Discovery of PXR Antagonist MI891 and PXR Degrader MI1013 and Their Roles in Hepatic Gene Regulation
Language English Country United States Media print-electronic
Document type Journal Article
Grant support
R01 CA214608
NCI NIH HHS - United States
R01 CA218278
NCI NIH HHS - United States
PubMed
40650588
PubMed Central
PMC12305494
DOI
10.1021/acs.jmedchem.4c03134
Knihovny.cz E-resources
- MeSH
- Hepatocytes metabolism drug effects MeSH
- Liver * metabolism drug effects MeSH
- Humans MeSH
- Drug Discovery * MeSH
- Pregnane X Receptor * antagonists & inhibitors metabolism MeSH
- Cell Proliferation drug effects MeSH
- Gene Expression Regulation * drug effects MeSH
- Structure-Activity Relationship MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Pregnane X Receptor * MeSH
The pregnane X receptor (PXR) is an important regulator of hepatic metabolism, yet mechanistic insights into the effects of pharmacological inhibition using PXR inverse agonists or antagonists on critical genes involved in both xenobiotic and endobiotic metabolism remain limited. Here, we discovered a novel PXR inverse agonist/antagonist, MI891, which binds to the ligand-binding domain of PXR. Furthermore, we computationally designed and synthesized the proteolysis-targeting chimera molecule, MI1013, based on the PXR antagonist SPA70, which degrades PXR in HepaRG hepatic cells. Using these tools, we investigated the regulation of key PXR target genes in HepaRG cells and human hepatocytes. Our findings indicate that PXR antagonism or degradation suppresses basal and rifampicin-induced expression of selected ADME genes. Moreover, the PXR antagonists and PROTAC degrader downregulate the expression of several key genes involved in gluconeogenesis, cholesterol homeostasis, bile acid synthesis, and proliferation in hepatocyte cells, suggesting their potential therapeutic applications for metabolic diseases.
1st Faculty of Medicine Charles University Katerinska 32 112 08 Prague Czech Republic
DZIF Tübingen Partner Site University Hospital Tübingen 72076 Tuebingen Germany
See more in PubMed
Kamaraj R., Pavek P.. Novel antagonists reveal the mechanism of PXR inhibition. Trends Pharmacol. Sci. 2024;45(11):961–963. doi: 10.1016/j.tips.2024.10.002. PubMed DOI
Karpale M., Hukkanen J., Hakkola J.. Nuclear receptor PXR in drug-induced hypercholesterolemia. Cells. 2022;11(3):313. doi: 10.3390/cells11030313. PubMed DOI PMC
Karpale M., Kummu O., Kärkkäinen O., Lehtonen M., Näpänkangas J., Herfurth U. M., Braeuning A., Rysä J., Hakkola J.. Pregnane X receptor activation remodels glucose metabolism to promote NAFLD development in obese mice. Mol. Metab. 2023;76:101779. doi: 10.1016/j.molmet.2023.101779. PubMed DOI PMC
Chai S. C., Wright W. C., Chen T.. Strategies for developing pregnane X receptor antagonists: Implications from metabolism to cancer. Med. Res. Rev. 2020;40(3):1061–1083. doi: 10.1002/med.21648. PubMed DOI PMC
Delfosse V., Huet T., Harrus D., Granell M., Bourguet M., Gardia-Parege C., Chiavarina B., Grimaldi M., Le Mevel S., Blanc P.. et al. Mechanistic insights into the synergistic activation of the RXR-PXR heterodimer by endocrine disruptor mixtures. Proc. Natl. Acad. Sci. U.S.A. 2021;118(1):e2020551118. doi: 10.1073/pnas.2020551118. PubMed DOI PMC
Hall A., Chanteux H., Ménochet K., Ledecq M., Schulze M.-S. E. D.. Designing Out PXR Activity on Drug Discovery Projects: A Review of Structure-Based Methods, Empirical and Computational Approaches. J. Med. Chem. 2021;64(10):6413–6522. doi: 10.1021/acs.jmedchem.0c02245. PubMed DOI
