Increased burden of rare protein-truncating variants in constrained, brain-specific and synaptic genes in extremely impulsively violent males with antisocial personality disorder

. 2024 Feb ; 23 (1) : e12882.

Jazyk angličtina Země Anglie, Velká Británie Médium print

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid38359179

Grantová podpora
LX22NPO5107 National Institute for Neurological Research, Programme EXCELES
European Union - Next Generation EU
SVV260516 Charles University in Prague
UNCE/MED/007 Charles University in Prague
Cooperatio Charles University in Prague
European Regional Development Fund-Project "A-C-G-T"
LM2023067 The National Center for Medical Genomics
University of Toronto McLaughlin Centre
The Hospital for Sick Children, Toronto

The genetic correlates of extreme impulsive violence are poorly understood, and there have been few studies that have characterized a large group of affected individuals both clinically and genetically. We performed whole exome sequencing (WES) in 290 males with the life-course-persistent, extremely impulsively violent form of antisocial personality disorder (APD) and analyzed the spectrum of rare protein-truncating variants (rPTVs). Comparisons were made with 314 male controls and publicly available genotype data. Functional annotation tools were used for biological interpretation. Participants were significantly more likely to harbor rPTVs in genes that are intolerant to loss-of-function variants (odds ratio [OR] 2.06; p < 0.001), specifically expressed in brain (OR 2.80; p = 0.036) and enriched for those involved in neurotransmitter transport and synaptic processes. In 60 individuals (20%), we identified rPTVs that we classified as clinically relevant based on their clinical associations, biological function and gene expression patterns. Of these, 37 individuals harbored rPTVs in 23 genes that are associated with a monogenic neurological disorder, and 23 individuals harbored rPTVs in 20 genes reportedly intolerant to loss-of-function variants. The analysis presents evidence in support of a model where presence of either one or several private, functionally relevant mutations contribute significantly to individual risk of life-course-persistent APD and reveals multiple individuals who could be affected by clinically unrecognized neuropsychiatric Mendelian disease. Thus, Mendelian diseases and increased rPTV burden may represent important factors for the development of extremely impulsive violent life-course-persistent forms of APD irrespective of their clinical presentation.

Zobrazit více v PubMed

Werner KB, Few LR, Bucholz KK. Epidemiology, comorbidity, and behavioral genetics of antisocial personality disorder and psychopathy. Psychiatric Annals. 2015;45(4):195‐199. doi:10.3928/00485713-20150401-08 PubMed DOI PMC

Zimmerman M, Chelminski I, Young D. The frequency of personality disorders in psychiatric patients. Psychiatr Clin North Am. 2008;31(3):405‐420, vi. doi:10.1016/j.psc.2008.03.015 PubMed DOI

Fazel S, Danesh J. Serious mental disorder in 23000 prisoners: a systematic review of 62 surveys. Lancet. 2002;359(9306):545‐550. doi:10.1016/S0140-6736(02)07740-1 PubMed DOI

Fairchild G, van Goozen SH, Calder AJ, Goodyer IM. Research review: evaluating and reformulating the developmental taxonomic theory of antisocial behaviour. J Child Psychol Psychiatry. 2013;54(9):924‐940. doi:10.1111/jcpp.12102 PubMed DOI PMC

Moffitt TE. Adolescence‐limited and life‐course‐persistent antisocial behavior: a developmental taxonomy. Psychol Rev. 1993;100(4):674‐701. PubMed

Eley TC, Lichtenstein P, Moffitt TE. A longitudinal behavioral genetic analysis of the etiology of aggressive and nonaggressive antisocial behavior. Dev psychopathol Spring. 2003;15(2):383‐402. PubMed

Polderman TJ, Benyamin B, de Leeuw CA, et al. Meta‐analysis of the heritability of human traits based on fifty years of twin studies. Nat Genet. 2015;47(7):702‐709. doi:10.1038/ng.3285 PubMed DOI

Rhee SH, Waldman ID. Genetic and environmental influences on antisocial behavior: a meta‐analysis of twin and adoption studies. Psychol Bull. 2002;128(3):490‐529. PubMed

Raine A. Antisocial personality as a neurodevelopmental disorder. Annu Rev Clin Psychol. 2018;14:259‐289. doi:10.1146/annurev-clinpsy-050817-084819 PubMed DOI

Odintsova VV, Roetman PJ, Ip HF, et al. Genomics of human aggression: current state of genome‐wide studies and an automated systematic review tool. Psychiatr Genet. 2019;29(5):170‐190. doi:10.1097/YPG.0000000000000239 PubMed DOI

