Mapping past human land use using archaeological data: A new classification for global land use synthesis and data harmonization
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu historické články, časopisecké články, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.
PubMed
33852578
PubMed Central
PMC8046197
DOI
10.1371/journal.pone.0246662
PII: PONE-D-20-19658
Knihovny.cz E-zdroje
- MeSH
- archeologie * MeSH
- biodiverzita MeSH
- data management MeSH
- dějiny starověku MeSH
- ekosystém MeSH
- lidé MeSH
- podnebí MeSH
- přírodní zdroje * MeSH
- zachování přírodních zdrojů MeSH
- Země (planeta) MeSH
- Check Tag
- dějiny starověku MeSH
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- historické články MeSH
- práce podpořená grantem MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Geografické názvy
- Arábie MeSH
- Mezopotámie MeSH
In the 12,000 years preceding the Industrial Revolution, human activities led to significant changes in land cover, plant and animal distributions, surface hydrology, and biochemical cycles. Earth system models suggest that this anthropogenic land cover change influenced regional and global climate. However, the representation of past land use in earth system models is currently oversimplified. As a result, there are large uncertainties in the current understanding of the past and current state of the earth system. In order to improve representation of the variety and scale of impacts that past land use had on the earth system, a global effort is underway to aggregate and synthesize archaeological and historical evidence of land use systems. Here we present a simple, hierarchical classification of land use systems designed to be used with archaeological and historical data at a global scale and a schema of codes that identify land use practices common to a range of systems, both implemented in a geospatial database. The classification scheme and database resulted from an extensive process of consultation with researchers worldwide. Our scheme is designed to deliver consistent, empirically robust data for the improvement of land use models, while simultaneously allowing for a comparative, detailed mapping of land use relevant to the needs of historical scholars. To illustrate the benefits of the classification scheme and methods for mapping historical land use, we apply it to Mesopotamia and Arabia at 6 kya (c. 4000 BCE). The scheme will be used to describe land use by the Past Global Changes (PAGES) LandCover6k working group, an international project comprised of archaeologists, historians, geographers, paleoecologists, and modelers. Beyond this, the scheme has a wide utility for creating a common language between research and policy communities, linking archaeologists with climate modelers, biodiversity conservation workers and initiatives.
Barrett Honors College Arizona State University Tempe Arizona United States of America
Centre national de la recherche scientifique Nanterre France
Copernicus Institute of Sustainable Development Utrecht University Utrecht The Netherlands
Department d'Humanitats Universitat Pompeu Fabra Barcelona Spain
Department of Anthropology Dartmouth College Hanover New Hampshire United States of America
Department of Anthropology Stanford University Stanford California United States of America
Department of Anthropology University of Chicago Chicago Illinois United States of America
Department of Archaeological Science and Conservation Moesgaard Museum Højbjerg Denmark
Department of Archaeology Cotton University Guwahati India
Department of Archaeology Durham University Durham United Kingdom
Department of Archaeology University of Cambridge Cambridge United Kingdom
Department of Archaeology University of Exeter Exeter United Kingdom
Department of Archaeology University of Glasgow Glasgow United Kingdom
Department of Asian African and Mediterranean Studies University of Naples L'Orientale Naples Italy
Department of Biology and Environmental Sciences Linnaeus University Växjö Sweden
Department of Earth Sciences National Museums of Kenya Nairobi Kenya
Department of Earth Sciences The University of Hong Kong Hong Kong Hong Kong
Department of Geography and Environmental Science University of Reading Reading United Kingdom
Department of Historical Philosophical and religious Studies Umeå University Umeå Sweden
Department of History and Political Science Kyambogo University Kampala Uganda
Department of Maritime History and Marine Archaeology Tamil University Tanjore India
Department of Physical Geography Eötvös Loránd University Budapest Hungary
Department of Prehistory Universitat Autònoma de Barcelona Bellaterra Spain
Faculty of Archaeology Leiden University Leiden The Netherlands
ICREA CaSEs Department of Humanities Universitat Pompeu Fabra Barcelona Spain
ICREA Department of Humanities Universitat Pompeu Fabra Barcelona Spain
Institute for Archaeolgical Scienes Bern University Bern Switzerland
Institute for Prehistoric Archaeology Universitat zu Koln Cologne Germany
Institute of Archaeology and Museology Masaryk University Brno Czech Republic
Institute of Archaeology Jagiellonian University Kraków Poland
Institute of Archaeology of the Czech Academy of Sciences Academy of Sciences Prague Czech Republic
Institute of Archaeology University College London London United Kingdom
Institute of Botany of the Czech Academy of Sciences Prague Czech Republic
Institute of Geography University of Bern Bern Switzerland
Institute of Heritage Science National Research Council of Italy Montelibretti Rome Italy
Institute of Pre and Protohistoric Archaeology Kiel Germany
Institute of Pre and Protohistoric Archaeology Kiel University Keil Germany
Instituto de Desenvolvimento Sustentável Mamirauá Amazonas Brazil
Integrative Prehistory and Archaeological Science University of Basel Basel Switzerland
Max Planck Institute for the Science of Human History Jena Germany
McDonald Institute for Archaeological Research University of Cambridge Cambridge United Kingdom
Museum of Archaeology University of Stavanger Stavanger Norway
Oeschger Centre for Climate Change Research Bern University Bern Switzerland
Palaeo Research Institute University of Johannesburg Johannesburg South Africa
School of Archaeology University College Dublin Dublin Ireland
