Physico-chemical characterization of bilirubin-10-sulfonate and comparison of its acid-base behavior with unconjugated bilirubin

. 2021 Jun 18 ; 11 (1) : 12896. [epub] 20210618

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid34145377
Odkazy

PubMed 34145377
PubMed Central PMC8213708
DOI 10.1038/s41598-021-92377-8
PII: 10.1038/s41598-021-92377-8
Knihovny.cz E-zdroje

Unconjugated bilirubin (UCB) is the end-product of heme catabolism in the intravascular compartment. Although beneficial for human health when mildly elevated in the body, when present at greater than a critical threshold concentration, UCB exerts toxic effects that are related to its physico-chemical properties, particularly affecting the central nervous system. The aim of the present study was to characterize bilirubin-10-sulfonate (ranarubin), a naturally occurring bile pigment, including determination of its mixed acidity constants (pKa*). Thanks to the presence of the sulfonic acid moiety, this compound is more polar compared to UCB, which might theoretically solve the problem with an accurate determination of the UCB pKa* values of its propionic acid carboxylic groups. Bilirubin-10-sulfonate was synthesized by modification of a previously described procedure; and its properties were studied by mass spectrometry (MS), nuclear magnetic resonance (NMR), infrared (IR), and circular dichroism (CD) spectroscopy. Determination of pKa* values of bilirubin-10-sulfonate and UCB was performed by capillary electrophoresis with low pigment concentrations in polar buffers. The identity of the synthesized bilirubin-10-sulfonate was confirmed by MS, and the pigment was further characterized by NMR, IR, and CD spectroscopy. The pKa values of carboxylic acid moieties of bilirubin-10-sulfonate were determined to be 5.02, whereas those of UCB were determined to be 9.01. The physico-chemical properties of bilirubin-10-sulfonate were partially characterized with low pKa* values compared to those of UCB, indicating that bilirubin-10-sulfonate cannot be used as a surrogate pigment for UCB chemical studies. In addition, using a different methodological approach, the pKa* values of UCB were found to be in a mildly alkaline region, confirming the conclusions of a recent critical re-evaluation of this specific issue.

Zobrazit více v PubMed

Ostrow JD, Pascolo L, Brites D, Tiribelli C. Molecular basis of bilirubin-induced neurotoxicity. Trends Mol. Med. 2004;10:65–70. doi: 10.1016/j.molmed.2003.12.003. PubMed DOI

Vitek L, Ostrow JD. Bilirubin chemistry and metabolism; harmful and protective aspects. Curr. Pharm. Des. 2009;15:2869–2883. doi: 10.2174/138161209789058237. PubMed DOI

Ostrow JD, Celic L. Bilirubin chemistry, ionization and solubilization by bile salts. Hepatology. 1984;4:38S–45S. doi: 10.1002/hep.1840040807. PubMed DOI

Moroi Y, Matuura R, Hisadome T. Bilirubin in aqueous solution. Absorption, spectrum, aqueous solubility and dissociation constants. Bull. Chem. Soc. Jpn. 1985;58:1426–1431. doi: 10.1246/bcsj.58.1426. DOI

Ostrow JD, Celic L, Mukerjee P. Molecular and micellar associations in the pH-dependent stable and metastable dissolution of unconjugated bilirubin by bile salts. J. Lipid Res. 1988;29:335–348. doi: 10.1016/S0022-2275(20)38539-4. PubMed DOI

Tiribelli C, Ostrow JD. New concepts in bilirubin and jaundice. Hepatology. 1997;24:1296–1311. doi: 10.1002/hep.510240551. PubMed DOI

Nowak P, Wozniakiewicz M, Koscielniak P. Application of capillary electrophoresis in determination of acid dissociation constant values. J. Chromatogr. A. 2015;1377:1–12. doi: 10.1016/j.chroma.2014.12.032. PubMed DOI

Solinova V, et al. Determination of acidity constants, ionic mobilities, and hydrodynamic radii of carborane-based inhibitors of carbonic anhydrases by capillary electrophoresis. Electrophoresis. 2021;42:910–919. doi: 10.1002/elps.202000298. PubMed DOI

Maly M, et al. Determination of thermodynamic acidity constants and limiting ionic mobilities of weak electrolytes by capillary electrophoresis using a new free software AnglerFish. Electrophoresis. 2020;41:493–501. doi: 10.1002/elps.201900283. PubMed DOI

Lebanov L, Fuguet E, Melo JM, Roses M. Determination of acidity constants at 37 degrees C through the internal standard capillary electrophoresis (IS-CE) method: Internal standards and application to polyprotic drugs. Analyst. 2020;145:5897–5904. doi: 10.1039/d0an00918k. PubMed DOI

