Physico-chemical characterization of bilirubin-10-sulfonate and comparison of its acid-base behavior with unconjugated bilirubin
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
34145377
PubMed Central
PMC8213708
DOI
10.1038/s41598-021-92377-8
PII: 10.1038/s41598-021-92377-8
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Unconjugated bilirubin (UCB) is the end-product of heme catabolism in the intravascular compartment. Although beneficial for human health when mildly elevated in the body, when present at greater than a critical threshold concentration, UCB exerts toxic effects that are related to its physico-chemical properties, particularly affecting the central nervous system. The aim of the present study was to characterize bilirubin-10-sulfonate (ranarubin), a naturally occurring bile pigment, including determination of its mixed acidity constants (pKa*). Thanks to the presence of the sulfonic acid moiety, this compound is more polar compared to UCB, which might theoretically solve the problem with an accurate determination of the UCB pKa* values of its propionic acid carboxylic groups. Bilirubin-10-sulfonate was synthesized by modification of a previously described procedure; and its properties were studied by mass spectrometry (MS), nuclear magnetic resonance (NMR), infrared (IR), and circular dichroism (CD) spectroscopy. Determination of pKa* values of bilirubin-10-sulfonate and UCB was performed by capillary electrophoresis with low pigment concentrations in polar buffers. The identity of the synthesized bilirubin-10-sulfonate was confirmed by MS, and the pigment was further characterized by NMR, IR, and CD spectroscopy. The pKa values of carboxylic acid moieties of bilirubin-10-sulfonate were determined to be 5.02, whereas those of UCB were determined to be 9.01. The physico-chemical properties of bilirubin-10-sulfonate were partially characterized with low pKa* values compared to those of UCB, indicating that bilirubin-10-sulfonate cannot be used as a surrogate pigment for UCB chemical studies. In addition, using a different methodological approach, the pKa* values of UCB were found to be in a mildly alkaline region, confirming the conclusions of a recent critical re-evaluation of this specific issue.
4th Department of Internal Medicine 1st Faculty of Medicine Charles University Prague Czech Republic
Department of Organic Chemistry Faculty of Science Charles University Prague Czech Republic
GI Hepatology Division University of Washington School of Medicine Seattle WA USA
Institute of Organic Chemistry and Biochemistry Czech Academy of Sciences Prague Czech Republic
University of Chemistry and Technology Prague Czech Republic
Zobrazit více v PubMed
Ostrow JD, Pascolo L, Brites D, Tiribelli C. Molecular basis of bilirubin-induced neurotoxicity. Trends Mol. Med. 2004;10:65–70. doi: 10.1016/j.molmed.2003.12.003. PubMed DOI
Vitek L, Ostrow JD. Bilirubin chemistry and metabolism; harmful and protective aspects. Curr. Pharm. Des. 2009;15:2869–2883. doi: 10.2174/138161209789058237. PubMed DOI
Ostrow JD, Celic L. Bilirubin chemistry, ionization and solubilization by bile salts. Hepatology. 1984;4:38S–45S. doi: 10.1002/hep.1840040807. PubMed DOI
Moroi Y, Matuura R, Hisadome T. Bilirubin in aqueous solution. Absorption, spectrum, aqueous solubility and dissociation constants. Bull. Chem. Soc. Jpn. 1985;58:1426–1431. doi: 10.1246/bcsj.58.1426. DOI
Ostrow JD, Celic L, Mukerjee P. Molecular and micellar associations in the pH-dependent stable and metastable dissolution of unconjugated bilirubin by bile salts. J. Lipid Res. 1988;29:335–348. doi: 10.1016/S0022-2275(20)38539-4. PubMed DOI
Tiribelli C, Ostrow JD. New concepts in bilirubin and jaundice. Hepatology. 1997;24:1296–1311. doi: 10.1002/hep.510240551. PubMed DOI
Nowak P, Wozniakiewicz M, Koscielniak P. Application of capillary electrophoresis in determination of acid dissociation constant values. J. Chromatogr. A. 2015;1377:1–12. doi: 10.1016/j.chroma.2014.12.032. PubMed DOI
Solinova V, et al. Determination of acidity constants, ionic mobilities, and hydrodynamic radii of carborane-based inhibitors of carbonic anhydrases by capillary electrophoresis. Electrophoresis. 2021;42:910–919. doi: 10.1002/elps.202000298. PubMed DOI
Maly M, et al. Determination of thermodynamic acidity constants and limiting ionic mobilities of weak electrolytes by capillary electrophoresis using a new free software AnglerFish. Electrophoresis. 2020;41:493–501. doi: 10.1002/elps.201900283. PubMed DOI
Lebanov L, Fuguet E, Melo JM, Roses M. Determination of acidity constants at 37 degrees C through the internal standard capillary electrophoresis (IS-CE) method: Internal standards and application to polyprotic drugs. Analyst. 2020;145:5897–5904. doi: 10.1039/d0an00918k. PubMed DOI
Solinova V, Kasicka V. Determination of acidity constants and ionic mobilities of polyprotic peptide hormones by CZE. Electrophoresis. 2013;34:2655–2665. doi: 10.1002/elps.201300119. PubMed DOI
Vcelakova K, Zuskova I, Kenndler E, Gas B. Determination of cationic mobilities and pKa values of 22 amino acids by capillary zone electrophoresis. Electrophoresis. 2004;25:309–317. doi: 10.1002/elps.200305751. PubMed DOI
McDonagh AF, Assisi F. The ready isomerization of bilirubin IX-a in aqueous solution. Biochem. J. 1972;129:797–800. doi: 10.1042/bj1290797. PubMed DOI PMC
Ma JS, Yan F, Wang CQ, Chen JH. Addition of sodium bisulfite to biliverdin. Chin. Chem. Lett. 1990;1:171–172.
