Determination of thermodynamic acidity constants and limiting ionic mobilities of weak electrolytes by capillary electrophoresis using a new free software AnglerFish
Language English Country Germany Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
Grant support
Czech Science Foundation - International
4135
Agilent Technologies Research Gift - International
CIII-RO-0010-13-1819
CEEPUS - International
18-11776S
GACR - International
- Keywords
- Capillary electrophoresis, Dissociation constant, Limiting mobility, Nonlinear regression, Software,
- MeSH
- Algorithms MeSH
- Electrophoresis, Capillary methods MeSH
- Electrolytes analysis chemistry MeSH
- Hydrogen-Ion Concentration MeSH
- Nonlinear Dynamics MeSH
- Osmolar Concentration MeSH
- Software * MeSH
- Thermodynamics MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Electrolytes MeSH
Thermodynamic acidity constants (acid or acid-base dissociation constants, sometimes called also as ionization constants) and limiting ionic mobilities (both of them at defined temperature, usually 25°C) are the fundamental physicochemical characteristics of a weak electrolyte, that is, weak acid or weak base or ampholyte. We introduce a novel method for determining the data of a weak electrolyte by the nonlinear regression of effective electrophoretic mobility versus buffer composition dependence when measured in a set of BGEs with various pH. To correct the experimental data for zero ionic strength we use the extended Debye-Hückel model and Onsager-Fuoss law with no simplifications. Contrary to contemporary approaches, the nonlinear regression is performed on limiting mobility data calculated by PeakMaster's correction engine, not on the raw experimental mobility data. Therefore, there is no requirement to perform all measurements at a constant ionic strength of the set of BGEs. We devised the computer program AnglerFish that performs the necessary calculations in a user-friendly fashion. All thermodynamic pKa values and limiting electrophoretic mobilities for arbitrarily charged substances having any number of ionic forms are calculated by one fit. The user input consists of the buffer composition of the set of BGEs and experimentally measured effective mobilities of the inspected weak electrolyte.
Agilent Technologies Deutschland GmbH and Co KG Liquid Phase Separations Division Waldbronn Germany
Department of Chemistry Faculty of Science University of Zagreb Zagreb Croatia
See more in PubMed
Debye, P., Hückel, E., Physik. Z. 1923, 24, 185-206.
Debye, P., Hückel, E., Physik. Z. 1923, 24, 305-325.
Onsager, L., Fuoss, R. M., J. Phys. Chem. 1932, 36, 2689-2778.
Robinson, R. A., Stokes, R. H., Electrolyte Solutions, Dover Publications, Mineola, New York, 2nd revised ed., 2002.
Hirokawa, T., Kiso Y., J. Chromatogr. 1982, 248, 341-362.
Hirokawa, T., Nishimo, M., Aoki, N., Kiso, Y., Sawamoto, Y., Yagi, T., Akiyama, J., J. Chromatogr. 1983, 271, D1-D106.
Hirokawa, T, Kiso, Y., J. Chromatogr. 1982, 252, 33-48.
Hirokawa, T., Nishino, M., Kiso, Y., J. Chromatogr. 1982, 252, 49-65.
Hirokawa, T., Kobayashi, S., Kiso, Y. J. Chromatogr. 1985, 318, 195-210.
Hirokawa, T., Gojo, T., Kiso, Y., J. Chromatogr. 1986, 369, 59-81.
Hirokawa, T., Tsuyoshi, T., Kiso, Y., J. Chromatogr. 1978, 408, 27-41.
Hirokawa, T., Gojo, T., Kiso, Y., J. Chromatogr. 1987, 390, 201-223.
Hirokawa, T., Kiso, Y., Gaš, B., Zusková, I., Vacík, J., J. Chromatogr. 1993, 628, 283-308.
Onsager, L., Phys. Z. 1927, 28, 277.
Beckers, J. L., Everaerts, F. M., Ackermans, M. T., J. Chromatogr. 1991, 537, 407-428.
Cai, J., Smith, J. T., El Rassi, Z., J. High Resol. Chromatogr. 1992, 15, 30-32.
Poole, S. K., Patel, S., Dehring, K., Workman, H., Poole, C. F., J. Chromatogr. A 2004, 1037, 445-454.
Šolínová, V., Kašička, V., Koval, D., Česnek, M., Holý, A., Electrophoresis 2006, 27, 1006-1019.
Nowak, P., Wozniakiewicz, M., Koscielniak, P., J. Chromatogr A 2015, 1377, 1-12.
Koval D., Kašička, V., Jiráček, V., Collinsová, M., Electrophoresis 2003, 24, 774-781.
Včeláková, K., Zusková, I., Kenndler, E., Gaš, B., Electrophoresis 2004, 25, 309-317.
Andrasi, M., Buglyo, P., Zekany, L., Gaspar, A., J. Pharm. Biomed. Analysis 2007, 44, 1040-1047.
Aupiais, J., Delorme, A., Baglan, N., J. Chromatogr. A 2003, 994, 199-206.
Li, D., Fu, S., Lucy, C. A., Anal. Chem. 1999, 71, 687-699.
Pitts, D., Proc. R. Soc. Lond. A 1953, 217, 43-70.
Tůmová, T., Monincová, L., Čeřovský, V., Kašička, V., Electrophoresis 2016, 37, 3186-3195.
Šlampová, A., Boček, P., Electrophoresis 2008, 29, 538-541.
Šlampová, A., Křivánková, L., Gebauer, P., Boček, P., J. Chromatogr. A 2009, 1216, 3637-3641.
Jaroš, M., Včeláková, K., Zusková, I., Gaš, B., Electrophoresis 2002, 23, 2667-2677.
Jaroš, M., Hruška, V., Štědrý, M., Zusková, I., Gaš, B., Electrophoresis 2004, 25, 3080-3085.
Hruška, V., Riesová, M., Gaš, B., Electrophoresis 2012, 33, 923-930.
Malý, M., Dovhunová, M., Dvořák, M., Gerlero, G. S., Kler, P. A., Hruška V., Dubský, P., Electrophoresis 2019, 40, 683-692.
Hruška, V., Jaroš, M., Gaš, B., Electrophoresis 2006, 27, 984-991.
Davies, C. W., Ion Association, Butterworths, London, 1962.
Levenberg, K., Quart. Appl. Math. 1944, 2, 164-168.
Marquardt, D. W., J. Soc. Indust. Appl. Math. 1963, 11, 431-441.
https://echmet.natur.cuni.cz/
https://github.com/echmet/AnglerFish
Dubský, P., Ördögová, M., Malý, M., Riesová, M., J. Chromatogr. A 2016, 1445, 158-165.