Lin W., Huber A. D., Poudel S., Li Y., Seetharaman J., Miller D. J., Chen T.. Structure-guided approach to modulate small molecule binding to a promiscuous ligand-activated protein. Proc. Natl. Acad. Sci. U.S.A. 2023;120(10):e2217804120. doi: 10.1073/pnas.2217804120. PubMed DOI PMC
Kamaraj R., Drastik M., Maixnerova J., Pavek P.. Allosteric Antagonism of the Pregnane X Receptor (PXR): Current-State-of-the-Art and Prediction of Novel Allosteric Sites. Cells. 2022;11(19):2974. doi: 10.3390/cells11192974. PubMed DOI PMC
Lin W., Goktug A. N., Wu J., Currier D. G., Chen T.. High-Throughput Screening Identifies 1,4,5-Substituted 1,2,3-Triazole Analogs as Potent and Specific Antagonists of Pregnane X Receptor. Assay Drug Dev. Technol. 2017;15(8):383–394. doi: 10.1089/adt.2017.809. PubMed DOI PMC
Mustonen E.-K., Pantsar T., Rashidian A., Reiner J., Schwab M., Laufer S., Burk O.. Target Hopping from Protein Kinases to PXR: Identification of Small-Molecule Protein Kinase Inhibitors as Selective Modulators of Pregnane X Receptor from TüKIC Library. Cells. 2022;11(8):1299. doi: 10.3390/cells11081299. PubMed DOI PMC
Lin W., Wang Y.-M., Chai S. C., Lv L., Zheng J., Wu J., Zhang Q., Wang Y.-D., Griffin P. R., Chen T.. SPA70 is a potent antagonist of human pregnane X receptor. Nat. Commun. 2017;8(1):741. doi: 10.1038/s41467-017-00780-5. PubMed DOI PMC
Garcia-Maldonado E., Huber A. D., Chai S. C., Nithianantham S., Li Y., Wu J., Poudel S., Miller D. J., Seetharaman J., Chen T.. Chemical manipulation of an activation/inhibition switch in the nuclear receptor PXR. Nat. Commun. 2024;15(1):4054. doi: 10.1038/s41467-024-48472-1. PubMed DOI PMC
Li Y., Lin W., Chai S. C., Wu J., Annu K., Chen T.. Design and Optimization of 1H-1,2,3-Triazole-4-carboxamides as Novel, Potent, and Selective Inverse Agonists and Antagonists of PXR. J. Med. Chem. 2022;65(24):16829–16859. doi: 10.1021/acs.jmedchem.2c01640. PubMed DOI PMC
Huber A. D., Wright W. C., Lin W., Majumder K., Low J. A., Wu J., Buchman C. D., Pintel D. J., Chen T.. Mutation of a single amino acid of pregnane X receptor switches an antagonist to agonist by altering AF-2 helix positioning. Cell. Mol. Life Sci. 2021;78(1):317–335. doi: 10.1007/s00018-020-03505-y. PubMed DOI PMC
Li Y., Lin W., Wright W. C., Chai S. C., Wu J., Chen T.. Building a Chemical Toolbox for Human Pregnane X Receptor Research: Discovery of Agonists, Inverse Agonists, and Antagonists Among Analogs Based on the Unique Chemical Scaffold of SPA70. J. Med. Chem. 2021;64(3):1733–1761. doi: 10.1021/acs.jmedchem.0c02201. PubMed DOI PMC
Huang H., Wang H., Sinz M., Zoeckler M., Staudinger J., Redinbo M. R., Teotico D. G., Locker J., Kalpana G. V., Mani S.. Inhibition of drug metabolism by blocking the activation of nuclear receptors by ketoconazole. Oncogene. 2007;26(2):258–268. doi: 10.1038/sj.onc.1209788. PubMed DOI
Burk O., Kuzikov M., Kronenberger T., Jeske J., Keminer O., Thasler W. E., Schwab M., Wrenger C., Windshügel B.. Identification of approved drugs as potent inhibitors of pregnane X receptor activation with differential receptor interaction profiles. Arch. Toxicol. 2018;92(4):1435–1451. doi: 10.1007/s00204-018-2165-4. PubMed DOI
Biswas A., Mani S., Redinbo M. R., Krasowski M. D., Li H., Ekins S.. Elucidating the ‘Jekyll and Hyde’ Nature of PXR: The Case for Discovering Antagonists or Allosteric Antagonists. Pharm. Res. 2009;26(8):1807–1815. doi: 10.1007/s11095-009-9901-7. PubMed DOI PMC