School of Archaeology University of Oxford Oxford United Kingdom
School of Biological Earth and Environmental Sciences UNSW Sydney Sydney Australia
School of Geography Earth and Environmental Sciences Plymouth University Plymouth United Kingdom
School of Geography University of Lincoln Lincoln United Kingdom
School of GeoSciences University of Edinburgh Edinburgh United Kingdom
The Alliance of Bioversity International and CIAT Lima Peru
Tropical diversity Royal Botanic Garden Edinburgh Edinburgh United Kingdom
UE CISOR CONICET UNJu Argentine National Science Council Argentina
W Szafer Institute of Botany Polish Academy of Sciences Warsaw Poland
Zobrazit více v PubMed
Claussen M. Late Quaternary vegetation-climate feedbacks. Clim Past. 2009;5: 203–216. 10.5194/cp-5-203-2009 DOI
Morrison K, Hammer E, Popova L, Madella M, Whitehouse N, Gaillard M-J. Global-scale comparisons of human land use: developing shared terminology for land-use practices for global change. PAGES Mag. 2018;26: 8–9. 10.22498/pages.26.1.8 DOI
Levis S. Modeling vegetation and land use in models of the Earth System: Modeling vegetation and land use in models of the Earth System. WIREs Clim Change. 2010;1: 840–856. 10.1002/wcc.83 DOI
Luyssaert S, Jammet M, Stoy PC, Estel S, Pongratz J, Ceschia E, et al.. Land management and land cover change have impacts of similar magnitude on surface temperature. Nature Clim Change. 2014;4: 389–393. 10.1038/nclimate2196 DOI
Eyring V, Bony S, Meehl GA, Senior CA, Stevens B, Stouffer RJ, et al.. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci Model Dev. 2016;9: 1937–1958. 10.5194/gmd-9-1937-2016 DOI
He F, Vavrus SJ, Kutzbach JE, Ruddiman WF, Kaplan JO, Krumhardt KM. Simulating global and local surface temperature changes due to Holocene anthropogenic land cover change: CLIMATIC EFFECTS OF HOLOCENE ALCC. Geophys Res Lett. 2014;41: 623–631. 10.1002/2013GL058085 DOI
Smith MC, Singarayer JS, Valdes PJ, Kaplan JO, Branch NP. The biogeophysical climatic impacts of anthropogenic land use change during the Holocene. Clim Past. 2016;12: 923–941. 10.5194/cp-12-923-2016 DOI
Harrison SP, Gaillard M-J, Stocker BD, Vander Linden M, Klein Goldewijk K, Boles O, et al.. Development and testing scenarios for implementing land use and land cover changes during the Holocene in Earth system model experiments. Geosci Model Dev. 2020;13: 805–824. 10.5194/gmd-13-805-2020 DOI
Klein Goldewijk K, Beusen A, Van Drecht G, De Vos M. The HYDE 3.1 spatially explicit database of human-induced global land-use change over the past 12,000 years. Global Ecology and Biogeography. 2011;20: 73–86. 10.1111/j.1466-8238.2010.00587.x DOI
Klein-Goldewijk K, Beusen A, Doelman J, Stehfest E. Anthropogenic land use estimates for the Holocene—HYDE 3.2. Earth System Science Data. 2017;9: 927–953. 10.5194/essd-9-927-2017 DOI
Kaplan JO, Krumhardt KM, Ellis EC, Ruddiman WF, Lemmen C, Goldewijk KK. Holocene carbon emissions as a result of anthropogenic land cover change. The Holocene. 2011;21: 775–791. 10.1177/0959683610386983 DOI
Le Quéré C, Moriarty R, Andrew RM, Canadell JG, Sitch S, Korsbakken JI, et al.. Global Carbon Budget 2015. Earth Syst Sci Data. 2015;7: 349–396. 10.5194/essd-7-349-2015 DOI
Lawrence DM, Hurtt GC, Arneth A, Brovkin V, Calvin KV, Jones AD, et al.. The Land Use Model Intercomparison Project (LUMIP) contribution to CMIP6:rationale and experimental design. Geosci Model Dev. 2016;9: 2973–2998. 10.5194/gmd-9-2973-2016 DOI
Hughes R, Weiberg E, Bonnier A, Finné M, Kaplan J. Quantifying Land Use in Past Societies from Cultural Practice and Archaeological Data. Land. 2018;7: 9. 10.3390/land7010009 DOI
Gaillard M-J, Sugita S, Mazier F, Trondman a.-K, Broström a., Hickler T, et al.. Holocene land cover reconstructions for studies on land cover-climate feedbacks. Climate of the Past. 2010;6: 483–499. 10.5194/cp-6-483-2010 DOI
Li X, Dodson J, Zhou J, Zhou X. Increases of population and expansion of rice agriculture in Asia, and anthropogenic methane emissions since 5000BP. Quaternary International. 2009;202: 41–50. 10.1016/j.quaint.2008.02.009 DOI
Fuller DQ, van Etten J, Manning K, Castillo C, Kingwell-Banham E, Weisskopf A, et al.. The contribution of rice agriculture and livestock pastoralism to prehistoric methane levels: An archaeological assessment. The Holocene. 2011;21: 743–759. 10.1177/0959683611398052 DOI
Lewis SL, Maslin MA. Defining the Anthropocene. Nature. 2015;519: 171–180. 10.1038/nature14258 PubMed DOI
Summerhayes C, Charman D. Introduction to Holocene Climate Change: new perspectives. Journal of the Geological Society. 2015;172: 251–253. 10.1144/jgs2014-113 DOI
Rostain S. Islands in the rainforest: landscape management in pre-Columbian Amazonia. Walnut Creek, CA: Left Coast Press, Inc; 2012.
Bliege Bird R, Bird DW, Codding BF, Parker CH, Jones JH. The “fire stick farming” hypothesis: Australian Aboriginal foraging strategies, biodiversity, and anthropogenic fire mosaics. Proceedings of the National Academy of Sciences. 2008;105: 14796–14801. 10.1073/pnas.0804757105 PubMed DOI PMC
Pongratz J, Reick CH, Raddatz T, Claussen M. Biogeophysical versus biogeochemical climate response to historical anthropogenic land cover change. Geophys Res Lett. 2010;37. 10.1029/2010GL043010 DOI
Ellis EC, Kaplan JO, Fuller DQ, Vavrus S, Klein Goldewijk K, Verburg PH. Used planet: A global history. Proceedings of the National Academy of Sciences. 2013;110: 7978–7985. 10.1073/pnas.1217241110 PubMed DOI PMC
Pongratz J, Reick C, Raddatz T, Claussen M. A reconstruction of global agricultural areas and land cover for the last millennium. Global Biogeochem Cycles. 2008;22: n/a-n/a. 10.1029/2007GB003153 DOI
Elsig J, Schmitt J, Leuenberger D, Schneider R, Eyer M, Leuenberger M, et al.. Stable isotope constraints on Holocene carbon cycle changes from an Antarctic ice core. Nature. 2009;461: 507–510. 10.1038/nature08393 PubMed DOI
Ruddiman WF. The Anthropogenic Greenhouse Era Began Thousands of Years Ago. Climatic Change. 2003;61: 261–293. 10.1023/B:CLIM.0000004577.17928.fa DOI
Ruddiman WF. The early anthropogenic hypothesis: Challenges and responses. Rev Geophys. 2007;45. 10.1029/2006RG000207 DOI
Scarre C, editor. The human past: world prehistory and the development of human societies. Fourth edition. London: Thames & Hudson; 2018.
