The hypolipidemic effect of MI-883, the combined CAR agonist/ PXR antagonist, in diet-induced hypercholesterolemia model
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
TuCAD2 and CMIF
Bundesministerium für Bildung und Forschung (Federal Ministry of Education and Research)
PubMed
39915454
PubMed Central
PMC11802874
DOI
10.1038/s41467-025-56642-y
PII: 10.1038/s41467-025-56642-y
Knihovny.cz E-zdroje
- MeSH
- cholesterol * metabolismus krev MeSH
- cytochrom P-450 CYP3A metabolismus genetika MeSH
- dieta s vysokým obsahem tuků * škodlivé účinky MeSH
- hypercholesterolemie * farmakoterapie metabolismus MeSH
- hypolipidemika farmakologie terapeutické užití MeSH
- játra metabolismus účinky léků MeSH
- konstitutivní androstanový receptor * MeSH
- lidé MeSH
- metabolismus lipidů účinky léků MeSH
- modely nemocí na zvířatech MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- pregnanový X receptor * metabolismus genetika MeSH
- pyridiny MeSH
- receptory cytoplazmatické a nukleární * metabolismus agonisté genetika MeSH
- regulace genové exprese účinky léků MeSH
- žlučové kyseliny a soli * metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- 1,4-bis(2-(3,5-dichloropyridyloxy))benzene MeSH Prohlížeč
- cholesterol * MeSH
- cytochrom P-450 CYP3A MeSH
- hypolipidemika MeSH
- konstitutivní androstanový receptor * MeSH
- pregnanový X receptor * MeSH
- pyridiny MeSH
- receptory cytoplazmatické a nukleární * MeSH
- žlučové kyseliny a soli * MeSH
Constitutive androstane receptor (CAR) and pregnane X receptor (PXR) are closely related nuclear receptors with overlapping regulatory functions in xenobiotic clearance but distinct roles in endobiotic metabolism. Car activation has been demonstrated to ameliorate hypercholesterolemia by regulating cholesterol metabolism and bile acid elimination, whereas PXR activation is associated with hypercholesterolemia and liver steatosis. Here we show a human CAR agonist/PXR antagonist, MI-883, which effectively regulates genes related to xenobiotic metabolism and cholesterol/bile acid homeostasis by leveraging CAR and PXR interactions in gene regulation. Through comprehensive analyses utilizing lipidomics, bile acid metabolomics, and transcriptomics in humanized PXR-CAR-CYP3A4/3A7 mice fed high-fat and high-cholesterol diets, we demonstrate that MI-883 significantly reduces plasma cholesterol levels and enhances fecal bile acid excretion. This work paves the way for the development of ligands targeting multiple xenobiotic nuclear receptors. Such ligands hold the potential for precise modulation of liver metabolism, offering new therapeutic strategies for metabolic disorders.
1st Faculty of Medicine Charles University Prague Czech Republic
Institute of Organic Chemistry and Biochemistry Czech Academy of Sciences Prague Czech Republic
Military Faculty of Medicine University of Defence Hradec Králové Czech Republic
PamGene 's Hertogenbosch The Netherlands
School of Pharmacy Faculty of Health Sciences University of Eastern Finland Kuopio Finland
Zobrazit více v PubMed
Xie, W. Xenobiotic receptors, a journey of rewards. Drug Metab. Dispos.51, 207–209 (2023). PubMed PMC
Honkakoski, P. Searching for constitutive androstane receptor modulators. Drug Metab. Dispos.50, 1002–1009 (2022). PubMed
Wang, J., Lu, P. & Xie, W. Atypical functions of xenobiotic receptors in lipid and glucose metabolism. Med. Rev.2, 611–624 (2022). PubMed PMC
Mackowiak, B., Hodge, J., Stern, S. & Wang, H. The roles of xenobiotic receptors: beyond chemical disposition. Drug Metab. Dispos.46, 1361–1371 (2018). PubMed PMC
Daujat-Chavanieu, M. & Gerbal-Chaloin, S. Regulation of CAR and PXR expression in health and disease. Cells9, 2395 (2020). PubMed PMC
Karpale, M., Hukkanen, J. & Hakkola, J. Nuclear receptor PXR in drug-induced hypercholesterolemia. Cells11, 313 (2022). PubMed PMC
Yoshinari, K. & Shizu, R. Distinct roles of the sister nuclear receptors PXR and CAR in liver cancer development. Drug Metab. Dispos.50, 1019–1026 (2022). PubMed