Huber A. D., Jung Y.-H., Li Y., Lin W., Wu J., Poudel S., Carrigan A. G., Mishra A., High A. A., Chen T.. First-in-Class Small Molecule Degrader of Pregnane X Receptor Enhances Chemotherapy Efficacy. J. Med. Chem. 2024;67(20):18549–18575. doi: 10.1021/acs.jmedchem.4c01926. PubMed DOI PMC
Huber A. D., Li Y., Lin W., Galbraith A. N., Mishra A., Porter S. N., Wu J., Florke Gee R. R., Zhuang W., Pruett-Miller S. M.. et al. SJPYT-195: A Designed Nuclear Receptor Degrader That Functions as a Molecular Glue Degrader of GSPT1. ACS Med. Chem. Lett. 2022;13(8):1311–1320. doi: 10.1021/acsmedchemlett.2c00223. PubMed DOI PMC
Bansard, L. ; Laconde, G. ; Delfosse, V. ; Huet, T. ; Ayeul, M. ; Rigal, E. ; Donati, Q. ; Gerbal-Chaloin, S. ; Daujat-Chavanieu, M. ; Legrand, B. . et al. A potent agonist-based PROTAC targeting Pregnane X Receptor that delays colon cancer relapse. bioRxiv, 2024. 10.1101/2024.06.18.599474. DOI
Mani S., Dou W., Redinbo M. R.. PXR antagonists and implication in drug metabolism. Drug Metab. Rev. 2013;45(1):60–72. doi: 10.3109/03602532.2012.746363. PubMed DOI PMC
Pascussi, J. M. ; Pannequin, J. ; Amblard-Caussil, M. ; Laconde, G. ; Gerbal-Chaloin, S. ; Chavanieu, A. ; Bourguet, W. ; Delfosse, V. . Bifunctional PROTAC-type compounds targeting PXR, method for preparing same, and therapeutic use thereof. WO2022243365, 2021.
Florke Gee R. R., Huber A. D., Wu J., Bajpai R., Loughran A. J., Pruett-Miller S. M., Chen T.. The F-box-only protein 44 regulates pregnane X receptor protein level by ubiquitination and degradation. Acta Pharm. Sin. B. 2023;13(11):4523–4534. doi: 10.1016/j.apsb.2023.07.014. PubMed DOI PMC
Mejdrová I., Dušek J., Škach K., Stefela A., Skoda J., Chalupský K., Dohnalová K., Pavkova I., Kronenberger T., Rashidian A.. et al. Discovery of Novel Human Constitutive Androstane Receptor Agonists with the Imidazo[1,2-a]pyridine Structure. J. Med. Chem. 2023;66(4):2422–2456. doi: 10.1021/acs.jmedchem.2c01140. PubMed DOI PMC
Dusek J., Mejdrova I., Dohnalova K., Smutny T., Chalupsky K., Krutakova M., Skoda J., Rashidian A., Pavkova I., Skach K.. et al. The hypolipidemic effect of MI-883, the combined CAR agonist/ PXR antagonist, in diet-induced hypercholesterolemia model. Nat. Commun. 2025;16(1):1418. doi: 10.1038/s41467-025-56642-y. PubMed DOI PMC
Rashidian A., Mustonen E.-K., Kronenberger T., Schwab M., Burk O., Laufer S. A., Pantsar T.. Discrepancy in interactions and conformational dynamics of pregnane X receptor (PXR) bound to an agonist and a novel competitive antagonist. Comput. Struct. Biotechnol. J. 2022;20:3004–3018. doi: 10.1016/j.csbj.2022.06.020. PubMed DOI PMC
Lagorce D., Bouslama L., Becot J., Miteva M. A., Villoutreix B. O.. FAF-Drugs4: free ADME-tox filtering computations for chemical biology and early stages drug discovery. Bioinformatics. 2017;33(22):3658–3660. doi: 10.1093/bioinformatics/btx491. PubMed DOI
Lomize A. L., Hage J. M., Schnitzer K., Golobokov K., LaFaive M. B., Forsyth A. C., Pogozheva I. D.. PerMM: A Web Tool and Database for Analysis of Passive Membrane Permeability and Translocation Pathways of Bioactive Molecules. J. Chem. Inf. Model. 2019;59(7):3094–3099. doi: 10.1021/acs.jcim.9b00225. PubMed DOI PMC
Tang Z., Kang B., Li C., Chen T., Zhang Z.. GEPIA2: an enhanced web server for large-scale expression profiling and interactive analysis. Nucleic Acids Res. 2019;47(W1):W556–W560. doi: 10.1093/nar/gkz430. PubMed DOI PMC