Stephens L, Fuller D, Boivin N, Rick T, Gauthier N, Kay A, et al.. Archaeological assessment reveals Earth’s early transformation through land use. Science. 2019;365: 897–902. 10.1126/science.aax1192 PubMed DOI
Morrison KD. Fields of victory: Vijayanagara and the course of intensification. Berkeley: Univ. of California, Archaeological Research Facility; 1995.
Guha R. How much should a person consume? Berkeley: University of California Press; 2006.
Morrison KD. Provincializing the Anthropocene: Eurocentrism in the Earth System. In: Cederlöf G, Rangarajan M, editors. At Nature’s Edge: The Global Present and Long-term History. Oxford: Oxford University Press; 2018. pp. 1–18. 10.1093/oso/9780199489077.003.0001 DOI
Shennan S. The First Farmers of Europe: An Evolutionary Perspective. 1st ed. Cambridge University Press; 2018. 10.1017/9781108386029 DOI
Barker G, Gilbertson D, Mattingly DJ, editors. Archaeology and desertification: the Wadi Faynan Landscape Survey, southern Jordan. Oxford: Council for British Research in the Levant: Oxbow Books; 2007.
Manning K, Colledge S, Crema E, Shennan S, Timpson A. The Cultural Evolution of Neolithic Europe. EUROEVOL Dataset 1: Sites, Phases and Radiocarbon Data. Journal of Open Archaeology Data. 2016;5: e2. 10.5334/joad.40 DOI
Roberts N. How humans changed the face of Earth. Science. 2019;365: 865–866. 10.1126/science.aay4627 PubMed DOI
Gaillard M, Whitehouse N, Madella M, Morrison K, Gunten LV, editors. Special Issue: Past Land Use and Land Cover. PAGES Magazine. 2018;26.
Dawson A, Cao X, Chaput M, Hopla E, Li F, Edwards M, et al.. Finding the magnitude of human-induced Northern Hemisphere land cover transformation between 6 and 0.2 ka BP. PAGES Mag. 2018;26: 34–35. 10.22498/pages.26.1.34 DOI
Hellman S, Gaillard M-J, Broström A, Sugita S. The REVEALS model, a new tool to estimate past regional plant abundance from pollen data in large lakes: validation in southern Sweden. J Quaternary Sci. 2008;23: 21–42. 10.1002/jqs.1126 DOI
Fyfe RM, Woodbridge J, Roberts N. From forest to farmland: pollen-inferred land cover change across Europe using the pseudobiomization approach. Glob Change Biol. 2015;21: 1197–1212. 10.1111/gcb.12776 PubMed DOI
Gaillard M-J, Morrison K, Whitehouse N. Past anthropogenic land use and land cover change at the global scale for climate modelling studies: PAGES LandCover6k Working Group. Quaternary Perspectives. 2015;22: 25–27.
Whitehouse NJ, Bunting M, McClatchie M, Barratt P, McLaughlin R, Schulting R, et al.. Prehistoric land cover and land-use history in Ireland at 6000 BP. PAGES Mag. 2018;26: 24–25. 10.22498/pages.26.1.24 DOI
Sauer CO. Mapping the Utilization of the Land. Geographical Review. 1919;8: 47–54.
Zhang C, Sargent I, Pan X, Li H, Gardiner A, Hare J, et al.. Joint Deep Learning for land cover and land use classification. Remote Sensing of Environment. 2019;221: 173–187. 10.1016/j.rse.2018.11.014 DOI
Fisher P, Comber AJ, Wadsworth R. Land use and land cover: contradiction or complement. Re-presenting GIS. 2005; 85–98.
Anderson JR. A land use and land cover classification system for use with remote sensor data. US Government Printing Office; 1976.
Loveland TR, Giri CP. History of land cover mapping. Remote sensing of land use and land cover: Principles and applications. Boca Raton: CRC Press; 2012.
Hansen MC, Potapov PV, Moore R, Hancher M, Turubanova SA, Tyukavina A, et al.. High-Resolution Global Maps of 21st-Century Forest Cover Change. Science. 2013;342: 850–853. 10.1126/science.1244693 PubMed DOI
Brookfield HC. Exploring agrodiversity. New York: Columbia University Press; 2001.
Klein Goldewijk K, Beusen A, Janssen P. Long-term dynamic modeling of global population and built-up area in a spatially explicit way: HYDE 3.1. The Holocene. 2010;20: 565–573. 10.1177/0959683609356587 DOI
Hurtt GC, Chini LP, Frolking S, Betts RA, Feddema J, Fischer G, et al.. Harmonization of land-use scenarios for the period 1500–2100: 600 years of global gridded annual land-use transitions, wood harvest, and resulting secondary lands. Climatic Change. 2011;109: 117–161. 10.1007/s10584-011-0153-2 DOI
Widgren M. Towards a global history of agricultural systems. PAGES Mag. 2018;26: 18–19. 10.22498/pages.26.1.18 DOI
Widgren M. Mapping Global Agricultural History. In: Kinda A, Komeie T, Mnamide S, Mizoguchi T, Uesugi K, editors. Proceedings of the 14th International Conference of Historical Geographers, Kyoto 2009. Kyoto: Kyoto University Press; 2010. pp. 211–212.
Whittlesey D. Major agricultural regions of the earth. Annals of the Association of American Geographers. 1936;26: 199–240.
Grigg D. The Agricultural Regions of the World: Review and Reflections. Economic Geography. 1969;45: 95–132. 10.2307/143367 DOI
Bogaard A, Arbogast R-M, Ebersbach R, Fraser RA, Knipper C, Krahn C, et al.. The Bandkeramik settlement of Vaihingen an der Enz, Kreis Ludwigsburg (Baden-Württemberg): an integrated perspective on land use, economy and diet. Germania: Anzeiger der Römisch-Germanischen Kommission des Deutschen Archäologischen Instituts. 2017; 1–60 Seiten. 10.11588/GER.2016.39068 DOI
Gross E, Jacomet S, Schibler J. Stand und Ziele der Wirtschaftsarchäologischen Forschungen an Neolithischen Ufer- und Inselsiedlungen im Unteren Zürichseeraum (Kt. Zürich, Schweiz). In: Schibler J, Sedlmeier J, Spycher HP, editors. Festschrift für Hans R Stämpfli. Basel: Helbing Lichtenhahn; 1990. pp. 77–100.