Brunner HG, Nelen M, Breakefield XO, Ropers HH, van Oost BA. Abnormal behavior associated with a point mutation in the structural gene for monoamine oxidase A. Science. 1993;262(5133):578‐580. PubMed

Brunner HG, Nelen MR, van Zandvoort P, et al. X‐linked borderline mental retardation with prominent behavioral disturbance: phenotype, genetic localization, and evidence for disturbed monoamine metabolism. Am J Hum Genet. 1993;52(6):1032‐1039. PubMed PMC

Vevera J, Zarrei M, Hartmannova H, et al. Rare copy number variation in extremely impulsively violent males. Genes Brain Behav. 2018;18:e12536. doi:10.1111/gbb.12536 PubMed DOI

Raznahan A, Won H, Glahn DC, Jacquemont S. Convergence and divergence of rare genetic disorders on brain phenotypes: a review. JAMA Psychiatry. 2022;79(8):818‐828. doi:10.1001/jamapsychiatry.2022.1450 PubMed DOI

Kmoch S, Majewski J, Ramamurthy V, et al. Mutations in PNPLA6 are linked to photoreceptor degeneration and various forms of childhood blindness. Nat Commun. 2015;6:5614. doi:10.1038/ncomms6614 PubMed DOI PMC

Lek M, Karczewski KJ, Minikel EV, et al. Analysis of protein‐coding genetic variation in 60,706 humans. Nature. 2016;536(7616):285‐291. doi:10.1038/nature19057 PubMed DOI PMC

Watanabe K, Taskesen E, van Bochoven A, Posthuma D. Functional mapping and annotation of genetic associations with FUMA. Nat Commun. 2017;8(1):1826. doi:10.1038/s41467-017-01261-5 PubMed DOI PMC

Raudvere U, Kolberg L, Kuzmin I, et al. G:profiler: a web server for functional enrichment analysis and conversions of gene lists (2019 update). Nucleic Acids Res. 2019;47(W1):W191‐W198. doi:10.1093/nar/gkz369 PubMed DOI PMC

Wells A, Kopp N, Xu X, et al. The anatomical distribution of genetic associations. Nucleic Acids Res. 2015;43(22):10804‐10820. doi:10.1093/nar/gkv1262 PubMed DOI PMC

Kosmicki JA, Samocha KE, Howrigan DP, et al. Refining the role of de novo protein‐truncating variants in neurodevelopmental disorders by using population reference samples. Nat Genet. 2017;49(4):504‐510. doi:10.1038/ng.3789 PubMed DOI PMC

Samocha KE, Robinson EB, Sanders SJ, et al. A framework for the interpretation of de novo mutation in human disease. Nat Genet. 2014;46(9):944‐950. doi:10.1038/ng.3050 PubMed DOI PMC

Bierne H, Tham TN, Batsche E, et al. Human BAHD1 promotes heterochromatic gene silencing. Proc Natl Acad Sci U S A. 2009;106(33):13826‐13831. doi:10.1073/pnas.0901259106 PubMed DOI PMC

Zhao D, Zhang XJ, Guan HP, et al. The BAH domain of BAHD1 is a histone H3K27me3 reader. Protein Cell. 2016;7(3):222‐226. doi:10.1007/s13238-016-0243-z PubMed DOI PMC

Pourpre R, Naudon L, Meziane H, et al. BAHD1 haploinsufficiency results in anxiety‐like phenotypes in male mice. PLoS One. 2020;15(5):e0232789. doi:10.1371/journal.pone.0232789 PubMed DOI PMC

Pienkowski VM, Kucharczyk M, Mlynek M, et al. Mapping of breakpoints in balanced chromosomal translocations by shallow whole‐genome sequencing points to EFNA5, BAHD1 and PPP2R5E as novel candidates for genes causing human Mendelian disorders. J med Genet. 2019;56(2):104‐112. doi:10.1136/jmedgenet-2018-105527 PubMed DOI

Gulsuner S, Stein DJ, Susser ES, et al. Genetics of schizophrenia in the South African Xhosa. Science. 2020;367(6477):569‐573. doi:10.1126/science.aay8833 PubMed DOI PMC

Koopmans F, van Nierop P, Andres‐Alonso M, et al. SynGO: an evidence‐based, expert‐curated Knowledge Base for the synapse. Neuron. 2019;103(2):217‐234 e4. doi:10.1016/j.neuron.2019.05.002 PubMed DOI PMC

Mele M, Ferreira PG, Reverter F, et al. Human genomics. The human transcriptome across tissues and individuals. Science. 2015;348(6235):660‐665. doi:10.1126/science.aaa0355 PubMed DOI PMC

