBN as a target of thalidomide: a breakthrough for progress in the development of protein degraders. Chem. Soc. Rev. 2022, 51 (15), 6234–6250. 10.1039/D2CS00116K. PubMed DOI
Liu Y.; Yang J.; Wang T.; Luo M.; Chen Y.; Chen C.; Ronai Z. e.; Zhou Y.; Ruppin E.; Han L. Expanding PROTACtable genome universe of E3 ligases. Nat. Commun. 2023, 14 (1), 6509.10.1038/s41467-023-42233-2. PubMed DOI PMC
Schapira M.; Calabrese M. F.; Bullock A. N.; Crews C. M. Targeted protein degradation: expanding the toolbox. Nat. Rev. Drug Discovery 2019, 18 (12), 949–963. 10.1038/s41573-019-0047-y. PubMed DOI
Saraswat A. L.; Vartak R.; Hegazy R.; Patel A.; Patel K. Drug delivery challenges and formulation aspects of proteolysis targeting chimera (PROTACs). Drug Discovery Today 2023, 28 (1), 103387.10.1016/j.drudis.2022.103387. PubMed DOI
García Jiménez D.; Rossi Sebastiano M.; Vallaro M.; Mileo V.; Pizzirani D.; Moretti E.; Ermondi G.; Caron G. Designing Soluble PROTACs: Strategies and Preliminary Guidelines. J. Med. Chem. 2022, 65 (19), 12639–12649. 10.1021/acs.jmedchem.2c00201. PubMed DOI PMC
Pu C.; Wang S.; Liu L.; Feng Z.; Zhang H.; Gong Q.; Sun Y.; Guo Y.; Li R. Current strategies for improving limitations of proteolysis targeting chimeras. Chin. Chem. Lett. 2023, 34 (6), 107927.10.1016/j.cclet.2022.107927. DOI
Wang Y.; Han L.; Liu F.; Yang F.; Jiang X.; Sun H.; Feng F.; Xue J.; Liu W. Targeted degradation of anaplastic lymphoma kinase by gold nanoparticle-based multi-headed proteolysis targeting chimeras. Colloids Surf., B 2020, 188, 110795.10.1016/j.colsurfb.2020.110795. PubMed DOI
Yan S.; Yan J.; Liu D.; Li X.; Kang Q.; You W.; Zhang J.; Wang L.; Tian Z.; Lu W.; et al. A nano-predator of pathological MDMX construct by clearable supramolecular gold(I)-thiol-peptide complexes achieves safe and potent anti-tumor activity. Theranostics 2021, 11 (14), 6833–6846. 10.7150/thno.59020. PubMed DOI PMC
Zhang C.; Xu M.; He S.; Huang J.; Xu C.; Pu K. Checkpoint Nano-PROTACs for Activatable Cancer Photo-Immunotherapy. Adv. Mater. 2023, 35 (6), 2208553.10.1002/adma.202208553. PubMed DOI
Fu Y.; Saraswat A.; Wei Z.; Agrawal M. Y.; Dukhande V. V.; Reznik S. E.; Patel K. Development of Dual ARV-825 and Nintedanib-Loaded PEGylated Nano-Liposomes for Synergistic Efficacy in Vemurafnib-Resistant Melanoma. Pharmaceutics 2021, 13, 1005.10.3390/pharmaceutics13071005. PubMed DOI PMC
Vartak R.; Saraswat A.; Yang Y.; Chen Z.-S.; Patel K. Susceptibility of Lung Carcinoma Cells to Nanostructured Lipid Carrier of ARV-825, a BRD4 Degrading Proteolysis Targeting Chimera. Pharm. Res. 2022, 39 (11), 2745–2759. 10.1007/s11095-022-03184-3. PubMed DOI
Zhang H.-T.; Peng R.; Chen S.; Shen A.; Zhao L.; Tang W.; Wang X.-H.; Li Z.-Y.; Zha Z.-G.; Yi M.; Zhang L. Versatile Nano-PROTAC-Induced Epigenetic Reader Degradation for Efficient Lung Cancer Therapy. Advanced Science 2022, 9 (29), 2202039.10.1002/advs.202202039. PubMed DOI PMC