Wendt KP, Hilpert J, Zimmermann A. Landschaftsarchäologie IV. Bericht der Römisch-Germanischen Kommission. 2019; 9–218. 10.11588/BERRGK.2015.0.59354 DOI
Binford LR. Constructing frames of reference: an analytical method for archaeological theory building using hunter-gatherer and environmental data sets. Berkeley: University of California Press; 2001.
Price TD, Brown JA, editors. Prehistoric hunter-gatherers: the emergence of cultural complexity. Orlando: Academic Press; 1985.
Rowley-Conwy P, Piper S. Hunter-Gatherer Variability: Developing Models for the Northern Coasts. ARCTIC. 2017;69: 1. 10.14430/arctic4623 DOI
Khazanov AM. Nomads and the outside world. Cambridge: Cambridge University Press; 1984.
Cribb R. Nomads in Archaeology. 1st ed. Cambridge University Press; 1991. 10.1017/CBO9780511552205 DOI
Miller ARV, Makarewicz C, editors. Isotopic investigations of pastoralism in prehistory. Abingdon, Oxon; New York, NY: Routledge; 2018.
Bernbeck R. An Archaeology of Multi-Sited Communities. In: Wendrich W, Barnard H, editors. The Archaeology of Mobility Old World and New World Nomadism. Los Angeles: The Cotsen Institute of Archaeology Press; 2008. pp. 43–77.
Mayle FE, Iriarte J. Integrated palaeoecology and archaeology–a powerful approach for understanding pre-Columbian Amazonia. Journal of Archaeological Science. 2014;51: 54–64. 10.1016/j.jas.2012.08.038 DOI
Miller NF, Gleason KL, editors. Archaeology of garden and field. Philadelphia: Univ Of Pennsylvania; 1994.
Marcus J, Stanish C. Agricultural Strategies. Los Angeles: Cotsen Institute; 2006.
Miller NF, Zeder MA, Arter SR. From Food and Fuel to Farms and Flocks: The Integration of Plant and Animal Remains in the Study of the Agropastoral Economy at Gordion, Turkey. Current Anthropology. 2009;50: 915–924. 10.1086/606035 DOI
Greenfield HJ. The Secondary Products Revolution: the past, the present and the future. World Archaeology. 2010;42: 29–54. 10.1080/00438240903429722 DOI
Lancelotti C, Madella M. The ‘invisible’ product: developing markers for identifying dung in archaeological contexts. Journal of Archaeological Science. 2012;39: 953–963. 10.1016/j.jas.2011.11.007 DOI
Forbes Hamish. Off-Site Scatters and the Manuring Hypothesis in Greek Survey Archaeology: An Ethnographic Approach. Hesperia: The Journal of the American School of Classical Studies at Athens. 2013;82: 551. 10.2972/hesperia.82.4.0551 DOI
Jones G, Bogaard A, Charles M, Hodgson JG. Distinguishing the Effects of Agricultural Practices Relating to Fertility and Disturbance: a Functional Ecological Approach in Archaeobotany. Journal of Archaeological Science. 2000;27: 1073–1084. 10.1006/jasc.1999.0543 DOI
Jones G, Bogaard A, Halstead P, Charles M, Smith H. Identifying the intensity of crop husbandry practices on the basis of weed floras. Annu Br Sch Athens. 1999;94: 167–189. 10.1017/S0068245400000563 DOI
Bogaard A, Fraser R, Heaton THE, Wallace M, Vaiglova P, Charles M, et al.. Crop manuring and intensive land management by Europe’s first farmers. Proceedings of the National Academy of Sciences. 2013;110: 12589–12594. 10.1073/pnas.1305918110 PubMed DOI PMC
van der Veen M. Formation processes of desiccated and carbonized plant remains–the identification of routine practice. Journal of Archaeological Science. 2007;34: 968–990. 10.1016/j.jas.2006.09.007 DOI
Antolín F, Jacomet S, Buxó R. The hard knock life. Archaeobotanical data on farming practices during the Neolithic (5400–2300 cal BC) in the NE of the Iberian Peninsula. Journal of Archaeological Science. 2015;61: 90–104. 10.1016/j.jas.2015.05.007 DOI
Whitehouse NJ, Smith D. How fragmented was the British Holocene wildwood? Perspectives on the “Vera” grazing debate from the fossil beetle record. Quaternary Science Reviews. 2010;29: 539–553. 10.1016/j.quascirev.2009.10.010 DOI
Smith D, Nayyar K, Schreve D, Thomas R, Whitehouse N. Can dung beetles from the palaeoecological and archaeological record indicate herd concentration and the identity of herbivores? Quaternary International. 2014;341: 119–130. 10.1016/j.quaint.2013.11.032 DOI
Anderson RS, Ejarque A, Rice J, Smith SJ, Lebow CG. Historic and Holocene Environmental Change in the San Antonio Creek Basin, Mid-coastal California. Quat res. 2015;83: 273–286. 10.1016/j.yqres.2014.11.005 DOI
Ejarque A, Anderson RS, Simms AR, Gentry BJ. Prehistoric fires and the shaping of colonial transported landscapes in southern California: A paleoenvironmental study at Dune Pond, Santa Barbara County. Quaternary Science Reviews. 2015;112: 181–196. 10.1016/j.quascirev.2015.01.017 DOI
Shahack-Gross R. Herbivorous livestock dung: formation, taphonomy, methods for identification, and archaeological significance. Journal of Archaeological Science. 2011;38: 205–218. 10.1016/j.jas.2010.09.019 DOI
Scarborough VL. Flow of power: ancient water systems and landscapes. Santa Fe: SAR Press; 2003.
Morrison KD. Archaeologies of flow: Water and the landscapes of Southern India past, present, and future. Journal of Field Archaeology. 2015;40: 560–580. 10.1179/2042458215Y.0000000033 DOI
Miller H. Water supply, labor requIrements, and land ownershIp In Indus floodplain agricultural systems. In: Stanish C, Marcus J, editors. Agriculture and Irrigation in Archaeology. Los Angeles: Cotsen Intstitute of Archaeology Press; 2006. pp. 92–128.