Ruderfer DM, Hamamsy T, Lek M, et al. Patterns of genic intolerance of rare copy number variation in 59,898 human exomes. Nat Genet. 2016;48(10):1107‐1111. doi:10.1038/ng.3638 PubMed DOI PMC

Josifova DJ, Monroe GR, Tessadori F, et al. Heterozygous KIDINS220/ARMS nonsense variants cause spastic paraplegia, intellectual disability, nystagmus, and obesity. Hum Mol Genet. 2016;25(11):2158‐2167. doi:10.1093/hmg/ddw082 PubMed DOI

Scholz‐Starke J, Cesca F. Stepping out of the shade: control of neuronal activity by the scaffold protein Kidins220/ARMS. Review. Front Cell Neurosci. 2016;10:68. doi:10.3389/fncel.2016.00068 PubMed DOI PMC

Steinberg S, Stefansson H, Jonsson T, et al. Loss‐of‐function variants in ABCA7 confer risk of Alzheimer's disease. Nat Genet. 2015;47(5):445‐447. doi:10.1038/ng.3246 PubMed DOI

Bellenguez C, Charbonnier C, Grenier‐Boley B, et al. Contribution to Alzheimer's disease risk of rare variants in TREM2, SORL1, and ABCA7 in 1779 cases and 1273 controls. Neurobiol Aging. 2017;59(220.e9):220.e1‐220.e9. doi:10.1016/j.neurobiolaging.2017.07.001 PubMed DOI

Cuyvers E, De Roeck A, Van den Bossche T, et al. Mutations in ABCA7 in a Belgian cohort of Alzheimer's disease patients: a targeted resequencing study. Lancet Neurol. 2015;14(8):814‐822. doi:10.1016/S1474-4422(15)00133-7 PubMed DOI

Fournier AE, GrandPre T, Strittmatter SM. Identification of a receptor mediating Nogo‐66 inhibition of axonal regeneration. Nature. 2001;409(6818):341‐346. doi:10.1038/35053072 PubMed DOI

Lattanzi GM, Buzzanca A, Frascarelli M, Di Fabio F. Genetic and clinical features of social cognition in 22q11.2 deletion syndrome. Review. J Neurosci Res. 2018;96(10):1631‐1640. doi:10.1002/jnr.24265 PubMed DOI

Kimura H, Fujita Y, Kawabata T, et al. A novel rare variant R292H in RTN4R affects growth cone formation and possibly contributes to schizophrenia susceptibility. Transl Psychiatry. 2017;7(8):e1214. doi:10.1038/tp.2017.170 PubMed DOI PMC

Tripathy D, Vignoli B, Ramesh N, et al. Mutations in TGM6 induce the unfolded protein response in SCA35. Hum Mol Genet. 2017;26(19):3749‐3762. doi:10.1093/hmg/ddx259 PubMed DOI

Groen JL, Andrade A, Ritz K, et al. CACNA1B mutation is linked to unique myoclonus‐dystonia syndrome. Hum Mol Genet. 2015;24(4):987‐993. doi:10.1093/hmg/ddu513 PubMed DOI PMC

Lee SE, Lee GH. Reelin affects signaling pathways of a group of inhibitory neurons and the development of inhibitory synapses in primary neurons. Int J Mol Sci. 2021;22(14):7510. doi:10.3390/ijms22147510 PubMed DOI PMC

Armstrong NC, Anderson RC, McDermott KW. Reelin: diverse roles in central nervous system development, health and disease. Int J Biochem Cell Biol. 2019;112:72‐75. doi:10.1016/j.biocel.2019.04.009 PubMed DOI

Martin S, Chamberlin A, Shinde DN, et al. De novo variants in GRIA4 Lead to intellectual disability with or without seizures and gait abnormalities. Am J Hum Genet. 2017;101(6):1013‐1020. doi:10.1016/j.ajhg.2017.11.004 PubMed DOI PMC

Deutschlander AB, Wszolek ZK. Dyt‐Gnal. In: Adam MP, Ardinger HH, Pagon RA, et al., eds. GeneReviews((R)). University of Washington; 1993. PubMed

Montenegro G, Rebelo AP, Connell J, et al. Mutations in the ER‐shaping protein reticulon 2 cause the axon‐degenerative disorder hereditary spastic paraplegia type 12. J Clin Invest. 2012;122(2):538‐544. doi:10.1172/JCI60560 PubMed DOI PMC

Webster E, Cho MT, Alexander N, et al. De novo PHIP‐predicted deleterious variants are associated with developmental delay, intellectual disability, obesity, and dysmorphic features. Cold Spring Harb Mol Case Stud. 2016;2(6):a001172. doi:10.1101/mcs.a001172 PubMed DOI PMC

