Extension of the Internal Standard Method for Determination of Thermodynamic Acidity Constants of Compounds Sparingly Soluble in Water by Capillary Zone Electrophoresis
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
35036810
PubMed Central
PMC8756569
DOI
10.1021/acsomega.1c06224
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
The paper extends applicability of the internal standard method published in 2009 (Fuguet E. et al., J. Chromatogr. A 2009, 1216(17), 3646). Although the original capillary zone electrophoresis method was suggested to determine thermodynamic acidity constants of compounds sparingly soluble in aqueous solutions by carrying out only runs at two different pH values (i.e., without the need to perform many experiments over the appropriate pH range including the form of a low-ionized analyte), we proved that the approach also virtually overcomes any interactions of the analyte in mixed solvents, so that the experiments can be carried out in a methanol-water buffer where the solubility is much better. Applicability of the extended method is illustrated on six selected β-blockers.
Zobrazit více v PubMed
Gluck S. J.; Cleveland J. A. Investigation of experimental approaches to the determination of pKa values by capillary electrophoresis. J. Chromatogr. A 1994, 680, 49–56. 10.1016/0021-9673(94)80051-0. DOI
Poole S. K.; Patel S.; Dehring K.; Workman H.; Poole C. F. Determination of acid dissociation constants by capillary electrophoresis. J. Chromatogr. A 2004, 1037, 445–454. 10.1016/j.chroma.2004.02.087. PubMed DOI
Nowak P.; Woźniakiewicz M.; Kościelniak P. Application of capillary electrophoresis in determination of acid dissociation constant values. J. Chromatogr. A 2015, 1377, 1–12. 10.1016/j.chroma.2014.12.032. PubMed DOI
Ishihama Y.; Oda Y.; Asakawa N. Microscale Determination of Dissociation Constants of Multivalent Pharmaceuticals by Capillary Electrophoresis. J. Pharm. Sci. 1994, 83, 1500–1507. 10.1002/jps.2600831025. PubMed DOI
Malý M.; Boublík M.; Pocrnić M.; Ansorge M.; Lorinčíková K.; Svobodová J.; Hruška V.; Dubský P.; Gaš B. Determination of thermodynamic acidity constants and limiting ionic mobilities of weak electrolytes by capillary electrophoresis using a new free software AnglerFish. Electrophoresis 2020, 41, 493–501. Article10.1002/elps.201900283. PubMed DOI
de Nogales V.; Ruiz R.; Rosés M.; Ràfols C.; Bosch E. Background electrolytes in 50% methanol/water for the determination of acidity constants of basic drugs by capillary zone electrophoresis. J. Chromatogr. A 2006, 1123, 113–120. 10.1016/j.chroma.2006.05.008. PubMed DOI
Rosés M.; Bosch E. Influence of mobile phase acid-base equilibria on the chromatographic behaviour of protolytic compounds. J. Chromatogr. A 2002, 982, 1–30. 10.1016/S0021-9673(02)01444-9. PubMed DOI
Avdeef A.; Comer J. E. A.; Thomson S. J. pH-Metric log P. 3. Glass electrode calibration in methanol-water, applied to pKa determination of water-insoluble substances. Anal. Chem. 1993, 65, 42–49. 10.1021/ac00049a010. DOI
Rived F.; Canals I.; Bosch E.; Rosés M. Acidity in methanol-water. Anal. Chim. Acta 2001, 439, 315–333. 10.1016/S0003-2670(01)01046-7. DOI
Ehala S.; Míšek J.; Stará I. G.; Starý I.; Kašička V. Determination of acid-base dissociation constants of azahelicenes by capillary zone electrophoresis. J. Sep. Sci. 2008, 31, 2686–2693. 10.1002/jssc.200800227. PubMed DOI