Rezen, T. et al. Effect of CAR activation on selected metabolic pathways in normal and hyperlipidemic mouse livers. BMC Genomics10, 384 (2009). PubMed PMC
Sberna, A. L. et al. Constitutive androstane receptor activation stimulates faecal bile acid excretion and reverse cholesterol transport in mice. J. Hepatol.55, 154–161 (2011). PubMed
Sberna, A. L. et al. Constitutive androstane receptor activation decreases plasma apolipoprotein B-containing lipoproteins and atherosclerosis in low-density lipoprotein receptor-deficient mice. Arterioscler Thromb. Vasc. Biol.31, 2232–2239 (2011). PubMed PMC
Karpale, M. et al. Activation of pregnane X receptor induces atherogenic lipids and PCSK9 by a SREBP2-mediated mechanism. Br. J. Pharmacol.178, 2461–2481 (2021). PubMed
Meng, Z. et al. The atypical antipsychotic quetiapine induces hyperlipidemia by activating intestinal PXR signaling. JCI Insight4, e125657 (2019). PubMed PMC
Lu, Y., Feskens, E. J., Boer, J. M. & Muller, M. The potential influence of genetic variants in genes along bile acid and bile metabolic pathway on blood cholesterol levels in the population. Atherosclerosis210, 14–27 (2010). PubMed
He, J. et al. PXR ablation alleviates diet-induced and genetic obesity and insulin resistance in mice. Diabetes62, 1876–1887 (2013). PubMed PMC
Sui, Y., Xu, J., Rios-Pilier, J. & Zhou, C. Deficiency of PXR decreases atherosclerosis in apoE-deficient mice. J. Lipid Res.52, 1652–1659 (2011). PubMed PMC
Zhou, C., King, N., Chen, K. Y. & Breslow, J. L. Activation of PXR induces hypercholesterolemia in wild-type and accelerates atherosclerosis in apoE deficient mice. J. Lipid Res.50, 2004–2013 (2009). PubMed PMC
de Haan, W. et al. PXR agonism decreases plasma HDL levels in ApoE3-Leiden.CETP mice. Biochim. Biophys. Acta1791, 191–197 (2009). PubMed
Gwag, T. et al. Non-nucleoside reverse transcriptase inhibitor efavirenz activates PXR to induce hypercholesterolemia and hepatic steatosis. J. Hepatol.70, 930–940 (2019). PubMed PMC
Mejdrova, I. et al. Discovery of novel human constitutive androstane receptor agonists with the imidazo[1,2-a]pyridine structure. J. Med. Chem.66, 2422–2456 (2023). PubMed PMC
Bitter, A. et al. Pregnane X receptor activation and silencing promote steatosis of human hepatic cells by distinct lipogenic mechanisms. Arch. Toxicol.89, 2089–2103 (2015). PubMed
Lin, W. et al. SPA70 is a potent antagonist of human pregnane X receptor. Nat. Commun.8, 741 (2017). PubMed PMC
Ngan, C. H. et al. The structural basis of pregnane X receptor binding promiscuity. Biochemistry48, 11572–11581 (2009). PubMed PMC
Rashidian, A. et al. Discrepancy in interactions and conformational dynamics of pregnane X receptor (PXR) bound to an agonist and a novel competitive antagonist. Comput. Struct. Biotechnol. J.20, 3004–3018 (2022). PubMed PMC
Teotico, D. G., Bischof, J. J., Peng, L., Kliewer, S. A. & Redinbo, M. R. Structural basis of human pregnane X receptor activation by the hops constituent colupulone. Mol. Pharmacol.74, 1512–1520 (2008). PubMed PMC
Motta, S., Callea, L., Giani Tagliabue, S. & Bonati, L. Exploring the PXR ligand binding mechanism with advanced Molecular Dynamics methods. Sci. Rep.8, 16207 (2018). PubMed PMC
Tojima, H. et al. Ligand dependent hepatic gene expression profiles of nuclear receptors CAR and PXR. Toxicol. Lett.212, 288–297 (2012). PubMed
Itkonen, A., Hakkola, J. & Rysa, J. Adverse outcome pathway for pregnane X receptor-induced hypercholesterolemia. Arch. Toxicol.97, 2861–2877 (2023). PubMed PMC
Roth, A. et al. Regulatory cross-talk between drug metabolism and lipid homeostasis: constitutive androstane receptor and pregnane X receptor increase Insig-1 expression. Mol. Pharmacol.73, 1282–1289 (2008). PubMed
Marschang, P. & Herz, J. Mouse models as tools for dissecting disorders of lipoprotein metabolism. Semin. Cell Dev. Biol.14, 25–35 (2003). PubMed
Tateno, C. & Kojima, Y. Characterization and applications of chimeric mice with humanized livers for preclinical drug development. Lab Anim. Res.36, 2 (2020). PubMed PMC
