Rearrangement of mitochondrial pyruvate dehydrogenase subunit dihydrolipoamide dehydrogenase protein-protein interactions by the MDM2 ligand nutlin-3
Jazyk angličtina Země Německo Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
BB/C511599/1
Biotechnology and Biological Sciences Research Council - United Kingdom
BB/K011278/1
Biotechnology and Biological Sciences Research Council - United Kingdom
PubMed
27273042
PubMed Central
PMC5026170
DOI
10.1002/pmic.201500501
Knihovny.cz E-zdroje
- Klíčová slova
- Cell biology, MDM2, Mitochondria, Nutlin-3, P53, SWATH-MS,
- MeSH
- dihydrolipoamiddehydrogenasa metabolismus MeSH
- HCT116 buňky MeSH
- imidazoly farmakologie MeSH
- lidé MeSH
- mapy interakcí proteinů účinky léků MeSH
- membránový potenciál mitochondrií účinky léků MeSH
- mitochondrie účinky léků metabolismus MeSH
- piperaziny farmakologie MeSH
- protoonkogenní proteiny c-mdm2 metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- dihydrolipoamiddehydrogenasa MeSH
- imidazoly MeSH
- nutlin 3 MeSH Prohlížeč
- piperaziny MeSH
- protoonkogenní proteiny c-mdm2 MeSH
Drugs targeting MDM2's hydrophobic pocket activate p53. However, these agents act allosterically and have agonist effects on MDM2's protein interaction landscape. Dominant p53-independent MDM2-drug responsive-binding proteins have not been stratified. We used as a variable the differential expression of MDM2 protein as a function of cell density to identify Nutlin-3 responsive MDM2-binding proteins that are perturbed independent of cell density using SWATH-MS. Dihydrolipoamide dehydrogenase, the E3 subunit of the mitochondrial pyruvate dehydrogenase complex, was one of two Nutlin-3 perturbed proteins identified fours hour posttreatment at two cell densities. Immunoblotting confirmed that dihydrolipoamide dehydrogenase was induced by Nutlin-3. Depletion of MDM2 using siRNA also elevated dihydrolipoamide dehydrogenase in Nutlin-3 treated cells. Mitotracker confirmed that Nutlin-3 inhibits mitochondrial activity. Enrichment of mitochondria using TOM22+ immunobeads and TMT labeling defined key changes in the mitochondrial proteome after Nutlin-3 treatment. Proximity ligation identified rearrangements of cellular protein-protein complexes in situ. In response to Nutlin-3, a reduction of dihydrolipoamide dehydrogenase/dihydrolipoamide acetyltransferase protein complexes highlighted a disruption of the pyruvate dehydrogenase complex. This coincides with an increase in MDM2/dihydrolipoamide dehydrogenase complexes in the nucleus that was further enhanced by the nuclear export inhibitor Leptomycin B. The data suggest one therapeutic impact of MDM2 drugs might be on the early perturbation of specific protein-protein interactions within the mitochondria. This methodology forms a blueprint for biomarker discovery that can identify rearrangements of MDM2 protein-protein complexes in drug-treated cells.