Jansen S, Hoischen A, Coe BP, et al. A genotype‐first approach identifies an intellectual disability‐overweight syndrome caused by PHIP haploinsufficiency. Eur J Hum Genet. 2018;26(1):54‐63. doi:10.1038/s41431-017-0039-5 PubMed DOI PMC

Cacace R, Heeman B, Van Mossevelde S, et al. Loss of DPP6 in neurodegenerative dementia: a genetic player in the dysfunction of neuronal excitability. Acta Neuropathol. 2019;137(6):901‐918. doi:10.1007/s00401-019-01976-3 PubMed DOI PMC

Maussion G, Cruceanu C, Rosenfeld JA, et al. Implication of LRRC4C and DPP6 in neurodevelopmental disorders. Am J med Genet A. 2017;173(2):395‐406. doi:10.1002/ajmg.a.38021 PubMed DOI PMC

Bock I, Nemeth K, Pentelenyi K, et al. Targeted next generation sequencing of a panel of autism‐related genes identifies an EHMT1 mutation in a Kleefstra syndrome patient with autism and normal intellectual performance. Case reports. Gene. 2016;595(2):131‐141. doi:10.1016/j.gene.2016.09.027 PubMed DOI

Prontera P, Napolioni V, Ottaviani V, et al. DPP6 gene disruption in a family with Gilles de la Tourette syndrome. Case reports. Neurogenetics. 2014;15(4):237‐242. doi:10.1007/s10048-014-0418-9 PubMed DOI

Hack R, Rutten J, Lesnik Oberstein SAJ. Cadasil. In: Adam MP, Ardinger HH, Pagon RA, et al., eds. GeneReviews((R)). University of Washington; 1993.

Low KJ, Ansari M, Abou Jamra R, et al. PUF60 variants cause a syndrome of ID, short stature, microcephaly, coloboma, craniofacial, cardiac, renal and spinal features. Eur J Hum Genet. 2017;25(5):552‐559. doi:10.1038/ejhg.2017.27 PubMed DOI PMC

Moccia A, Srivastava A, Skidmore JM, et al. Genetic analysis of CHARGE syndrome identifies overlapping molecular biology. Genet med. 2018;20(9):1022‐1029. doi:10.1038/gim.2017.233 PubMed DOI PMC

Brussino A, Brusco A, Durr A, Mancini C. Spinocerebellar ataxia type 28. In: Adam MP, Ardinger HH, Pagon RA, et al., eds. GeneReviews((R)). University of Washington; 1993. PubMed

Cariboni A, Andre V, Chauvet S, et al. Dysfunctional SEMA3E signaling underlies gonadotropin‐releasing hormone neuron deficiency in Kallmann syndrome. J Clin Invest. 2015;125(6):2413‐2428. doi:10.1172/JCI78448 PubMed DOI PMC

Schrier Vergano S, Santen G, Wieczorek D, Wollnik B, Matsumoto N, Deardorff MA. Coffin‐Siris syndrome. In: Adam MP, Ardinger HH, Pagon RA, et al., eds. GeneReviews((R)). University of Washington; 1993. PubMed

Kurahashi H, Hirose S. Autosomal Dominant Nocturnal Frontal Lobe Epilepsy. In: Adam MP, Ardinger HH, Pagon RA, et al., eds. GeneReviews((R)). University of Washington; 1993.

Shi Y, Lin S, Staats KA, et al. Haploinsufficiency leads to neurodegeneration in C9ORF72 ALS/FTD human induced motor neurons. Nat med. 2018;24(3):313‐325. doi:10.1038/nm.4490 PubMed DOI PMC

Russell JF, Steckley JL, Coppola G, et al. Familial cortical myoclonus with a mutation in NOL3. Ann Neurol. 2012;72(2):175‐183. doi:10.1002/ana.23666 PubMed DOI PMC

Macerollo A, Mencacci NE, Erro R, et al. Screening of mutations in NOL3 in a myoclonic syndromes series. Letter. J Neurol. 2014;261(9):1830‐1831. doi:10.1007/s00415-014-7463-z PubMed DOI PMC

Nibbeling EAR, Duarri A, Verschuuren‐Bemelmans CC, et al. Exome sequencing and network analysis identifies shared mechanisms underlying spinocerebellar ataxia. Brain. 2017;140(11):2860‐2878. doi:10.1093/brain/awx251 PubMed DOI