Hata, K. et al. Lipoprotein profile and lipid metabolism of PXB-cells((R)), human primary hepatocytes from liver-humanized mice: proposal of novel in vitro system for screening anti-lipidemic drugs. Biomed. Res.41, 33–42 (2020). PubMed
Masson, D. et al. Activation of the constitutive androstane receptor decreases HDL in wild-type and human apoA-I transgenic mice. J. Lipid Res.49, 1682–1691 (2008). PubMed
Li, J. & Dawson, P. A. Animal models to study bile acid metabolism. Biochim Biophys. Acta Mol. Basis Dis.1865, 895–911 (2019). PubMed PMC
Wagner, M. et al. CAR and PXR agonists stimulate hepatic bile acid and bilirubin detoxification and elimination pathways in mice. Hepatology42, 420–430 (2005). PubMed
Saini, S. P. et al. A novel constitutive androstane receptor-mediated and CYP3A-independent pathway of bile acid detoxification. Mol. Pharmacol.65, 292–300 (2004). PubMed
Miao, J., Fang, S., Bae, Y. & Kemper, J. K. Functional inhibitory cross-talk between constitutive androstane receptor and hepatic nuclear factor-4 in hepatic lipid/glucose metabolism is mediated by competition for binding to the DR1 motif and to the common coactivators, GRIP-1 and PGC-1alpha. J. Biol. Chem.281, 14537–14546 (2006). PubMed
Braeuning, A. & Pavek, P. beta-catenin signaling, the constitutive androstane receptor and their mutual interactions. Arch. Toxicol.94, 3983–3991 (2020). PubMed PMC
Shizu, R. et al. Interaction with YAP underlies the species differences between humans and rodents in CAR-dependent hepatocyte proliferation. Toxicol. Sci.198, 101–112 (2023). PubMed
Dong, B. et al. Activation of nuclear receptor CAR ameliorates diabetes and fatty liver disease. Proc. Natl Acad. Sci. USA106, 18831–18836 (2009). PubMed PMC
Gao, J., He, J., Zhai, Y., Wada, T. & Xie, W. The constitutive androstane receptor is an anti-obesity nuclear receptor that improves insulin sensitivity. J. Biol. Chem.284, 25984–25992 (2009). PubMed PMC
Zhou, J. et al. Hepatic fatty acid transporter Cd36 is a common target of LXR, PXR, and PPARgamma in promoting steatosis. Gastroenterology134, 556–567 (2008). PubMed
Zhou, J. et al. A novel pregnane X receptor-mediated and sterol regulatory element-binding protein-independent lipogenic pathway. J. Biol. Chem.281, 15013–15020 (2006). PubMed PMC
Moreau, A. et al. A novel pregnane X receptor and S14-mediated lipogenic pathway in human hepatocyte. Hepatology49, 2068–2079 (2009). PubMed
Bwayi, M. N. et al. Molecular basis of crosstalk in nuclear receptors: heterodimerization between PXR and CAR and the implication in gene regulation. Nucleic Acids Res.50, 3254–3275 (2022). PubMed PMC
Li, Y. et al. Design and optimization of 1H-1,2,3-Triazole-4-carboxamides as novel, potent, and selective inverse agonists and antagonists of PXR. J. Med. Chem.65, 16829–16859 (2022). PubMed PMC
Lynch, C., Zhao, J., Wang, H. & Xia, M. Identifying CAR modulators utilizing a reporter gene assay. Methods Mol. Biol.2474, 29–38 (2022). PubMed PMC
Cui, J. Y. & Klaassen, C. D. RNA-Seq reveals common and unique PXR- and CAR-target gene signatures in the mouse liver transcriptome. Biochim. Biophys. Acta1859, 1198–1217 (2016). PubMed PMC
Mehta, A. & Shapiro, M. D. Apolipoproteins in vascular biology and atherosclerotic disease. Nat. Rev. Cardiol.19, 168–179 (2022). PubMed
Tomlinson, B., Wu, Q. Y., Zhong, Y. M. & Li, Y. H. Advances in dyslipidaemia treatments: focusing on ApoC3 and ANGPTL3 inhibitors. J. Lipid Atheroscler.13, 2–20 (2024). PubMed PMC
Dempsey, J. L. et al. Pharmacological activation of PXR and CAR downregulates distinct bile acid-metabolizing intestinal bacteria and alters bile acid homeostasis. Toxicol. Sci.168, 40–60 (2019). PubMed PMC
Smutny, T. et al. U0126, a mitogen-activated protein kinase kinase 1 and 2 (MEK1 and 2) inhibitor, selectively up-regulates main isoforms of CYP3A subfamily via a pregnane X receptor (PXR) in HepG2 cells. Arch. Toxicol.88, 2243–2259 (2014). PubMed
