Rearrangement of mitochondrial pyruvate dehydrogenase subunit dihydrolipoamide dehydrogenase protein-protein interactions by the MDM2 ligand nutlin-3

. 2016 Sep ; 16 (17) : 2327-44.

Jazyk angličtina Země Německo Médium print

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid27273042

Grantová podpora
BB/C511599/1 Biotechnology and Biological Sciences Research Council - United Kingdom
BB/K011278/1 Biotechnology and Biological Sciences Research Council - United Kingdom

Drugs targeting MDM2's hydrophobic pocket activate p53. However, these agents act allosterically and have agonist effects on MDM2's protein interaction landscape. Dominant p53-independent MDM2-drug responsive-binding proteins have not been stratified. We used as a variable the differential expression of MDM2 protein as a function of cell density to identify Nutlin-3 responsive MDM2-binding proteins that are perturbed independent of cell density using SWATH-MS. Dihydrolipoamide dehydrogenase, the E3 subunit of the mitochondrial pyruvate dehydrogenase complex, was one of two Nutlin-3 perturbed proteins identified fours hour posttreatment at two cell densities. Immunoblotting confirmed that dihydrolipoamide dehydrogenase was induced by Nutlin-3. Depletion of MDM2 using siRNA also elevated dihydrolipoamide dehydrogenase in Nutlin-3 treated cells. Mitotracker confirmed that Nutlin-3 inhibits mitochondrial activity. Enrichment of mitochondria using TOM22+ immunobeads and TMT labeling defined key changes in the mitochondrial proteome after Nutlin-3 treatment. Proximity ligation identified rearrangements of cellular protein-protein complexes in situ. In response to Nutlin-3, a reduction of dihydrolipoamide dehydrogenase/dihydrolipoamide acetyltransferase protein complexes highlighted a disruption of the pyruvate dehydrogenase complex. This coincides with an increase in MDM2/dihydrolipoamide dehydrogenase complexes in the nucleus that was further enhanced by the nuclear export inhibitor Leptomycin B. The data suggest one therapeutic impact of MDM2 drugs might be on the early perturbation of specific protein-protein interactions within the mitochondria. This methodology forms a blueprint for biomarker discovery that can identify rearrangements of MDM2 protein-protein complexes in drug-treated cells.

Zobrazit více v PubMed

Cohen, P. , Tcherpakov, M. , Will the ubiquitin system furnish as many drug targets as protein kinases? Cell 2010, 143, 686–693. PubMed

Sheffner, A. L. , Adachi, R. , Lipoic acid as a growth stimulant for Streptococcus faecalis in the presence of limiting quantities of isoleucine and valine. Arch. Biochem. Biophys. 1957, 72, 163–168. PubMed

Perez Fidalgo, J. A. , Garcia Fabregat, L. , Cervantes, A. , Margulies, A. et al., Management of chemotherapy extravasation: ESMO–EONS clinical practice guidelines. Eur. J. Oncol. Nurs. 2012, 16, 528–534. PubMed

Haupt, Y. , Maya, R. , Kazaz, A. , Oren, M. , Mdm2 promotes the rapid degradation of p53. Nature 1997, 387, 296–299. PubMed

Vassilev, L. T. , Vu, B. T. , Graves, B. , Carvajal, D. et al., In vivo activation of the p53 pathway by small‐molecule antagonists of MDM2. Science 2004, 303, 844–848. PubMed

Leach, F. S. , Tokino, T. , Meltzer, P. , Burrell, M. et al., p53 mutation and MDM2 amplification in human soft tissue sarcomas. Cancer Res. 1993, 53, 2231–2234. PubMed

Taylor, B. S. , Barretina, J. , Maki, R. G. , Antonescu, C. R. et al., Advances in sarcoma genomics and new therapeutic targets. Nat. Rev. Cancer 2011, 11, 541–557. PubMed PMC

Ray‐Coquard, I. , Blay, J. Y. , Italiano, A. , Le Cesne, A. et al., Effect of the MDM2 antagonist RG7112 on the P53 pathway in patients with MDM2‐amplified, well‐differentiated or dedifferentiated liposarcoma: an exploratory proof‐of‐mechanism study. Lancet Oncol. 2012, 13, 1133–1140. PubMed

Hoe, K. K. , Verma, C. S. , Lane, D. P. , Drugging the p53 pathway: understanding the route to clinical efficacy. Nat. Rev. Drug Discov. 2014, 13, 217–236. PubMed

Pettersson, S. , Sczaniecka, M. , McLaren, L. , Russell, F. et al., Non‐degradative ubiquitination of the Notch1 receptor by the E3 ligase MDM2 activates the Notch signalling pathway. Biochem. J. 2013, 450, 523–536. PubMed

Nicholson, J. , Scherl, A. , Way, L. , Blackburn, E. et al., A systems wide mass spectrometric based linear motif screen to identify dominant in‐vivo interacting proteins for the ubiquitin ligase MDM2. Cell Signal. 2014, 26, 1243–1257. PubMed