Fuguet E.; Ràfols C.; Bosch E.; Rosés M. Fast high-throughput method for the determination of acidity constants by capillary electrophoresis. J. Chromatogr. A 2009, 1216, 3646–3651. 10.1016/j.chroma.2008.12.090. PubMed DOI
Cabot J. M.; Fuguet E.; Ràfols C.; Rosés M. Fast high-throughput method for the determination of acidity constants by capillary electrophoresis. II. Acidic internal standards. J. Chromatogr. A 2010, 1217, 8340–8345. 10.1016/j.chroma.2010.10.060. PubMed DOI
Fuguet E.; Ràfols C.; Rosés M. A fast high throughput method for the determination of acidity constants by capillary electrophoresis. 3. Basic internal standards. J. Chromatogr. A 2011, 1218, 3928–3934. 10.1016/j.chroma.2011.04.054. PubMed DOI
Cabot J. M.; Fuguet E.; Ràfols C.; Rosés M. Determination of acidity constants by the capillary electrophoresis internal standard method. IV. Polyprotic compounds. J. Chromatogr. A 2013, 1279, 108–116. 10.1016/j.chroma.2013.01.018. PubMed DOI
Cabot J. M.; Fuguet E.; Rosés M. Determination of acidity constants of sparingly soluble drugs in aqueous solution by the internal standard capillary electrophoresis method. Electrophoresis 2014, 35, 3564–3569. 10.1002/elps.201400353. PubMed DOI
Gravador R. S.; Fuguet E.; Ràfols C.; Rosés M. Temperature variation effects on the determination of acidity constants through the internal standard-capillary electrophoresis method. Electrophoresis 2013, 34, 1203–1211. 10.1002/elps.201200584. PubMed DOI
Cabot J. M.; Fuguet E.; Rosés M. Internal Standard Capillary Electrophoresis as a High-Throughput Method for pKa Determination in Drug Discovery and Development. ACS Comb. Sci. 2014, 16, 518–525. 10.1021/co500059p. PubMed DOI
Cabot J. M.; Fuguet E.; Rosés M.; Smejkal P.; Breadmore M. C. Novel Instrument for Automated pKa Determination by Internal Standard Capillary Electrophoresis. Anal. Chem. 2015, 87, 6165–6172. 10.1021/acs.analchem.5b00845. PubMed DOI
Good N. E.; Izawa S.. [3] Hydrogen ion buffers. In Methods in Enzymology; Academic Press, 1972; Vol. 24, pp 53–68. PubMed
Gebauer P.; Pantůiková P.; Bocek P. Capillary zone electrophoresis in phosphate buffer--known or unknown?. J. Chromatogr. A 2000, 894, 89–93. 10.1016/S0021-9673(00)00707-X. PubMed DOI
Fuguet E.; Reta M.; Gibert C.; Rosés M.; Bosch E.; Ràfols C. Critical evaluation of buffering solutions for pKadetermination by capillary electrophoresis. Electrophoresis 2008, 29, 2841–2851. 10.1002/elps.200700869. PubMed DOI
Šlampová A.; Křivánková L.; Gebauer P.; Boček P. Standard systems for measurement of pKs and ionic mobilities. J. Chromatogr. A 2008, 1213, 25–30. 10.1016/j.chroma.2008.08.101. PubMed DOI
Šlampová A.; Křivánková L.; Gebauer P.; Boček P. Standard systems for measurement of pK values and ionic mobilities. J. Chromatogr. A 2009, 1216, 3637–3641. 10.1016/j.chroma.2009.01.018. PubMed DOI
Williams B. A.; Vigh G. Effect of the initial potential ramp on the accuracy of electrophoretic mobilities in capillary electrophoresis. Anal. Chem. 1995, 67, 3079–3081. 10.1021/ac00113a051. DOI
Brittain H. G.Profiles of Drug Substances, Excipients and Related Methodology: Critical Compilation of pKa Values for Pharmaceutical Substances; Elsevier, 2007. PubMed
Shalaeva M.; Kenseth J.; Lombardo F.; Bastin A. Measurement of Dissociation Constants (pKa Values) of Organic Compounds by Multiplexed Capillary Electrophoresis Using Aqueous and Cosolvent Buffers**Advanced Analytical Technologies, Inc. (Formerly CombiSep), 2711 South Loop Drive, Suite 4200, Ames, IA 50010. J. Pharm. Sci. 2008, 97, 2581–2606. 10.1002/jps.21287. PubMed DOI