CRUK and MRC Oxford Institute for Radiation Oncology University of Oxford Oxford UK
Institute of Genetics and Molecular Medicine University of Edinburgh Edinburgh Scotland UK
Regional Centre for Applied Molecular Oncology Masaryk Memorial Cancer Institute Brno Czech Republic
Zobrazit více v PubMed
Cohen, P. , Tcherpakov, M. , Will the ubiquitin system furnish as many drug targets as protein kinases? Cell 2010, 143, 686–693. PubMed
Sheffner, A. L. , Adachi, R. , Lipoic acid as a growth stimulant for Streptococcus faecalis in the presence of limiting quantities of isoleucine and valine. Arch. Biochem. Biophys. 1957, 72, 163–168. PubMed
Perez Fidalgo, J. A. , Garcia Fabregat, L. , Cervantes, A. , Margulies, A. et al., Management of chemotherapy extravasation: ESMO–EONS clinical practice guidelines. Eur. J. Oncol. Nurs. 2012, 16, 528–534. PubMed
Haupt, Y. , Maya, R. , Kazaz, A. , Oren, M. , Mdm2 promotes the rapid degradation of p53. Nature 1997, 387, 296–299. PubMed
Vassilev, L. T. , Vu, B. T. , Graves, B. , Carvajal, D. et al., In vivo activation of the p53 pathway by small‐molecule antagonists of MDM2. Science 2004, 303, 844–848. PubMed
Leach, F. S. , Tokino, T. , Meltzer, P. , Burrell, M. et al., p53 mutation and MDM2 amplification in human soft tissue sarcomas. Cancer Res. 1993, 53, 2231–2234. PubMed
Taylor, B. S. , Barretina, J. , Maki, R. G. , Antonescu, C. R. et al., Advances in sarcoma genomics and new therapeutic targets. Nat. Rev. Cancer 2011, 11, 541–557. PubMed PMC
Ray‐Coquard, I. , Blay, J. Y. , Italiano, A. , Le Cesne, A. et al., Effect of the MDM2 antagonist RG7112 on the P53 pathway in patients with MDM2‐amplified, well‐differentiated or dedifferentiated liposarcoma: an exploratory proof‐of‐mechanism study. Lancet Oncol. 2012, 13, 1133–1140. PubMed
Hoe, K. K. , Verma, C. S. , Lane, D. P. , Drugging the p53 pathway: understanding the route to clinical efficacy. Nat. Rev. Drug Discov. 2014, 13, 217–236. PubMed
Pettersson, S. , Sczaniecka, M. , McLaren, L. , Russell, F. et al., Non‐degradative ubiquitination of the Notch1 receptor by the E3 ligase MDM2 activates the Notch signalling pathway. Biochem. J. 2013, 450, 523–536. PubMed
Nicholson, J. , Scherl, A. , Way, L. , Blackburn, E. et al., A systems wide mass spectrometric based linear motif screen to identify dominant in‐vivo interacting proteins for the ubiquitin ligase MDM2. Cell Signal. 2014, 26, 1243–1257. PubMed
Crawford, L. , Leppard, K. , Lane, D. , Harlow, E. , Cellular proteins reactive with monoclonal antibodies directed against simian virus 40 T‐antigen. J. Virol. 1982, 42, 612–620. PubMed PMC
Ohnstad, H. O. , Paulsen, E. B. , Noordhuis, P. , Berg, M. et al., MDM2 antagonist Nutlin‐3a potentiates antitumour activity of cytotoxic drugs in sarcoma cell lines. BMC Cancer 2011, 11, 1–11. PubMed PMC
Peirce, S. K. , Findley, H. W. , The MDM2 antagonist nutlin‐3 sensitizes p53‐null neuroblastoma cells to doxorubicin via E2F1 and TAp73. Int. J. Oncol. 2009, 34, 1395–1402. PubMed
Brown, C. J. , Lain, S. , Verma, C. S. , Fersht, A. R. , Lane, D. P. , Awakening guardian angels: drugging the p53 pathway. Nat. Rev. Cancer 2009, 9, 862–873. PubMed
Wallace, M. , Worrall, E. , Pettersson, S. , Hupp, T. R. , Ball, K. L. , Dual‐site regulation of MDM2 E3‐ubiquitin ligase activity. Mol. Cell 2006, 23, 251–263. PubMed
Yu, G. W. , Rudiger, S. , Veprintsev, D. , Freund, S. et al., The central region of HDM2 provides a second binding site for p53. Proc. Natl. Acad. Sci. USA 2006, 103, 1227–1232. PubMed PMC