Tesi B, Davidsson J, Voss M, et al. Gain‐of‐function SAMD9L mutations cause a syndrome of cytopenia, immunodeficiency, MDS, and neurological symptoms. Blood. 2017;129(16):2266‐2279. doi:10.1182/blood-2016-10-743302 PubMed DOI PMC

Bae GU, Domene S, Roessler E, et al. Mutations in CDON, encoding a hedgehog receptor, result in holoprosencephaly and defective interactions with other hedgehog receptors. Am J Hum Genet. 2011;89(2):231‐240. doi:10.1016/j.ajhg.2011.07.001 PubMed DOI PMC

Jeong MH, Ho SM, Vuong TA, et al. Cdo suppresses canonical Wnt signalling via interaction with Lrp6 thereby promoting neuronal differentiation. Nat Commun. 2014;5:5455. doi:10.1038/ncomms6455 PubMed DOI PMC

Nizon M, Andrieux J, Rooryck C, et al. Phenotype‐genotype correlations in 17 new patients with an Xp11.23p11.22 microduplication and review of the literature. Review. Am J Med Genet A. 2015;167A(1):111‐122. doi:10.1002/ajmg.a.36807 PubMed DOI

Bartholdi D, Stray‐Pedersen A, Azzarello‐Burri S, et al. A newly recognized 13q12.3 microdeletion syndrome characterized by intellectual disability, microcephaly, and eczema/atopic dermatitis encompassing the HMGB1 and KATNAL1 genes. Am J med Genet A. 2014;164A(5):1277‐1283. doi:10.1002/ajmg.a.36439 PubMed DOI

Mandrile G, Di Gregorio E, Calcia A, et al. A new case of 13q12.2q13.1 microdeletion syndrome contributes to phenotype delineation. Case Rep Genet. 2014;2014:470830. doi:10.1155/2014/470830 PubMed DOI PMC

Banks G, Lassi G, Hoerder‐Suabedissen A, et al. A missense mutation in Katnal1 underlies behavioural, neurological and ciliary anomalies. Mol Psychiatry. 2018;23(3):713‐722. doi:10.1038/mp.2017.54 PubMed DOI PMC

Lee JR. Protein tyrosine phosphatase PTPRT as a regulator of synaptic formation and neuronal development. BMB Rep. 2015;48(5):249‐255. PubMed PMC

Schuurs‐Hoeijmakers JH, Vulto‐van Silfhout AT, Vissers LE, et al. Identification of pathogenic gene variants in small families with intellectually disabled siblings by exome sequencing. J med Genet. 2013;50(12):802‐811. doi:10.1136/jmedgenet-2013-101644 PubMed DOI

Bobsin K, Kreienkamp HJ. Severe learning deficits of IRSp53 mutant mice are caused by altered NMDA receptor‐dependent signal transduction. J Neurochem. 2016;136(4):752‐763. doi:10.1111/jnc.13428 PubMed DOI

Uddin M, Unda BK, Kwan V, et al. OTUD7A regulates neurodevelopmental phenotypes in the 15q13.3 microdeletion syndrome. Am J Hum Genet. 2018;102(2):278‐295. doi:10.1016/j.ajhg.2018.01.006 PubMed DOI PMC

Yin J, Chen W, Chao ES, et al. Otud7a knockout mice recapitulate many neurological features of 15q13.3 microdeletion syndrome. Am J Hum Genet. 2018;102(2):296‐308. doi:10.1016/j.ajhg.2018.01.005 PubMed DOI PMC

Tomas‐Roca L, Tsaalbi‐Shtylik A, Jansen JG, et al. De novo mutations in PLXND1 and REV3L cause Mobius syndrome. Nat Commun. 2015;6:7199. doi:10.1038/ncomms8199 PubMed DOI PMC

Kasem E, Kurihara T, Tabuchi K. Neurexins and neuropsychiatric disorders. Review. Neurosci Res. 2018;127:53‐60. doi:10.1016/j.neures.2017.10.012 PubMed DOI

Lipstein N, Verhoeven‐Duif NM, Michelassi FE, et al. Synaptic UNC13A protein variant causes increased neurotransmission and dyskinetic movement disorder. J Clin Investig. 2017;127(3):1005‐1018. doi:10.1172/JCI90259 PubMed DOI PMC

Xiao J, Uitti RJ, Zhao Y, et al. Mutations in CIZ1 cause adult onset primary cervical dystonia. Ann Neurol. 2012;71(4):458‐469. doi:10.1002/ana.23547 PubMed DOI PMC