Cao C., He M., Wang L., He Y., Rao Y.. Chemistries of bifunctional PROTAC degraders. Chem. Soc. Rev. 2022;51(16):7066–7114. doi: 10.1039/D2CS00220E. 10.1039/D2CS00220E. PubMed DOI
Szulc N. A., Stefaniak F., Piechota M., Soszyńska A., Piórkowska G., Cappannini A., Bujnicki J. M., Maniaci C., Pokrzywa W.. DEGRONOPEDIA: a web server for proteome-wide inspection of degrons. Nucleic Acids Res. 2024;52(W1):W221–W232. doi: 10.1093/nar/gkae238. PubMed DOI PMC
Honorato R. V., Trellet M. E., Jiménez-García B., Schaarschmidt J. J., Giulini M., Reys V., Koukos P. I., Rodrigues J. P. G. L. M., Karaca E., van Zundert G. C. P.. et al. The HADDOCK2.4 web server for integrative modeling of biomolecular complexes. Nat. Protoc. 2024;19(11):3219–3241. doi: 10.1038/s41596-024-01011-0. PubMed DOI
Zaidman D., Prilusky J., London N.. PRosettaC: Rosetta Based Modeling of PROTAC Mediated Ternary Complexes. J. Chem. Inf. Model. 2020;60(10):4894–4903. doi: 10.1021/acs.jcim.0c00589. PubMed DOI PMC
Laskowski R. A., Swindells M. B.. LigPlot+: Multiple Ligand–Protein Interaction Diagrams for Drug Discovery. J. Chem. Inf. Model. 2011;51(10):2778–2786. doi: 10.1021/ci200227u. PubMed DOI
Kamaraj R., Ghosh S., Das S., Sen S., Kumar P., Majumdar M., Dasgupta R., Mukherjee S., Das S., Ghose I.. et al. Targeted Protein Degradation (TPD) for Immunotherapy: Understanding Proteolysis Targeting Chimera-Driven Ubiquitin-Proteasome Interactions. Bioconjugate Chem. 2024;35(8):1089–1115. doi: 10.1021/acs.bioconjchem.4c00253. PubMed DOI PMC
Nguyen T. M., Sreekanth V., Deb A., Kokkonda P., Tiwari P. K., Donovan K. A., Shoba V., Chaudhary S. K., Mercer J. A. M., Lai S.. et al. Proteolysis-targeting chimeras with reduced off-targets. Nat. Chem. 2024;16(2):218–228. doi: 10.1038/s41557-023-01379-8. PubMed DOI PMC
Nowak R. P., DeAngelo S. L., Buckley D., He Z., Donovan K. A., An J., Safaee N., Jedrychowski M. P., Ponthier C. M., Ishoey M.. et al. Plasticity in binding confers selectivity in ligand-induced protein degradation. Nat. Chem. Biol. 2018;14(7):706–714. doi: 10.1038/s41589-018-0055-y. PubMed DOI PMC
Treindl F., Ruprecht B., Beiter Y., Schultz S., Döttinger A., Staebler A., Joos T. O., Kling S., Poetz O., Fehm T.. et al. A bead-based western for high-throughput cellular signal transduction analyses. Nat. Commun. 2016;7(1):12852. doi: 10.1038/ncomms12852. PubMed DOI PMC
Bwayi M. N., Garcia-Maldonado E., Chai S. C., Xie B., Chodankar S., Huber A. D., Wu J., Annu K., Wright W. C., Lee H.-M.. et al. Molecular basis of crosstalk in nuclear receptors: heterodimerization between PXR and CAR and the implication in gene regulation. Nucleic Acids Res. 2022;50(6):3254–3275. doi: 10.1093/nar/gkac133. PubMed DOI PMC
Squires E. J., Sueyoshi T., Negishi M.. Cytoplasmic localization of pregnane X receptor and ligand-dependent nuclear translocation in mouse liver. J. Biol. Chem. 2004;279(47):49307–49314. doi: 10.1074/jbc.M407281200. PubMed DOI
Poudel S., Huber A. D., Chen T.. Regulation of Nuclear Receptors PXR and CAR by Small Molecules and Signal Crosstalk: Roles in Drug Metabolism and Beyond. Drug Metab. Dispos. 2023;51(2):228–236. doi: 10.1124/dmd.122.000858. PubMed DOI PMC
Motta S., Callea L., Giani Tagliabue S., Bonati L.. Exploring the PXR ligand binding mechanism with advanced Molecular Dynamics methods. Sci. Rep. 2018;8(1):16207. doi: 10.1038/s41598-018-34373-z. PubMed DOI PMC