Nicholson, J. , Neelagandan, K. , Huart, A. S. , Ball, K. et al., An iTRAQ proteomics screen reveals the effects of the MDM2 binding ligand Nutlin‐3 on cellular proteostasis. J. Proteome Res. 2012, 11, 5464–5478. PubMed
Fraser, J. A. , Worrall, E. G. , Lin, Y. , Landre, V. et al., Phosphomimetic mutation of the N‐terminal lid of MDM2 enhances the polyubiquitination of p53 through stimulation of E2‐ubiquitin thioester hydrolysis. J. Mol. Biol. 2015, 427, 1728–1747. PubMed
Bar, J. , Cohen‐Noyman, E. , Geiger, B. , Oren, M. , Attenuation of the p53 response to DNA damage by high cell density. Oncogene 2004, 23, 2128–2137. PubMed
Lee, S. Y. , Shin, S. J. , Kim, H. S. , ERK1/2 activation mediated by the nutlin3 induced mitochondrial translocation of p53. Int. J. Oncol. 2013, 42, 1027–1035. PubMed
Kruger, N. J. , The Bradford method for protein quantitation. Methods Mol. Biol. 1994, 32, 9–15. PubMed
Hupp, T. R. , Lane, D. P. , Regulation of the cryptic sequence‐specific DNA‐binding function of p53 by protein kinases. Cold Spring Harb. Symp. Quant. Biol. 1994, 59, 195–206. PubMed
Soderberg, O. , Leuchowius, K. J. , Gullberg, M. , Jarvius, M. et al., Characterizing proteins and their interactions in cells and tissues using the in situ proximity ligation assay. Methods 2008, 45, 227–232. PubMed
Wisniewski, J. R. , Zougman, A. , Nagaraj, N. , Mann, M. , Universal sample preparation method for proteome analysis. Nat. Methods 2009, 6, 359–362. PubMed
Gillet, L. C. , Navarro, P. , Tate, S. , Rost, H. et al., Targeted data extraction of the MS/MS spectra generated by data‐independent acquisition: a new concept for consistent and accurate proteome analysis. Mol. Cell Proteomics 2012, 11, O111 016717. PubMed PMC
Maslon, M. M. , Hupp, T. R. , Drug discovery and mutant p53. Trends Cell Biol. 2010, 20, 542–555. PubMed
Yin, Y. , Stephen, C. W. , Luciani, M. G. , Fahraeus, R. , p53 Stability and activity is regulated by Mdm2‐mediated induction of alternative p53 translation products. Nat. Cell Biol. 2002, 4, 462–467. PubMed
Bouchalova, P. , Nenutil, R. , Muller, P. , Hrstka, R. et al., Mutant p53 accumulation in human breast cancer is not an intrinsic property nor dependent on structural or functional disruption but is regulated by exogenous stress and receptor status. J. Pathol. 2014, 233, 238–246. PubMed
Li, R. , Luo, X. , Wu, J. , Thangthaeng, N. et al., Mitochondrial dihydrolipoamide dehydrogenase is upregulated in response to intermittent hypoxic preconditioning. Int. J. Med. Sci. 2015, 12, 432–440. PubMed PMC
Bartke, T. , Vermeulen, M. , Xhemalce, B. , Robson, S. C. et al., Nucleosome‐interacting proteins regulated by DNA and histone methylation. Cell 2010, 143, 470–484. PubMed PMC
Vaseva, A. V. , Marchenko, N. D. , Moll, U. M. , The transcription‐independent mitochondrial p53 program is a major contributor to nutlin‐induced apoptosis in tumor cells. Cell Cycle 2009, 8, 1711–1719. PubMed PMC
Sui, H. , Zhou, M. , Chen, Q. , Lane, H. C. , Imamichi, T. , siRNA enhances DNA‐mediated interferon lambda‐1 response through crosstalk between RIG‐I and IFI16 signalling pathway. Nucleic Acids Res. 2014, 42, 583–598. PubMed PMC
Chazotte, B. , Labeling mitochondria with MitoTracker dyes. Cold Spring Harb. Protoc. 2011, 2011, 990–992. PubMed