Goncharova I, Orlov S, Urbanova M. The location of the high- and low-affinity bilirubin-binding sites on serum albumin: Ligand-competition analysis investigated by circular dichroism. Biophys. Chem. 2013;180–181:55–65. doi: 10.1016/j.bpc.2013.06.004. PubMed DOI
Goncharova I, Orlov S, Urbanova M. Chiroptical properties of bilirubin-serum albumin binding sites. Chirality. 2013;25:257–263. doi: 10.1002/chir.22143. PubMed DOI
Mukerjee P, Ostrow JD. Review: Bilirubin pKa studies: New models and theories indicate high pKa values in water, dimethylformamide and DMSO. BMC Biochem. 2010;11:15. doi: 10.1186/1471-2091-11-15. PubMed DOI PMC
Lightner DA, Holmes DL, McDonagh AF. On the acid dissociation constants of bilirubin and biliverdin. pKa values from 13C NMR spectroscopy. J. Biol. Chem. 1996;271:2397–2405. doi: 10.1074/jbc.271.5.2397. PubMed DOI
Tao L, Han J, Tao FM. Correlations and predictions of carboxylic acid pKa values using intermolecular structure and properties of hydrogen-bonded complexes. J. Phys. Chem. A. 2008;112:775–782. doi: 10.1021/jp710291c. PubMed DOI
Hahm JS, Ostrow JD, Mukerjee P, Celic L. Ionization and self-association of unconjugated bilirubin, determined by rapid solvent partition from chloroform, with further studies of bilirubin solubility. J. Lipid Res. 1992;33:1123–1137. doi: 10.1016/S0022-2275(20)40764-3. PubMed DOI
Hansen PE, Thiessen H, Brodersen R. Bilirubin acidity. Titrimetric and 13C NMR studies. Acta Chem. Scand. B. 1979;33:281–293. doi: 10.3891/acta.chem.scand.33b-0281. PubMed DOI
Lee JJ, Daly LH, Cowger ML. Bilirubin ionic equilibria—Their effects on spectra and on conformation. Res. Commun. Chem. Path. 1974;9:763–770. PubMed
Overbeek JTG, Vink CLJ, Deenstra H. The solubility of bilirubin. Rec. Trav. Chim. Pays Bas. 1955;74:81–84. doi: 10.1002/recl.19550740112. DOI
Shiels RG, et al. Unprecedented microbial conversion of biliverdin into bilirubin-10-sulfonate. Sci. Rep. 2019;9:2988. doi: 10.1038/s41598-019-39548-w. PubMed DOI PMC
Shiels RG, et al. Biliverdin and bilirubin sulfonate inhibit monosodium urate induced sterile inflammation in the rat. Eur. J. Pharm. Sci. 2020;155:105546. doi: 10.1016/j.ejps.2020.105546. PubMed DOI
Boiadjiev SE, et al. pK(a) and aggregation of bilirubin: Titrimetric and ultracentrifugation studies on water-soluble pegylated conjugates of bilirubin and fatty acids. Biochemistry. 2004;43:15617–15632. doi: 10.1021/bi0481491. PubMed DOI
Uwaya, A. Synthetic analogs of xanthoglow and pKa determination of bilirubin-C10-sulfonate. MSc Thesis, University of Nevada (2004).
Berman MD, Carey MC. Metastable and equilibrium phase diagrams of unconjugated bilirubin IXalpha as functions of pH in model bile systems: Implications for pigment gallstone formation. Am. J. Physiol. Gastrointest. Liver Physiol. 2015;308:G42–G55. doi: 10.1152/ajpgi.00277.2014. PubMed DOI PMC
Shiels RG, et al. Pharmacokinetics of bilirubin-10-sulfonate and biliverdin in the rat. Eur. J. Pharm. Sci. 2021;159:105684. doi: 10.1016/j.ejps.2020.105684. PubMed DOI