Smutny T., Smutna L., Lochman L., Kamaraj R., Kucera R., Pavek P.. Rifampicin and its derivatives: stability, disposition, and affinity towards pregnane X receptor employing 2D and 3D primary human hepatocytes. Biochem. Pharmacol. 2024;229:116500. doi: 10.1016/j.bcp.2024.116500. PubMed DOI
Krausova L., Stejskalova L., Wang H., Vrzal R., Dvorak Z., Mani S., Pavek P.. Metformin suppresses pregnane X receptor (PXR)-regulated transactivation of CYP3A4 gene. Biochem. Pharmacol. 2011;82(11):1771–1780. doi: 10.1016/j.bcp.2011.08.023. PubMed DOI PMC
Donovan K. A., An J., Nowak R. P., Yuan J. C., Fink E. C., Berry B. C., Ebert B. L., Fischer E. S.. Thalidomide promotes degradation of SALL4, a transcription factor implicated in Duane Radial Ray syndrome. eLife. 2018;7:e38430. doi: 10.7554/eLife.38430. PubMed DOI PMC
Meier F., Brunner A.-D., Frank M., Ha A., Bludau I., Voytik E., Kaspar-Schoenefeld S., Lubeck M., Raether O., Bache N.. et al. diaPASEF: parallel accumulation–serial fragmentation combined with data-independent acquisition. Nat. Methods. 2020;17(12):1229–1236. doi: 10.1038/s41592-020-00998-0. PubMed DOI
Demichev V., Messner C. B., Vernardis S. I., Lilley K. S., Ralser M.. DIA-NN: neural networks and interference correction enable deep proteome coverage in high throughput. Nat. Methods. 2020;17(1):41–44. doi: 10.1038/s41592-019-0638-x. PubMed DOI PMC
Ritchie M. E., Phipson B., Wu D., Hu Y., Law C. W., Shi W., Smyth G. K.. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43(7):e47. doi: 10.1093/nar/gkv007. (acccessed 12/16/2024) PubMed DOI PMC
Khavrutskii L., Yeh J., Timofeeva O., Tarasov S. G., Pritt S., Stefanisko K., Tarasova N.. Protein Purification-libera Metodo di Binding Affinity Determinazione Thermophoresis microscala. J. Visualized Exp. 2013;15(78):e50541. doi: 10.3791/50541. PubMed DOI PMC
Friesner R. A., Murphy R. B., Repasky M. P., Frye L. L., Greenwood J. R., Halgren T. A., Sanschagrin P. C., Mainz D. T.. Extra Precision Glide: Docking and Scoring Incorporating a Model of Hydrophobic Enclosure for Protein–Ligand Complexes. J. Med. Chem. 2006;49(21):6177–6196. doi: 10.1021/jm051256o. PubMed DOI
Kamaraj, R. ; Nencka, R. ; Pavek, P. . Chapter One - Computational strategies for the design of proteolysis targeting chimera degraders: Artificial intelligence enabled PROTAC design. In Annu. Rep. Med. Chem.; Nencka, R. , Ed.; Academic Press, 2024; Vol. 63, pp 1–37.
Yan Y., Tao H., He J., Huang S.-Y.. The HDOCK server for integrated protein–protein docking. Nat. Protoc. 2020;15(5):1829–1852. doi: 10.1038/s41596-020-0312-x. PubMed DOI
Smutny T., Dusek J., Hyrsova L., Nekvindova J., Horvatova A., Micuda S., Gerbal-Chaloin S., Pavek P.. The 3′-untranslated region contributes to the pregnane X receptor (PXR) expression down-regulation by PXR ligands and up-regulation by glucocorticoids. Acta Pharm. Sin. B. 2020;10(1):136–152. doi: 10.1016/j.apsb.2019.09.010. PubMed DOI PMC
Saeed A. I., Sharov V., White J., Li J., Liang W., Bhagabati N., Braisted J., Klapa M., Currier T., Thiagarajan M.. et al. TM4: A Free, Open-Source System for Microarray Data Management and Analysis. BioTechniques. 2003;34(2):374–378. doi: 10.2144/03342mt01. PubMed DOI
Tang D., Chen M., Huang X., Zhang G., Zeng L., Zhang G., Wu S., Wang Y.. SRplot: A free online platform for data visualization and graphing. PLoS One. 2023;18(11):e0294236. doi: 10.1371/journal.pone.0294236. PubMed DOI PMC