Hornig‐Do, H. T. , Gunther, G. , Bust, M. , Lehnartz, P. et al., Isolation of functional pure mitochondria by superparamagnetic microbeads. Anal. Biochem. 2009, 389, 1–5. PubMed
Rauniyar, N. , Yates, J. R. , 3rd, Isobaric labeling‐based relative quantification in shotgun proteomics. J. Proteome Res. 2014, 13, 5293–5309. PubMed PMC
Guo, T. , Zhu, Y. , Gan, C. S. , Lee, S. S. et al., Quantitative proteomics discloses MET expression in mitochondria as a direct target of MET kinase inhibitor in cancer cells. Mol. Cell Proteomics 2010, 9, 2629–2641. PubMed PMC
Brautigam, C. A. , Wynn, R. M. , Chuang, J. L. , Machius, M. et al., Structural insight into interactions between dihydrolipoamide dehydrogenase (E3) and E3 binding protein of human pyruvate dehydrogenase complex. Structure 2006, 14, 611–621. PubMed PMC
Koos, B. , Andersson, L. , Clausson, C. M. , Grannas, K. et al., Analysis of protein interactions in situ by proximity ligation assays. Curr. Top Microbiol. Immunol. 2014, 377, 111–126. PubMed
Turtoi, A. , Blomme, A. , Debois, D. , Somja, J. et al., Organized proteomic heterogeneity in colorectal cancer liver metastases and implications for therapies. Hepatology 2014, 59, 924–934. PubMed
Ostasiewicz, P. , Zielinska, D. F. , Mann, M. , Wisniewski, J. R. , Proteome, phosphoproteome, and N‐glycoproteome are quantitatively preserved in formalin‐fixed paraffin‐embedded tissue and analyzable by high‐resolution mass spectrometry. J. Proteome Res. 2010, 9, 3688–3700. PubMed
Teng, Y. N. , Liao, M. H. , Lin, Y. B. , Kuo, P. L. , Kuo, T. Y. , Expression of lrwd1 in mouse testis and its centrosomal localization. Int. J. Androl. 2010, 33, 832–840. PubMed
Giri, S. , Aggarwal, V. , Pontis, J. , Shen, Z. et al., The preRC protein ORCA organizes heterochromatin by assembling histone H3 lysine 9 methyltransferases on chromatin. eLife 2015, 4, e06496. PubMed PMC
Ahting, U. , Thun, C. , Hegerl, R. , Typke, D. et al., The TOM core complex: the general protein import pore of the outer membrane of mitochondria. J. Cell Biol. 1999, 147, 959–968. PubMed PMC
Esposito, F. , Tornincasa, M. , Federico, A. , Chiappetta, G. et al., High‐mobility group A1 protein inhibits p53‐mediated intrinsic apoptosis by interacting with Bcl‐2 at mitochondria. Cell Death Dis. 2012, 3, e383. PubMed PMC
Lindenboim, L. , Borner, C. , Stein, R. , Nuclear proteins acting on mitochondria. Biochim. Biophys. Acta 2011, 1813, 584–596. PubMed
Zanin, M. K. , Donohue, J. M. , Everitt, B. A. , Evidence that core histone H3 is targeted to the mitochondria in Brassica oleracea . Cell Biol. Int. 2010, 34, 997–1003. PubMed
Bellot, G. , Cartron, P. F. , Er, E. , Oliver, L. et al., TOM22, a core component of the mitochondria outer membrane protein translocation pore, is a mitochondrial receptor for the proapoptotic protein Bax. Cell Death Differ. 2007, 14, 785–794. PubMed
Iyappan, S. , Wollscheid, H. P. , Rojas‐Fernandez, A. , Marquardt, A. et al., Turning the RING domain protein MdmX into an active ubiquitin‐protein ligase. J. Biol. Chem. 2010, 285, 33065–33072. PubMed PMC
Ponnuswamy, A. , Hupp, T. , Fahraeus, R. , Concepts in MDM2 signaling: allosteric regulation and feedback loops. Genes Cancer 2012, 3, 291–297. PubMed PMC
Worrall, E. G. , Wawrzynow, B. , Worrall, L. , Walkinshaw, M. et al., Regulation of the E3 ubiquitin ligase activity of MDM2 by an N‐terminal pseudo‐substrate motif. J. Chem. Biol. 2009, 2, 113–129. PubMed PMC
CHIP-dependent regulation of the actin cytoskeleton is linked to neuronal cell membrane integrity