Stump D. Intensification in Context: Archaeological Approaches to Precolonial Field Systems in Eastern and Southern Africa. African Studies. 2010;69: 255–278. http://tandfprod.literatumonline.com/doi/abs/10.1080/00020184.2010.499201 DOI
Chang C, Koster HA. Beyond Bones: Toward an Archaeology of Pastoralism. Advances in Archaeological Method and Theory. Elsevier; 1986. pp. 97–148. 10.1016/B978-0-12-003109-2.50006–4 DOI
Hammer E. Local landscape organization of mobile pastoralists in southeastern Turkey. Journal of Anthropological Archaeology. 2014;35: 269–288. 10.1016/j.jaa.2014.06.001 DOI
French CAI. Geoarchaeology in action: studies in soil micromorphology and landscape evolution. London: Routledge; 2003.
Macphail RI, Courty MA, Gebhardt A. Soil micromorphological evidence of early agriculture in north‐west Europe. World Archaeology. 1990;22: 53–69. 10.1080/00438243.1990.9980129 DOI
Bauer AM, Morrison KD. Assessing anthropogenic soil erosion with multi-spectral satellite imagery: An archaeological case study of long-term land use in Koppal District, northern Karnataka. In: Frenez D, Tosi M, editors. South Asian Archaeology 2007, Proceedings of the 19th International Conference of The European Association of South Asian Archaeology, Volume I: Prehistoric Periods. Oxford: Archaeopress-BAR International Series; 2013. pp. 67–75.
Boles OJC, Lane PJ. The Green, Green Grass of Home: an archaeo-ecological approach to pastoralist settlement in central Kenya. Azania: Archaeological Research in Africa. 2016;51: 507–530. 10.1080/0067270X.2016.1249587 DOI
Webb EA, Schwarcz HP, Healy PF. Detection of ancient maize in lowland Maya soils using stable carbon isotopes: evidence from Caracol, Belize. Journal of Archaeological Science. 2004;31: 1039–1052. 10.1016/j.jas.2004.01.001 DOI
Wallace M, Jones G, Charles M, Fraser R, Halstead P, Heaton THE, et al.. Stable carbon isotope analysis as a direct means of inferring crop water status and water management practices. World Archaeology. 2013;45: 388–409. 10.1080/00438243.2013.821671 DOI
Rosen A. Phytolith indicators of plant and land use at Çatalhöyük. In: Hodder I, editor. Çatalhöyük Project Volume IV: Inhabiting Çatalhöyük. Cambridge: MacDonald Institute, Cambridge University; 2005. pp. 203–212.
Petrie CA, Singh RN, Bates J, Dixit Y, French CAI, Hodell DA, et al.. Adaptation to Variable Environments, Resilience to Climate Change: Investigating Land, Water and Settlement in Indus Northwest India. Current Anthropology. 2017;58: 1–30. 10.1086/690112 DOI
Kay AU, Kaplan JO. Human subsistence and land use in sub-Saharan Africa, 1000BC to AD1500: A review, quantification, and classification. Anthropocene. 2015;9: 14–32. 10.1016/j.ancene.2015.05.001 DOI
Phelps LN, Kaplan JO. Land use for animal production in global change studies: Defining and characterizing a framework. Glob Change Biol. 2017;23: 4457–4471. 10.1111/gcb.13732 PubMed DOI PMC
Kay AU, Fuller DQ, Neumann K, Eichhorn B, Höhn A, Morin-Rivat J, et al.. Diversification, Intensification and Specialization: Changing Land Use in Western Africa from 1800 BC to AD 1500. J World Prehist. 2019;32: 179–228. 10.1007/s10963-019-09131-2 DOI
Di Gregorio A, Jansen LJM. Land cover classification system (LCCS): classification concepts and user manual; for software version 1.0. Rome: FAO; 2001.
Price TD, Bar-Yosef O. The Origins of Agriculture: New Data, New Ideas: An Introduction to Supplement 4. Current Anthropology. 2011;52: S163–S174. 10.1086/659964 DOI
Smith BD. The Cultural Context of Plant Domestication in Eastern North America. Current Anthropology. 2011;52: S471–S484. 10.1086/659645 DOI
Bird-David N. Hunting and Gathering Societies: Anthropology. International Encyclopedia of the Social & Behavioral Sciences. Elsevier; 2015. pp. 428–431. 10.1016/B978-0-08-097086-8.12090–2 DOI
Gammage B. The biggest estate on earth: how Aborigines made Australia. Nachdr. Sydney: Allen & Unwin; 2012.
Anderson K. Tending the wild: Native American knowledge and the management of California’s natural resources. 2013.
Kershaw AP. Climatic change and Aboriginal burning in north-east Australia during the last two glacial/interglacial cycles. Nature. 1986;322: 47–49. 10.1038/322047a0 DOI
Mellars P. Fire Ecology, Animal Populations and Man: a Study of some Ecological Relationships in Prehistory. Proc Prehist Soc. 1976;42: 15–45. 10.1017/S0079497X00010689 DOI
Cao X, Tian F, Li F, Gaillard M-J, Rudaya N, Xu Q, et al.. Pollen-based quantitative land cover reconstruction for northern Asia covering the last 40 ka cal BP. Clim Past. 2019;15: 1503–1536. 10.5194/cp-15-1503-2019 DOI
Adams RM. Land behind Baghdad: a history of settlement on the Diyala plains. Chicago: Univ. of Chicago Pr.; 1965.
Adams RM. Settlement and Irrigation Patterns in Ancient Akkad. The city and area of Kish. Miami: Field Research Projects; 1972. pp. 182–208.
Adams RM. Heartland of cities: Surveys of Ancient Settlement and Land Use on the Central Flood Plain of the Euphrates. Chicago: University of Chicago Press; 1981.
Wright HT. The southern margins of Sumer: Archaeological survey of the area of Eridu and U. In: Adams RM, editor. Heartland of Cities: Surveys of ancient settlement and land use on the central floodplain of the Euphrates,. Chicago: University of Chicago Press; 1981. pp. 295–338.