Crawford, L. , Leppard, K. , Lane, D. , Harlow, E. , Cellular proteins reactive with monoclonal antibodies directed against simian virus 40 T‐antigen. J. Virol. 1982, 42, 612–620. PubMed PMC

Ohnstad, H. O. , Paulsen, E. B. , Noordhuis, P. , Berg, M. et al., MDM2 antagonist Nutlin‐3a potentiates antitumour activity of cytotoxic drugs in sarcoma cell lines. BMC Cancer 2011, 11, 1–11. PubMed PMC

Peirce, S. K. , Findley, H. W. , The MDM2 antagonist nutlin‐3 sensitizes p53‐null neuroblastoma cells to doxorubicin via E2F1 and TAp73. Int. J. Oncol. 2009, 34, 1395–1402. PubMed

Brown, C. J. , Lain, S. , Verma, C. S. , Fersht, A. R. , Lane, D. P. , Awakening guardian angels: drugging the p53 pathway. Nat. Rev. Cancer 2009, 9, 862–873. PubMed

Wallace, M. , Worrall, E. , Pettersson, S. , Hupp, T. R. , Ball, K. L. , Dual‐site regulation of MDM2 E3‐ubiquitin ligase activity. Mol. Cell 2006, 23, 251–263. PubMed

Yu, G. W. , Rudiger, S. , Veprintsev, D. , Freund, S. et al., The central region of HDM2 provides a second binding site for p53. Proc. Natl. Acad. Sci. USA 2006, 103, 1227–1232. PubMed PMC

Nicholson, J. , Neelagandan, K. , Huart, A. S. , Ball, K. et al., An iTRAQ proteomics screen reveals the effects of the MDM2 binding ligand Nutlin‐3 on cellular proteostasis. J. Proteome Res. 2012, 11, 5464–5478. PubMed

Fraser, J. A. , Worrall, E. G. , Lin, Y. , Landre, V. et al., Phosphomimetic mutation of the N‐terminal lid of MDM2 enhances the polyubiquitination of p53 through stimulation of E2‐ubiquitin thioester hydrolysis. J. Mol. Biol. 2015, 427, 1728–1747. PubMed

Bar, J. , Cohen‐Noyman, E. , Geiger, B. , Oren, M. , Attenuation of the p53 response to DNA damage by high cell density. Oncogene 2004, 23, 2128–2137. PubMed

Lee, S. Y. , Shin, S. J. , Kim, H. S. , ERK1/2 activation mediated by the nutlin3 induced mitochondrial translocation of p53. Int. J. Oncol. 2013, 42, 1027–1035. PubMed

Kruger, N. J. , The Bradford method for protein quantitation. Methods Mol. Biol. 1994, 32, 9–15. PubMed

Hupp, T. R. , Lane, D. P. , Regulation of the cryptic sequence‐specific DNA‐binding function of p53 by protein kinases. Cold Spring Harb. Symp. Quant. Biol. 1994, 59, 195–206. PubMed

Soderberg, O. , Leuchowius, K. J. , Gullberg, M. , Jarvius, M. et al., Characterizing proteins and their interactions in cells and tissues using the in situ proximity ligation assay. Methods 2008, 45, 227–232. PubMed

Wisniewski, J. R. , Zougman, A. , Nagaraj, N. , Mann, M. , Universal sample preparation method for proteome analysis. Nat. Methods 2009, 6, 359–362. PubMed

Gillet, L. C. , Navarro, P. , Tate, S. , Rost, H. et al., Targeted data extraction of the MS/MS spectra generated by data‐independent acquisition: a new concept for consistent and accurate proteome analysis. Mol. Cell Proteomics 2012, 11, O111 016717. PubMed PMC

Maslon, M. M. , Hupp, T. R. , Drug discovery and mutant p53. Trends Cell Biol. 2010, 20, 542–555. PubMed

Yin, Y. , Stephen, C. W. , Luciani, M. G. , Fahraeus, R. , p53 Stability and activity is regulated by Mdm2‐mediated induction of alternative p53 translation products. Nat. Cell Biol. 2002, 4, 462–467. PubMed

Bouchalova, P. , Nenutil, R. , Muller, P. , Hrstka, R. et al., Mutant p53 accumulation in human breast cancer is not an intrinsic property nor dependent on structural or functional disruption but is regulated by exogenous stress and receptor status. J. Pathol. 2014, 233, 238–246. PubMed

Li, R. , Luo, X. , Wu, J. , Thangthaeng, N. et al., Mitochondrial dihydrolipoamide dehydrogenase is upregulated in response to intermittent hypoxic preconditioning. Int. J. Med. Sci. 2015, 12, 432–440. PubMed PMC

Bartke, T. , Vermeulen, M. , Xhemalce, B. , Robson, S. C. et al., Nucleosome‐interacting proteins regulated by DNA and histone methylation. Cell 2010, 143, 470–484. PubMed PMC