Williamson SL, Ellaway CJ, Peters GB, Pelka GJ, Tam PP, Christodoulou J. Deletion of protein tyrosine phosphatase, non‐receptor type 4 (PTPN4) in twins with a Rett syndrome‐like phenotype. Eur J Hum Genet. 2015;23(9):1171‐1175. doi:10.1038/ejhg.2014.249 PubMed DOI PMC

Stokowy T, Polushina T, Sonderby IE, et al. Genetic variation in 117 myelination‐related genes in schizophrenia: replication of association to lipid biosynthesis genes. Sci Rep. 2018;8(1):6915. doi:10.1038/s41598-018-25280-4 PubMed DOI PMC

Pinto D, Pagnamenta AT, Klei L, et al. Functional impact of global rare copy number variation in autism spectrum disorders. Nature. 2010;466(7304):368‐372. doi:10.1038/nature09146 PubMed DOI PMC

Maravet Baig K, Su SC, Mumford SL, et al. Mice deficient in AKAP13 (BRX) develop compulsive‐like behavior and increased body weight. Brain Res Bull. 2018;140:72‐79. doi:10.1016/j.brainresbull.2018.04.005 PubMed DOI PMC

McMichael G, Bainbridge MN, Haan E, et al. Whole‐exome sequencing points to considerable genetic heterogeneity of cerebral palsy. Mol Psychiatry. 2015;20(2):176‐182. doi:10.1038/mp.2014.189 PubMed DOI

Enga RM, Rice AC, Weller P, et al. Initial characterization of behavior and ketamine response in a mouse knockout of the post‐synaptic effector gene Anks1b. Neurosci Lett. 2017;641:26‐32. doi:10.1016/j.neulet.2017.01.044 PubMed DOI PMC

Grunblatt E, Oneda B, Ekici AB, et al. High resolution chromosomal microarray analysis in paediatric obsessive‐compulsive disorder. BMC med Genomics. 2017;10(1):68. doi:10.1186/s12920-017-0299-5 PubMed DOI PMC

Teoh JJ, Iwano T, Kunii M, et al. BIG1 is required for the survival of deep layer neurons, neuronal polarity, and the formation of axonal tracts between the thalamus and neocortex in developing brain. PLoS One. 2017;12(4):e0175888. doi:10.1371/journal.pone.0175888 PubMed DOI PMC

Karaca E, Harel T, Pehlivan D, et al. Genes that affect brain structure and function identified by rare variant analyses of Mendelian neurologic disease. Research support, N.I.H., extramural. Neuron. 2015;88(3):499‐513. doi:10.1016/j.neuron.2015.09.048 PubMed DOI PMC

Egger G, Roetzer KM, Noor A, et al. Identification of risk genes for autism spectrum disorder through copy number variation analysis in Austrian families. Neurogenetics. 2014;15(2):117‐127. doi:10.1007/s10048-014-0394-0 PubMed DOI

Frangiskakis JM, Ewart AK, Morris CA, et al. LIM‐kinase1 hemizygosity implicated in impaired visuospatial constructive cognition. Cell. 1996;86(1):59‐69. PubMed

Eising E, Carrion‐Castillo A, Vino A, et al. A set of regulatory genes co‐expressed in embryonic human brain is implicated in disrupted speech development. Mol Psychiatry. 2018;24(7):1065‐1078. doi:10.1038/s41380-018-0020-x PubMed DOI PMC

Lescai F, Als TD, Li Q, et al. Whole‐exome sequencing of individuals from an isolated population implicates rare risk variants in bipolar disorder. Translational Psychiatry. 2017;7(2):e1034. doi:10.1038/tp.2017.3 PubMed DOI PMC

Merjonen P, Keltikangas‐Jarvinen L, Jokela M, et al. Hostility in adolescents and adults: a genome‐wide association study of the Young Finns. Transl Psychiatry. 2011;1:e11. doi:10.1038/tp.2011.13 PubMed DOI PMC

Maeta K, Hattori S, Ikutomo J, et al. Comprehensive behavioral analysis of mice deficient in Rapgef2 and Rapgef6, a subfamily of guanine nucleotide exchange factors for rap small GTPases possessing the Ras/rap‐associating domain. Mol Brain. 2018;11(1):27. doi:10.1186/s13041-018-0370-y PubMed DOI PMC

Wang X, Zhao Y, Zhang X, et al. Loss of sorting nexin 27 contributes to excitatory synaptic dysfunction by modulating glutamate receptor recycling in Down's syndrome. Nat med. 2013;19(4):473‐480. doi:10.1038/nm.3117 PubMed DOI PMC