Liu H.-J.; Chen W.; Wu G.; Zhou J.; Liu C.; Tang Z.; Huang X.; Gao J.; Xiao Y.; Kong N.; et al. Glutathione-Scavenging Nanoparticle-Mediated PROTACs Delivery for Targeted Protein Degradation and Amplified Antitumor Effects. Advanced Science 2023, 10 (16), 2207439.10.1002/advs.202207439. PubMed DOI PMC
Fan R.; He S.; Wang Y.; Qiao J.; Liu H.; Galstyan L.; Ghazaryan A.; Cai H.; Feng S.; Ni P.; et al. Targeted delivery of a PROTAC induced PDEδ degrader by a biomimetic drug delivery system for enhanced cytotoxicity against pancreatic cancer cells. Am. J. Cancer Res. 2022, 12 (3), 1027–1041. PubMed PMC
Wu Y.; Chang X.; Yang G.; Chen L.; Wu Q.; Gao J.; Tian R.; Mu W.; Gooding J. J.; Chen X.; Sun S. A Physiologically Responsive Nanocomposite Hydrogel for Treatment of Head and Neck Squamous Cell Carcinoma via Proteolysis-Targeting Chimeras Enhanced Immunotherapy. Adv. Mater. 2023, 35 (12), 2210787.10.1002/adma.202210787. PubMed DOI
Bolden J. E.; Tasdemir N.; Dow L. E.; van Es J. H.; Wilkinson J. E.; Zhao Z.; Clevers H.; Lowe S. W. Inducible In Vivo Silencing of Brd4 Identifies Potential Toxicities of Sustained BET Protein Inhibition. Cell Reports 2014, 8 (6), 1919–1929. 10.1016/j.celrep.2014.08.025. PubMed DOI PMC
Wang C.; Zhang Y.; Chen W.; Wu Y.; Xing D. New-generation advanced PROTACs as potential therapeutic agents in cancer therapy. Molecular Cancer 2024, 23 (1), 110.10.1186/s12943-024-02024-9. PubMed DOI PMC
Moreau K.; Coen M.; Zhang A. X.; Pachl F.; Castaldi M. P.; Dahl G.; Boyd H.; Scott C.; Newham P. Proteolysis-targeting chimeras in drug development: A safety perspective. Br. J. Pharmacol. 2020, 177 (8), 1709–1718. 10.1111/bph.15014. PubMed DOI PMC
Salerno A.; Seghetti F.; Caciolla J.; Uliassi E.; Testi E.; Guardigni M.; Roberti M.; Milelli A.; Bolognesi M. L. Enriching Proteolysis Targeting Chimeras with a Second Modality: When Two Are Better Than One. J. Med. Chem. 2022, 65 (14), 9507–9530. 10.1021/acs.jmedchem.2c00302. PubMed DOI PMC
Kamaraj R.; Drastik M.; Maixnerova J.; Pavek P. Allosteric Antagonism of the Pregnane X Receptor (PXR): Current-State-of-the-Art and Prediction of Novel Allosteric Sites. Cells 2022, 11, 2974.10.3390/cells11192974. PubMed DOI PMC
Lebraud H.; Wright D. J.; Johnson C. N.; Heightman T. D. Protein Degradation by In-Cell Self-Assembly of Proteolysis Targeting Chimeras. ACS Central Science 2016, 2 (12), 927–934. 10.1021/acscentsci.6b00280. PubMed DOI PMC
Marin-Acevedo J. A.; Kimbrough E. O.; Lou Y. Next generation of immune checkpoint inhibitors and beyond. Journal of Hematology & Oncology 2021, 14 (1), 45.10.1186/s13045-021-01056-8. PubMed DOI PMC
Twomey J. D.; Zhang B. Cancer Immunotherapy Update: FDA-Approved Checkpoint Inhibitors and Companion Diagnostics. AAPS Journal 2021, 23 (2), 39.10.1208/s12248-021-00574-0. PubMed DOI PMC