Wilkinson TJ, Philip G, Bradbury J, Dunford R, Donoghue D, Galiatsatos N, et al.. Contextualizing Early Urbanization: Settlement Cores, Early States and Agro-pastoral Strategies in the Fertile Crescent During the Fourth and Third Millennia BC. J World Prehist. 2014;27: 43–109. 10.1007/s10963-014-9072-2 DOI
Altaweel M, Marsh A, Mühl S, Nieuwenhuyse O, Radner K, Rasheed K, et al.. New Investigations in the Environment, History, and Archaeology of the Iraqi Hilly Flanks: Shahrizor Survey Project 2009–2011. Iraq. 2012;74: 1–35. 10.1017/S0021088900000231 DOI
Iamoni M, editor. Trajectories of complexity: socio-economic dynamics in Upper Mesopotamia in the Neolithic and Chalcolithic periods. Wiesbaden: Harrassowitz Verlag; 2016.
Kolinski R. An Archaeological Reconnaissance in the Greater Zab Area of the Iraqi Kurdistan (UGZAR) 2012–2015. In: Salisbury RB, Höflmayer F, Bürge T, Horejs B, Schwall C, Müller V, et al.., editors. Proceedings of the 10th International Congress on the Archaeology of the Ancient Near East Vol 2. Wiesbaden: Harrassowitz Verlag; 2018.
Kopanias K, MacGinnis J, editors. The Archaeology of the Kurdistan Region of Iraq and Adjacent Regions. Archaeopress Publishing Ltd; 2016. 10.2307/j.ctvxrq0m8 DOI
Bonacossi DM, Iamoni M. Landscape and Settlement in the Eastern Upper Iraqi Tigris and Navkur Plains: The Land of Nineveh Archaeological Project, Seasons 2012–2013. Iraq. 2015;77: 9–39. 10.1017/irq.2015.5 DOI
Pfälzner P, Sconzo P, Beutelscheiß R, Edmonds A, Glissmann B. The Eastern Ḫabur Archaeological Survey in Iraqi Kurdistan. A preliminary report on the 2014 Season. Zeitschrift für Orient-Archäologie. 2016;9: 10–69.
Ur J, Babakr N, Palermo R, Soroush, M, Ramand S, Nováček K. The Erbil Plain Archaeological Survey: Preliminary Results, 2012–2018. Iraq. in press.
Pournelle J. Marshland of Cities: Deltaic Landscapes and the Evolution of Early Mesopotamian Civilization. University of California, San Diego. 2003. Available: http://core.tdar.org/document/380824
Pournelle J. Physical Geography. In: Crawford HEW, editor. The Sumerian World. London: Routledge; 2013. pp. 13–32.
Aqrawi A. Stratigraphic signatures of climatic change during the Holocene evolution of the Tigris–Euphrates delta, lower Mesopotamia. Global and Planetary Change. 2001;28: 267–283. 10.1016/S0921-8181(00)00078-3 DOI
Brückner H. Uruk–a Geographic and Palaeo-Ecologic Perspective on a Famous Ancient City in Mesopotamia. Geoöko. 2003;24: 229–248.
Sanlaville P. The deltaic complex of the lower Mesopotamian plain and its evolution through millennia. In: Nicholson E, Clark P, editors. The Iraqi Marshlands. London: Politicos Publishing; 2003. pp. 133–150.
Algaze G. Initial Social Complexity in Southwestern Asia: The Mesopotamian Advantage. Current Anthropology. 2001;42: 199–233. 10.1086/320005 DOI
Pournelle J. The littoral origins of Near Eastern civilization. MS, Department of Anthropology, University of California, San Diego. 2000.
Wilkinson TJ. Archaeological landscapes of the Near East. Tucson: University of Arizona Press; 2003.
Gasche H, Tanret M, editors. Changing watercourses in Babylonia: towards a reconstruction of the ancient environment in lower Mesopotamia. Chicago, IL: Oriental Institute of the University of Chicago; 1998.
Wilkinson TJ, Rayne L, Jotheri J. Hydraulic landscapes in Mesopotamia: the role of human niche construction. Water Hist. 2015;7: 397–418. 10.1007/s12685-015-0127-9 DOI
Hritz C. Tracing Settlement Patterns and Channel Systems in Southern Mesopotamia Using Remote Sensing. Journal of Field Archaeology. 2010;35: 184–203. 10.1179/009346910X12707321520477 DOI
Salman I. Atlas of the archaeological sites in Iraq. Baghdad: Al-Huria Printing House; 1976.
Mantellini S, Micale MG, Peyronel L. Exploiting diversity: the archaeological landscape of the Eblaite Chora. In: Matthiae P, Marchetti N, editors. Ebla and its landscape: early state formation in the ancient Near East. Walnut Creek: Left Coast Press; 2013. pp. 238–256.
Skuldbol T, Colantoni C. Tracking early urbanism in the hilly flanks of Mesopotamia–three years of Danish archaeological investigations on the Rania Plain. In: Kopanias K, MacGinnis J, editors. The archaeology of the Kurdistan region of Iraq and adjacent regions. Oxford: Archaeopress; 2016. pp. 411–416.
Nieuwenhuyse O, Odaka T, Mühl S, Kopanias K, MacGinnis J. Halaf Settlement in the Iraqi Kurdistan: the Shahrizor Survey Project. The archaeology of the Kurdistan region of Iraq and adjacent regions. Oxford: Archaeopress; 2016. pp. 257–266.
Peyronel L, Vacca A. Northern Ubaid and Late Chalcolithic 1–3 Periods in the Erbil Plain: New Insights from Recent Researches at Helawa, Iraqi Kurdistan. Origini. 2015;37: 89–127.
Arbuckle BS, Hammer EL. The Rise of Pastoralism in the Ancient Near East. J Archaeol Res. 2019;27: 391–449. 10.1007/s10814-018-9124-8 DOI
Gaastra JS, Greenfield TL, Greenfield HJ. Constraint, complexity and consumption: Zooarchaeological meta-analysis shows regional patterns of resilience across the metal ages in the Near East. Quaternary International. 2019; S1040618218310334. 10.1016/j.quaint.2019.03.013 DOI
Salīm SM. Marsh dwellers of the Euphrates Delta. London: Athlone Press; 1962.
Magee P. The Archaeology of Prehistoric Arabia: Adaptation and Social Formation from the Neolithic to the Iron Age. Cambridge: Cambridge University Press; 2014.
McCorriston J, Martin L. Southern Arabia’s early pastoral population history: some recent evidence. In: Petraglia MD, Rose J, editors. The evolution of human populations in Arabia. Heidelberg: Springer; 2010. pp. 237–250.