Winkle CC, Olsen RH, Kim H, Moy SS, Song J, Gupton SL. Trim9 deletion alters the morphogenesis of developing and adult‐born hippocampal neurons and impairs spatial learning and memory. J Neurosci. 2016;36(18):4940‐4958. doi:10.1523/JNEUROSCI.3876-15.2016 PubMed DOI PMC

Martin HC, Jones WD, McIntyre R, et al. Quantifying the contribution of recessive coding variation to developmental disorders. Science. 2018;362(6419):1161‐1164. doi:10.1126/science.aar6731 PubMed DOI PMC

Lebrun N, Mehler‐Jacob C, Poirier K, et al. Novel KDM5B splice variants identified in patients with developmental disorders: functional consequences. Gene. 2018;679:305‐313. doi:10.1016/j.gene.2018.09.016 PubMed DOI

Faundes V, Newman WG, Bernardini L, et al. Histone lysine Methylases and demethylases in the landscape of human developmental disorders. Am J Hum Genet. 2018;102(1):175‐187. doi:10.1016/j.ajhg.2017.11.013 PubMed DOI PMC

Walters RK, Polimanti R, Johnson EC, et al. Transancestral GWAS of alcohol dependence reveals common genetic underpinnings with psychiatric disorders. Nat Neurosci. 2018;21(12):1656‐1669. doi:10.1038/s41593-018-0275-1 PubMed DOI PMC

Caruso V, Hagglund MG, Badiali L, et al. The G protein‐coupled receptor GPR162 is widely distributed in the CNS and highly expressed in the hypothalamus and in hedonic feeding areas. Gene. 2014;553(1):1‐6. doi:10.1016/j.gene.2014.09.042 PubMed DOI

Duarte RRR, Bachtel ND, Cotel MC, et al. The psychiatric risk gene NT5C2 regulates adenosine monophosphate‐activated protein kinase signaling and protein translation in human neural progenitor cells. Biol Psychiatry. 2019;86(2):120‐130. doi:10.1016/j.biopsych.2019.03.977 PubMed DOI PMC

Ingason A, Rujescu D, Cichon S, et al. Copy number variations of chromosome 16p13.1 region associated with schizophrenia. Mol Psychiatry. 2011;16(1):17‐25. doi:10.1038/mp.2009.101 PubMed DOI PMC

Jiang W, Wei M, Liu M, et al. Identification of protein tyrosine phosphatase receptor type O (PTPRO) as a synaptic adhesion molecule that promotes synapse formation. J Neurosci. 2017;37(41):9828‐9843. doi:10.1523/JNEUROSCI.0729-17.2017 PubMed DOI PMC

Kwon YT, Balogh SA, Davydov IV, et al. Altered activity, social behavior, and spatial memory in mice lacking the NTAN1p amidase and the asparagine branch of the N‐end rule pathway. Research Support, U.S. Gov't, P.H.S. Mol Cell Biol. 2000;20(11):4135‐4148. doi:10.1128/mcb.20.11.4135-4148.2000 PubMed DOI PMC

LeBlanc M, Kulle B, Sundet K, et al. Genome‐wide study identifies PTPRO and WDR72 and FOXQ1‐SUMO1P1 interaction associated with neurocognitive function. J Psychiatr Res. 2012;46(2):271‐278. doi:10.1016/j.jpsychires.2011.11.001 PubMed DOI

Zayats T, Jacobsen KK, Kleppe R, et al. Exome chip analyses in adult attention deficit hyperactivity disorder. Transl Psychiatry. 2016;6(10):e923. doi:10.1038/tp.2016.196 PubMed DOI PMC

Dikow N, Maas B, Karch S, et al. 3p25.3 microdeletion of GABA transporters SLC6A1 and SLC6A11 results in intellectual disability, epilepsy and stereotypic behavior. Am J med Genet A. 2014;164A(12):3061‐3068. doi:10.1002/ajmg.a.36761 PubMed DOI

Augier E, Barbier E, Dulman RS, et al. A molecular mechanism for choosing alcohol over an alternative reward. Science. 2018;360(6395):1321‐1326. doi:10.1126/science.aao1157 PubMed DOI

Raghavan NS, Brickman AM, Andrews H, et al. Whole‐exome sequencing in 20,197 persons for rare variants in Alzheimer's disease. Ann Clin Transl Neurol. 2018;5(7):832‐842. doi:10.1002/acn3.582 PubMed DOI PMC

Verweij KJ, Zietsch BP, Medland SE, et al. A genome‐wide association study of Cloninger's temperament scales: implications for the evolutionary genetics of personality. Biol Psychol. 2010;85(2):306‐317. doi:10.1016/j.biopsycho.2010.07.018 PubMed DOI PMC