Vaseva, A. V. , Marchenko, N. D. , Moll, U. M. , The transcription‐independent mitochondrial p53 program is a major contributor to nutlin‐induced apoptosis in tumor cells. Cell Cycle 2009, 8, 1711–1719. PubMed PMC

Sui, H. , Zhou, M. , Chen, Q. , Lane, H. C. , Imamichi, T. , siRNA enhances DNA‐mediated interferon lambda‐1 response through crosstalk between RIG‐I and IFI16 signalling pathway. Nucleic Acids Res. 2014, 42, 583–598. PubMed PMC

Chazotte, B. , Labeling mitochondria with MitoTracker dyes. Cold Spring Harb. Protoc. 2011, 2011, 990–992. PubMed

Hornig‐Do, H. T. , Gunther, G. , Bust, M. , Lehnartz, P. et al., Isolation of functional pure mitochondria by superparamagnetic microbeads. Anal. Biochem. 2009, 389, 1–5. PubMed

Rauniyar, N. , Yates, J. R. , 3rd, Isobaric labeling‐based relative quantification in shotgun proteomics. J. Proteome Res. 2014, 13, 5293–5309. PubMed PMC

Guo, T. , Zhu, Y. , Gan, C. S. , Lee, S. S. et al., Quantitative proteomics discloses MET expression in mitochondria as a direct target of MET kinase inhibitor in cancer cells. Mol. Cell Proteomics 2010, 9, 2629–2641. PubMed PMC

Brautigam, C. A. , Wynn, R. M. , Chuang, J. L. , Machius, M. et al., Structural insight into interactions between dihydrolipoamide dehydrogenase (E3) and E3 binding protein of human pyruvate dehydrogenase complex. Structure 2006, 14, 611–621. PubMed PMC

Koos, B. , Andersson, L. , Clausson, C. M. , Grannas, K. et al., Analysis of protein interactions in situ by proximity ligation assays. Curr. Top Microbiol. Immunol. 2014, 377, 111–126. PubMed

Turtoi, A. , Blomme, A. , Debois, D. , Somja, J. et al., Organized proteomic heterogeneity in colorectal cancer liver metastases and implications for therapies. Hepatology 2014, 59, 924–934. PubMed

Ostasiewicz, P. , Zielinska, D. F. , Mann, M. , Wisniewski, J. R. , Proteome, phosphoproteome, and N‐glycoproteome are quantitatively preserved in formalin‐fixed paraffin‐embedded tissue and analyzable by high‐resolution mass spectrometry. J. Proteome Res. 2010, 9, 3688–3700. PubMed

Teng, Y. N. , Liao, M. H. , Lin, Y. B. , Kuo, P. L. , Kuo, T. Y. , Expression of lrwd1 in mouse testis and its centrosomal localization. Int. J. Androl. 2010, 33, 832–840. PubMed

Giri, S. , Aggarwal, V. , Pontis, J. , Shen, Z. et al., The preRC protein ORCA organizes heterochromatin by assembling histone H3 lysine 9 methyltransferases on chromatin. eLife 2015, 4, e06496. PubMed PMC

Ahting, U. , Thun, C. , Hegerl, R. , Typke, D. et al., The TOM core complex: the general protein import pore of the outer membrane of mitochondria. J. Cell Biol. 1999, 147, 959–968. PubMed PMC

Esposito, F. , Tornincasa, M. , Federico, A. , Chiappetta, G. et al., High‐mobility group A1 protein inhibits p53‐mediated intrinsic apoptosis by interacting with Bcl‐2 at mitochondria. Cell Death Dis. 2012, 3, e383. PubMed PMC

Lindenboim, L. , Borner, C. , Stein, R. , Nuclear proteins acting on mitochondria. Biochim. Biophys. Acta 2011, 1813, 584–596. PubMed

Zanin, M. K. , Donohue, J. M. , Everitt, B. A. , Evidence that core histone H3 is targeted to the mitochondria in Brassica oleracea . Cell Biol. Int. 2010, 34, 997–1003. PubMed

Bellot, G. , Cartron, P. F. , Er, E. , Oliver, L. et al., TOM22, a core component of the mitochondria outer membrane protein translocation pore, is a mitochondrial receptor for the proapoptotic protein Bax. Cell Death Differ. 2007, 14, 785–794. PubMed

Iyappan, S. , Wollscheid, H. P. , Rojas‐Fernandez, A. , Marquardt, A. et al., Turning the RING domain protein MdmX into an active ubiquitin‐protein ligase. J. Biol. Chem. 2010, 285, 33065–33072. PubMed PMC

Ponnuswamy, A. , Hupp, T. , Fahraeus, R. , Concepts in MDM2 signaling: allosteric regulation and feedback loops. Genes Cancer 2012, 3, 291–297. PubMed PMC

Worrall, E. G. , Wawrzynow, B. , Worrall, L. , Walkinshaw, M. et al., Regulation of the E3 ubiquitin ligase activity of MDM2 by an N‐terminal pseudo‐substrate motif. J. Chem. Biol. 2009, 2, 113–129. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...