Petraglia MD, Groucutt HS, Guagnin M, Breeze PS, Boivin N. Human responses to climate and ecosystem change in ancient Arabia. Proc Natl Acad Sci USA. 2020;117: 8263–8270. 10.1073/pnas.1920211117 PubMed DOI PMC
Boivin N, Fuller DQ. Shell Middens, Ships and Seeds: Exploring Coastal Subsistence, Maritime Trade and the Dispersal of Domesticates in and Around the Ancient Arabian Peninsula. J World Prehist. 2009;22: 113–180. 10.1007/s10963-009-9018-2 DOI
Makarewicz CA. The adoption of cattle pastoralism in the Arabian Peninsula: A reappraisal. Arab Arch Epig. 2020;31: 168–177. 10.1111/aae.12156 DOI
Drechsler P. The dispersal of the Neolithic over the Arabian Peninsula. Oxford: Archaeopress; 2009.
Uerpmann M. The dark millennium: Remarks on the final stone age in the Emirates and Oman. In: Potts DT, Hellyer P, Al Naboodah H, editors. Archaeology of the United Arab Emirates: proceedings of the First International Conference on the archaeology of the UAE. London: Trident Press; 2003. pp. 74–81.
Fleitmann D. Holocene Forcing of the Indian Monsoon Recorded in a Stalagmite from Southern Oman. Science. 2003;300: 1737–1739. 10.1126/science.1083130 PubMed DOI
Fleitmann D, Matter A. The speleothem record of climate variability in Southern Arabia. Comptes Rendus Geoscience. 2009;341: 633–642. 10.1016/j.crte.2009.01.006 DOI
Méry S, Charpentier V, Auxiette G, Pelle E. A dugong bone mound: the Neolithic ritual site on Akab in Umm al-Quwain, United Arab Emirates. Antiquity. 2009;83: 696–708. 10.1017/S0003598X00098926 DOI
Charpentier V, Marquis P, Pellé É. La nécropole et les derniers horizons V e millénaire du site de Gorbat al-Mahar (Suwayh, SWY-1, Sultanat d’Oman): premiers résultats. Proceedings of the Seminar for Arabian Studies. 2003;33: 11–19.
Uerpmann M. Structuring the Late Stone Age of Southeastern Arabia. Arab Arch Epigraphy. 1992;3: 65–109. 10.1111/j.1600-0471.1992.tb00032.x DOI
Charpentier V. Hunter-gatherers of the “empty quarter of the early Holocene” to the last Neolithic societies: chronology of the late prehistory of south-eastern Arabia (8000–3100 BC). Proceedings of the Seminar for Arabian Studies. 2008;38: 93–116.
Salvatori S. Death and ritual in a population of food foragers in Oman, in The Prehistory of Asia and Oceania. In: Afanas’ev GE, Cleuziou S, Lukas JR, Tosi M, editors. The Prehistory of Asia and Oceania. Forli: UISPP; 1996. pp. 205–222.
Lézine A-M, Robert C, Cleuziou S, Inizan M-L, Braemer F, Saliège J-F, et al.. Climate change and human occupation in the Southern Arabian lowlands during the last deglaciation and the Holocene. Global and Planetary Change. 2010;72: 412–428. 10.1016/j.gloplacha.2010.01.016 DOI
Edens C. Exploring early agriculture in the highlands of Yemen. In: Sholan AM, Antonini S, Arbach M, editors. Sabaean Studies: archaeological, epigraphical, and historical studies. Naples: Università degli Studi di Napoli; 2005. pp. 185–211.
Edens C, Wilkinson TJ. Southwest Arabia during the Holocene: Recent archaeological developments. Journal of World Prehistory. 1998;12: 55–119. 10.1023/A:1022449224342 DOI
Ekstrom H, Edens C. Prehistoric agriculture in highland Yemen: New results from Dhamar. Bulletin of the American Institute of Yemeni Studies,. 2003;45: 23–35.
Harrower MJ. Hydrology, Ideology, and the Origins of Irrigation in Ancient Southwest Arabia. Current Anthropology. 2008;49: 497–510. 10.1086/587890 DOI
McCorriston J, Oches EA, Walter DE, Cole Kl. Holocene Paleoecology and Prehistory in Highland Southern Arabia. paleo. 2002;28: 61–88. 10.3406/paleo.2002.4739 DOI
Parr PJ, Zarins J, Ibrahim M, Waechter J, Garrard A, Clarke C, et al.. Comprehensive archaeological survey program: preliminary report on the second phase of the Northern Province. Atlal. 1978;2: 29–50.
Ingraham ML, Johnson TD, Rihani B, Shatla I. Preliminary report on a reconnaissance survey of the northwestern province. Atlal. 1981;5: 59–84.
Gilmore M, al-Ibrahim M, Murad AS. Preliminary report on the northwestern and northern region survey 1981 (1401). Atlal. 1982;6: 9–23.
Betts AVG, editor. The later prehistory of the Badia. Oxford: Oxbow; 2013.
Zarins J, Rahbini A, Kamal M. Preliminary report on the archaeological survey of the Riyadh area. Atlal. 1982;6: 25–38.
Breeze PS, Groucutt HS, Drake NA, Louys J, Scerri EML, Armitage SJ, et al.. Prehistory and palaeoenvironments of the western Nefud Desert, Saudi Arabia. Archaeological Research in Asia. 2017;10: 1–16. 10.1016/j.ara.2017.02.002 DOI
Dinies M, Neef R, Kuerschner H. Early to Middle Holocene vegetational development, climatic conditions and oasis cultivation in Tayma. In: Hausleiter A, Eichmann R, al-Najem M, editors. Tayma: Archaeological Exploration, Palaeoenvironment, Cultural Contacts. Oxford: Archaeopress; 2018. pp. 128–143.
Hausleiter A, Eichmann R. The archaeological exploration of the oasis of Tayma. In: Hausleiter A, Eichmann R, al-Najem M, editors. Tayma: Archaeological Exploration, Palaeoenvironment, Cultural Contacts. Oxford: Archaeopress; 2018. pp. 2–59.
Akkermans PM, Huigens HO, Brüning ML. A landscape of preservation: late prehistoric settlement and sequence in the Jebel Qurma region, north-eastern Jordan. Levant. 2014;46: 186–205.