Hyrsova, L. et al. The pregnane X receptor down-regulates organic cation transporter 1 (SLC22A1) in human hepatocytes by competing for (“squelching”) SRC-1 coactivator. Br. J. Pharm.173, 1703–1715 (2016). PubMed PMC
Burk, O. et al. Identification of approved drugs as potent inhibitors of pregnane X receptor activation with differential receptor interaction profiles. Arch. Toxicol.92, 1435–1451 (2018). PubMed
Carazo, A. & Pavek, P. The use of the LanthaScreen TR-FRET CAR coactivator assay in the characterization of constitutive androstane receptor (CAR) inverse agonists. Sensors15, 9265–9276 (2015). PubMed PMC
Burk, O. et al. Antimalarial artemisinin drugs induce cytochrome P450 and MDR1 expression by activation of xenosensors pregnane X receptor and constitutive androstane receptor. Mol. Pharmacol.67, 1954–1965 (2005). PubMed
Mustonen, E. K. et al. Target hopping from protein kinases to PXR: identification of small-molecule protein kinase inhibitors as selective modulators of pregnane X receptor from TuKIC library. Cells11, 1299 (2022). PubMed PMC
Mathas, M. et al. Evolutionary history and functional characterization of the amphibian xenosensor CAR. Mol. Endocrinol.26, 14–26 (2012). PubMed PMC
Koppen, A. et al. Nuclear receptor-coregulator interaction profiling identifies TRIP3 as a novel peroxisome proliferator-activated receptor gamma cofactor. Mol. Cell Proteom.8, 2212–2226 (2009). PubMed PMC
Beekmann, K. et al. The effect of glucuronidation on isoflavone induced estrogen receptor (ER)alpha and ERbeta mediated coregulator interactions. J. Steroid Biochem. Mol. Biol.154, 245–253 (2015). PubMed
Smutny, T., Bernhauerova, V., Smutna, L., Tebbens, J. D. & Pavek, P. Expression dynamics of pregnane X receptor-controlled genes in 3D primary human hepatocyte spheroids. Arch. Toxicol.96, 195–210 (2022). PubMed
Skoda, J. et al. Diazepam promotes translocation of human constitutive androstane receptor (CAR) via direct interaction with the ligand-binding domain. Cells9, 2532 (2020). PubMed PMC
Pavek, P. et al. Gene expression profiling of 1alpha,25(OH)(2) D(3) treatment in 2D/3D human hepatocyte models reveals CYP3A4 induction but minor changes in other xenobiotic-metabolizing genes. Mol. Nutr. Food Res.66, e2200070 (2022). PubMed
Lastuvkova, H. et al. Carvedilol impairs bile acid homeostasis in mice: implication for nonalcoholic steatohepatitis. Toxicol. Sci.196, 200–217 (2023). PubMed PMC
Yu, G., Wang, L. G., Han, Y. & He, Q. Y. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS16, 284–287 (2012). PubMed PMC
Halgren, T. A. et al. Glide: a new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. J. Med. Chem.47, 1750–1759 (2004). PubMed
Friesner, R. A. et al. Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J. Med. Chem.47, 1739–1749 (2004). PubMed
Cohen, A. et al. Total serum cholesterol by isotope dilution/mass spectrometry: a candidate definitive method. Clin. Chem.26, 854–860 (1980). PubMed
Lenicek, M. et al. Improved HPLC analysis of serum 7alpha-hydroxycholest-4-en-3-one, a marker of bile acid malabsorption. Clin. Chem.54, 1087–1088 (2008). PubMed
Leníček, M., Vecka, M., Žížalová, K. & Vítek, L. Comparison of simple extraction procedures in liquid chromatography mass spectrometry based determination of serum 7α-hydroxy-4-cholesten-3-one, a surrogate marker of bile acid synthesis. J. Chromatogr. B1033-1034, 317–320 (2016). PubMed
Wolrab, D. et al. LipidQuant 1.0: automated data processing in lipid class separation-mass spectrometry quantitative workflows. Bioinformatics37, 4591–4592 (2021). PubMed
Mohamed, A., Molendijk, J. & Hill, M. M. lipidr: a software tool for data mining and analysis of lipidomics datasets. J. Proteome Res.19, 2890–2897 (2020). PubMed
Uher, M., Micuda, S., Kacerovsky, M. & Hroch, M. An alternative approach to validation of liquid chromatography-mass spectrometry methods for the quantification of endogenous compounds. J. Chromatogr. A1705, 464173 (2023). PubMed