Maroteaux G, Loos M, van der Sluis S, et al. High‐throughput phenotyping of avoidance learning in mice discriminates different genotypes and identifies a novel gene. Genes Brain Behav. 2012;11(7):772‐784. doi:10.1111/j.1601-183X.2012.00820.x PubMed DOI PMC

Satterstrom FK, Kosmicki JA, Wang JB, et al. Large‐scale exome sequencing Study implicates both developmental and functional changes in the neurobiology of autism. Cell. 2020;180(3):568‐584.e23. doi:10.1016/j.cell.2019.12.036 PubMed DOI PMC

Satterstrom FK, Walters RK, Singh T, et al. Autism spectrum disorder and attention deficit hyperactivity disorder have a similar burden of rare protein‐truncating variants. Nat Neurosci. 2019;22(12):1961‐1965. doi:10.1038/s41593-019-0527-8 PubMed DOI PMC

Ganna A, Satterstrom FK, Zekavat SM, et al. Quantifying the impact of rare and ultra‐rare coding variation across the phenotypic Spectrum. Am J Hum Genet. 2018;102(6):1204‐1211. doi:10.1016/j.ajhg.2018.05.002 PubMed DOI PMC

Singh T, Walters JTR, Johnstone M, et al. The contribution of rare variants to risk of schizophrenia in individuals with and without intellectual disability. Nat Genet. 2017;49(8):1167‐1173. doi:10.1038/ng.3903 PubMed DOI PMC

Jia X, Goes FS, Locke AE, et al. Investigating rare pathogenic/likely pathogenic exonic variation in bipolar disorder. Mol Psychiatry. 2021;26:5239‐5250. doi:10.1038/s41380-020-01006-9 PubMed DOI PMC

Karczewski KJ, Francioli LC, Tiao G, et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature. 2020;581(7809):434‐443. doi:10.1038/s41586-020-2308-7 PubMed DOI PMC

Rajagopal VM, Duan J, Vilar‐Ribo L, et al. Differences in the genetic architecture of common and rare variants in childhood, persistent and late‐diagnosed attention‐deficit hyperactivity disorder. Nat Genet. 2022;54(8):1117‐1124. doi:10.1038/s41588-022-01143-7 PubMed DOI PMC

Ribases M, Mitjans M, Hartman CA, et al. Genetic architecture of ADHD and overlap with other psychiatric disorders and cognition‐related phenotypes. Neurosci Biobehav Rev. 2023;153:105313. doi:10.1016/j.neubiorev.2023.105313 PubMed DOI PMC

Tielbeek JJ, Uffelmann E, Williams BS, et al. Uncovering the genetic architecture of broad antisocial behavior through a genome‐wide association study meta‐analysis. Mol Psychiatry. 2022;27(11):4453‐4463. doi:10.1038/s41380-022-01793-3 PubMed DOI PMC

Demontis D, Walters GB, Athanasiadis G, et al. Genome‐wide analyses of ADHD identify 27 risk loci, refine the genetic architecture and implicate several cognitive domains. Nat Genet. 2023;55(4):730. doi:10.1038/s41588-023-01350-w PubMed DOI

Amanat S, Requena T, Lopez‐Escamez JA. A systematic review of extreme phenotype strategies to search for rare variants in genetic studies of complex disorders. Genes (Basel). 2020;11(9):987. doi:10.3390/genes11090987 PubMed DOI PMC

Tammimies K, Marshall CR, Walker S, et al. Molecular diagnostic yield of chromosomal microarray analysis and whole‐exome sequencing in children with autism Spectrum disorder. JAMA. 2015;314(9):895‐903. doi:10.1001/jama.2015.10078 PubMed DOI

Feliciano P, Zhou X, Astrovskaya I, et al. Exome sequencing of 457 autism families recruited online provides evidence for autism risk genes. NPJ Genom med. 2019;4:19. doi:10.1038/s41525-019-0093-8 PubMed DOI PMC

Finucane BM, Ledbetter DH, Vorstman JAS. Diagnostic genetic testing for neurodevelopmental psychiatric disorders: closing the gap between recommendation and clinical implementation. Curr Opin Genet Dev. 2021;68:1‐8. doi:10.1016/j.gde.2020.12.016 PubMed DOI PMC

Vorstman J, Scherer SW. What a finding of gene copy number variation can add to the diagnosis of developmental neuropsychiatric disorders. Curr Opin Genet Dev. 2021;68:18‐25. doi:10.1016/j.gde.2020.12.017 PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Gut Microbiome in Impulsively Violent Female Convicts

. 2025 ; 84 (1) : 1-14. [epub] 20241101

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...