Betts AVG, Martin L. Excavations at Tell al-Hibr. In: Betts AVG, Martin L, McCartney C, editors. The Later Prehistory of the Badia Excavations and Surveys in Eastern Jordan: Vol 2. Oxford: Oxbow Books; 2013. pp. 143–155.
Abu-Azizeh W. The Copper Age. The Chalcolithic period (4500–3600). In: Ababsa M, editor. Atlas of Jordan—History, Territories, and Society. Beyrouth: Presses de l’Ifpo; 2013. Available: 10.4000/books.ifpo.4885 DOI
Abu-Azizeh W. The South-Eastern Jordan’s Chalcolithic-Early Bronze Age Pastoral Nomadic Complex: Patterns of Mobility and Interaction. Paléorient. 2013;39: 149–176.
Bradbury J, Braemer F, Sala M. Fitting upland, steppe, and desert into a ‘big picture’ perspective: a case study from northern Jordan. Levant. 2014;46: 206–229. 10.1179/0075891414Z.00000000042 DOI
Akkermans P, Huigens HO. Long-term Settlement Trends in Jordan’s Northeastern Badia: The Jabal Qurma Archaeological Landscape Project. Annual of the Department of Antiquities of Jordan. 2019;59: 503–515.
Meister J, Krause J, Müller-Neuhof B, Portillo M, Reimann T, Schütt B. Desert agricultural systems at EBA Jawa (Jordan): Integrating archaeological and paleoenvironmental records. Quaternary International. 2017;434: 33–50. 10.1016/j.quaint.2015.12.086 DOI
Müller-Neuhof B. A ‘marginal’ region with many options: the diversity of Chalcolithic/Early Bronze Age socio-economic activities in the hinterland of Jawa. Levant. 2014;46: 230–248. 10.1179/0075891414Z.00000000043 DOI
Müller-Neuhof B, Abu-Azizeh W. Milestones for a tentative chronological framework for the late prehistoric colonization of the basalt desert (north-eastern Jordan). Levant. 2016;48: 220–235.
Weninger B, Clare L, Rohling E, Bar-Yosef O, Böhner U, Budja M, et al.. The Impact of Rapid Climate Change on Prehistoric Societies during the Holocene in the Eastern Mediterranean. Doc praeh. 2009;36: 7–59. 10.4312/dp.36.2 DOI
Bar-Matthews M, Ayalon A. Mid-Holocene climate variations revealed by high-resolution speleothem records from Soreq Cave, Israel and their correlation with cultural changes. The Holocene. 2011;21: 163–171. 10.1177/0959683610384165 DOI
Schiebel V, Litt T. Holocene vegetation history of the southern Levant based on a pollen record from Lake Kinneret (Sea of Galilee), Israel. Veget Hist Archaeobot. 2018;27: 577–590. 10.1007/s00334-017-0658-3 DOI
Bradbury J. Landscapes of Burial? The Homs Basalt, Syria in the 4th-3rd millennia BC. Ph.D. dissertation, Durham University. 2011.
Braemer F. Badia and Maamoura,. syria. 2011; 31–46. 10.4000/syria.891 DOI
De Contenson H. Rapport préliminaire sur les fouilles de Tell al-Khazami en 1967. Annales Archéologiques Arabes Syriennes. 1968;18: 55–62.
Godon M, Baldi JS, Ghanem G, Ibáñez JJ, Braemer F. Qarassa North Tell, Southern Syria: The Pottery Neolithic and Chalcolithic sequence. A few lights against a dark background. paleo. 2015;41: 153–176. 10.3406/paleo.2015.5660 DOI
Nicolle, C, al-Maqdissi M. Sharaya: un village du Bronze ancien IA en Syrie du Sud. Paléorient 32(1): 125–136. Paléorient. 2006;32: 125–136.
Sulaiman G. Tell al-Baharia: an important site in the Damascus basin. In: Borell Tena F, Bouso Garcia M, Gomez Bach A, Tornero Dacasa C, Vicente Campos O, editors. Broadening Horizons 3: conference of young researchers working in the Ancient Near East. Barcelona: Universitat Autonoma de Barcelona; 2012. pp. 113–122.
Bourke S, Lawson E, Lovell J, Hua Q, Zoppi U, Barbetti M. The Chronology of the Ghassulian Chalcolithic Period in the Southern Levant: New 14 C Determinations from Teleilat Ghassul, Jordan. Radiocarbon. 2001;43: 1217–1222. 10.1017/S0033822200038509 DOI
Burton M, Levy TE. The Chalcolithic Radiocarbon Record and Its Use in Southern Levantine Archaeology. Radiocarbon. 2001;43: 1223–1246. 10.1017/S0033822200038510 DOI
Rowan YM, Golden J. The Chalcolithic Period of the Southern Levant: A Synthetic Review. J World Prehist. 2009;22: 1–92. 10.1007/s10963-009-9016-4 DOI
Bourke SJ. The Chalcolithic period. In: Macdonald B, Adams R, Bienkowski P, editors. The archaeology of Jordan. Sheffield: Sheffield Academic Press; 2001. pp. 107–163.
Bourke SJ. The Late Neolithic/Early Chalcolithic Transition at Teleilat Ghassul: Context, Chronology and Culture. Paleorient. 2007;33: 15–32.
Hill AC. Specialized Pastoralism and Social Stratification—Analysis of the Fauna from Chalcolithic Tel Tsaf, Israel". Ph.D. dissertation, University of Connecticut. 2011. Available: https://opencommons.uconn.edu/dissertations/AAI3504774
Graham P. Archaeobotanical remains from late 6th/early 5th millennium BC Tel Tsaf, Israel. Journal of Archaeological Science. 2014;43: 105–110. 10.1016/j.jas.2013.12.018 DOI
Willcox G. Appendix D. Plant Remains. In: Helms SW, editor. Jawa: Lost City of the Black Desert. New York: Cornell University Press; 1981. pp. 247–248.
Köhler I, Helms SW. Appendix E. Animal Remains. Jawa: Lost City of the Black Desert. New York: Cornell University Press; 1981. pp. 249–252.
Morrison KD. From Millets to Rice (and Back Again?): Cuisine, Cultivation and Health in Early South India. In: Schug GR, Walimbe S, editors. A Companion to South Asia in the Past. New York: Wiley-Blackwell; 2016. pp. 358–373.
Exploring the Interface Between Planetary Boundaries and Palaeoecology