Solinova V, Kasicka V. Determination of acidity constants and ionic mobilities of polyprotic peptide hormones by CZE. Electrophoresis. 2013;34:2655–2665. doi: 10.1002/elps.201300119. PubMed DOI

Vcelakova K, Zuskova I, Kenndler E, Gas B. Determination of cationic mobilities and pKa values of 22 amino acids by capillary zone electrophoresis. Electrophoresis. 2004;25:309–317. doi: 10.1002/elps.200305751. PubMed DOI

McDonagh AF, Assisi F. The ready isomerization of bilirubin IX-a in aqueous solution. Biochem. J. 1972;129:797–800. doi: 10.1042/bj1290797. PubMed DOI PMC

Ma JS, Yan F, Wang CQ, Chen JH. Addition of sodium bisulfite to biliverdin. Chin. Chem. Lett. 1990;1:171–172.

Goncharova I, Orlov S, Urbanova M. The location of the high- and low-affinity bilirubin-binding sites on serum albumin: Ligand-competition analysis investigated by circular dichroism. Biophys. Chem. 2013;180–181:55–65. doi: 10.1016/j.bpc.2013.06.004. PubMed DOI

Goncharova I, Orlov S, Urbanova M. Chiroptical properties of bilirubin-serum albumin binding sites. Chirality. 2013;25:257–263. doi: 10.1002/chir.22143. PubMed DOI

Mukerjee P, Ostrow JD. Review: Bilirubin pKa studies: New models and theories indicate high pKa values in water, dimethylformamide and DMSO. BMC Biochem. 2010;11:15. doi: 10.1186/1471-2091-11-15. PubMed DOI PMC

Lightner DA, Holmes DL, McDonagh AF. On the acid dissociation constants of bilirubin and biliverdin. pKa values from 13C NMR spectroscopy. J. Biol. Chem. 1996;271:2397–2405. doi: 10.1074/jbc.271.5.2397. PubMed DOI

Tao L, Han J, Tao FM. Correlations and predictions of carboxylic acid pKa values using intermolecular structure and properties of hydrogen-bonded complexes. J. Phys. Chem. A. 2008;112:775–782. doi: 10.1021/jp710291c. PubMed DOI

Hahm JS, Ostrow JD, Mukerjee P, Celic L. Ionization and self-association of unconjugated bilirubin, determined by rapid solvent partition from chloroform, with further studies of bilirubin solubility. J. Lipid Res. 1992;33:1123–1137. doi: 10.1016/S0022-2275(20)40764-3. PubMed DOI

Hansen PE, Thiessen H, Brodersen R. Bilirubin acidity. Titrimetric and 13C NMR studies. Acta Chem. Scand. B. 1979;33:281–293. doi: 10.3891/acta.chem.scand.33b-0281. PubMed DOI

Lee JJ, Daly LH, Cowger ML. Bilirubin ionic equilibria—Their effects on spectra and on conformation. Res. Commun. Chem. Path. 1974;9:763–770. PubMed

Overbeek JTG, Vink CLJ, Deenstra H. The solubility of bilirubin. Rec. Trav. Chim. Pays Bas. 1955;74:81–84. doi: 10.1002/recl.19550740112. DOI

Shiels RG, et al. Unprecedented microbial conversion of biliverdin into bilirubin-10-sulfonate. Sci. Rep. 2019;9:2988. doi: 10.1038/s41598-019-39548-w. PubMed DOI PMC

Shiels RG, et al. Biliverdin and bilirubin sulfonate inhibit monosodium urate induced sterile inflammation in the rat. Eur. J. Pharm. Sci. 2020;155:105546. doi: 10.1016/j.ejps.2020.105546. PubMed DOI

Boiadjiev SE, et al. pK(a) and aggregation of bilirubin: Titrimetric and ultracentrifugation studies on water-soluble pegylated conjugates of bilirubin and fatty acids. Biochemistry. 2004;43:15617–15632. doi: 10.1021/bi0481491. PubMed DOI

Uwaya, A. Synthetic analogs of xanthoglow and pKa determination of bilirubin-C10-sulfonate. MSc Thesis, University of Nevada (2004).

Berman MD, Carey MC. Metastable and equilibrium phase diagrams of unconjugated bilirubin IXalpha as functions of pH in model bile systems: Implications for pigment gallstone formation. Am. J. Physiol. Gastrointest. Liver Physiol. 2015;308:G42–G55. doi: 10.1152/ajpgi.00277.2014. PubMed DOI PMC

Shiels RG, et al. Pharmacokinetics of bilirubin-10-sulfonate and biliverdin in the rat. Eur. J. Pharm. Sci. 2021;159:105684. doi: 10.1016/j.ejps.2020.105684. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace