The hypolipidemic effect of MI-883, the combined CAR agonist/ PXR antagonist, in diet-induced hypercholesterolemia model

. 2025 Feb 06 ; 16 (1) : 1418. [epub] 20250206

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39915454

Grantová podpora
TuCAD2 and CMIF Bundesministerium für Bildung und Forschung (Federal Ministry of Education and Research)

Odkazy

PubMed 39915454
PubMed Central PMC11802874
DOI 10.1038/s41467-025-56642-y
PII: 10.1038/s41467-025-56642-y
Knihovny.cz E-zdroje

Constitutive androstane receptor (CAR) and pregnane X receptor (PXR) are closely related nuclear receptors with overlapping regulatory functions in xenobiotic clearance but distinct roles in endobiotic metabolism. Car activation has been demonstrated to ameliorate hypercholesterolemia by regulating cholesterol metabolism and bile acid elimination, whereas PXR activation is associated with hypercholesterolemia and liver steatosis. Here we show a human CAR agonist/PXR antagonist, MI-883, which effectively regulates genes related to xenobiotic metabolism and cholesterol/bile acid homeostasis by leveraging CAR and PXR interactions in gene regulation. Through comprehensive analyses utilizing lipidomics, bile acid metabolomics, and transcriptomics in humanized PXR-CAR-CYP3A4/3A7 mice fed high-fat and high-cholesterol diets, we demonstrate that MI-883 significantly reduces plasma cholesterol levels and enhances fecal bile acid excretion. This work paves the way for the development of ligands targeting multiple xenobiotic nuclear receptors. Such ligands hold the potential for precise modulation of liver metabolism, offering new therapeutic strategies for metabolic disorders.

1st Faculty of Medicine Charles University Prague Czech Republic

4th Department of Internal Medicine General University Hospital Prague and 1st Faculty of Medicine Charles University Prague Czech Republic

Czech Centre for Phenogenomics Institute of Molecular Genetics of the Czech Academy of Sciences Prague Czech Republic

Department of Analytical Chemistry University of Pardubice Faculty of Chemical Technology Pardubice Czech Republic

Department of Biochemistry Faculty of Medicine in Hradec Králové Charles University Hradec Králové Czech Republic

Department of Pharmacology and Toxicology Faculty of Pharmacy in Hradec Králové Charles University Hradec Králové Czech Republic

Dr Margarete Fischer Bosch Institute of Clinical Pharmacology Stuttgart and University of Tuebingen Tuebingen Germany

Institute of Medical Biochemistry and Laboratory Diagnostics General University Hospital Prague and 1st Faculty of Medicine Charles University Prague Czech Republic

Institute of Organic Chemistry and Biochemistry Czech Academy of Sciences Prague Czech Republic

Institute of Pharmacology Faculty of Medicine in Hradec Králové Charles University Hradec Králové Czech Republic

Institute of Pharmacy Pharmaceutical Medicinal Chemistry and Tübingen Center for Academic Drug Discovery Eberhard Karls University Tübingen Tübingen Germany

Military Faculty of Medicine University of Defence Hradec Králové Czech Republic

PamGene 's Hertogenbosch The Netherlands

School of Pharmacy Faculty of Health Sciences University of Eastern Finland Kuopio Finland

Section of Pharmacogenetics Department of Physiology and Pharmacology Karolinska Institutet Stockholm Sweden

Zobrazit více v PubMed

Xie, W. Xenobiotic receptors, a journey of rewards. Drug Metab. Dispos.51, 207–209 (2023). PubMed PMC

Honkakoski, P. Searching for constitutive androstane receptor modulators. Drug Metab. Dispos.50, 1002–1009 (2022). PubMed

Wang, J., Lu, P. & Xie, W. Atypical functions of xenobiotic receptors in lipid and glucose metabolism. Med. Rev.2, 611–624 (2022). PubMed PMC

Mackowiak, B., Hodge, J., Stern, S. & Wang, H. The roles of xenobiotic receptors: beyond chemical disposition. Drug Metab. Dispos.46, 1361–1371 (2018). PubMed PMC

Daujat-Chavanieu, M. & Gerbal-Chaloin, S. Regulation of CAR and PXR expression in health and disease. Cells9, 2395 (2020). PubMed PMC

Karpale, M., Hukkanen, J. & Hakkola, J. Nuclear receptor PXR in drug-induced hypercholesterolemia. Cells11, 313 (2022). PubMed PMC

Yoshinari, K. & Shizu, R. Distinct roles of the sister nuclear receptors PXR and CAR in liver cancer development. Drug Metab. Dispos.50, 1019–1026 (2022). PubMed

Rezen, T. et al. Effect of CAR activation on selected metabolic pathways in normal and hyperlipidemic mouse livers. BMC Genomics10, 384 (2009). PubMed PMC

Sberna, A. L. et al. Constitutive androstane receptor activation stimulates faecal bile acid excretion and reverse cholesterol transport in mice. J. Hepatol.55, 154–161 (2011). PubMed

Sberna, A. L. et al. Constitutive androstane receptor activation decreases plasma apolipoprotein B-containing lipoproteins and atherosclerosis in low-density lipoprotein receptor-deficient mice. Arterioscler Thromb. Vasc. Biol.31, 2232–2239 (2011). PubMed PMC

Karpale, M. et al. Activation of pregnane X receptor induces atherogenic lipids and PCSK9 by a SREBP2-mediated mechanism. Br. J. Pharmacol.178, 2461–2481 (2021). PubMed

Meng, Z. et al. The atypical antipsychotic quetiapine induces hyperlipidemia by activating intestinal PXR signaling. JCI Insight4, e125657 (2019). PubMed PMC

Lu, Y., Feskens, E. J., Boer, J. M. & Muller, M. The potential influence of genetic variants in genes along bile acid and bile metabolic pathway on blood cholesterol levels in the population. Atherosclerosis210, 14–27 (2010). PubMed

He, J. et al. PXR ablation alleviates diet-induced and genetic obesity and insulin resistance in mice. Diabetes62, 1876–1887 (2013). PubMed PMC

Sui, Y., Xu, J., Rios-Pilier, J. & Zhou, C. Deficiency of PXR decreases atherosclerosis in apoE-deficient mice. J. Lipid Res.52, 1652–1659 (2011). PubMed PMC

Zhou, C., King, N., Chen, K. Y. & Breslow, J. L. Activation of PXR induces hypercholesterolemia in wild-type and accelerates atherosclerosis in apoE deficient mice. J. Lipid Res.50, 2004–2013 (2009). PubMed PMC

de Haan, W. et al. PXR agonism decreases plasma HDL levels in ApoE3-Leiden.CETP mice. Biochim. Biophys. Acta1791, 191–197 (2009). PubMed

Gwag, T. et al. Non-nucleoside reverse transcriptase inhibitor efavirenz activates PXR to induce hypercholesterolemia and hepatic steatosis. J. Hepatol.70, 930–940 (2019). PubMed PMC

Mejdrova, I. et al. Discovery of novel human constitutive androstane receptor agonists with the imidazo[1,2-a]pyridine structure. J. Med. Chem.66, 2422–2456 (2023). PubMed PMC

Bitter, A. et al. Pregnane X receptor activation and silencing promote steatosis of human hepatic cells by distinct lipogenic mechanisms. Arch. Toxicol.89, 2089–2103 (2015). PubMed

Lin, W. et al. SPA70 is a potent antagonist of human pregnane X receptor. Nat. Commun.8, 741 (2017). PubMed PMC

Ngan, C. H. et al. The structural basis of pregnane X receptor binding promiscuity. Biochemistry48, 11572–11581 (2009). PubMed PMC

Rashidian, A. et al. Discrepancy in interactions and conformational dynamics of pregnane X receptor (PXR) bound to an agonist and a novel competitive antagonist. Comput. Struct. Biotechnol. J.20, 3004–3018 (2022). PubMed PMC

Teotico, D. G., Bischof, J. J., Peng, L., Kliewer, S. A. & Redinbo, M. R. Structural basis of human pregnane X receptor activation by the hops constituent colupulone. Mol. Pharmacol.74, 1512–1520 (2008). PubMed PMC

Motta, S., Callea, L., Giani Tagliabue, S. & Bonati, L. Exploring the PXR ligand binding mechanism with advanced Molecular Dynamics methods. Sci. Rep.8, 16207 (2018). PubMed PMC

Tojima, H. et al. Ligand dependent hepatic gene expression profiles of nuclear receptors CAR and PXR. Toxicol. Lett.212, 288–297 (2012). PubMed

Itkonen, A., Hakkola, J. & Rysa, J. Adverse outcome pathway for pregnane X receptor-induced hypercholesterolemia. Arch. Toxicol.97, 2861–2877 (2023). PubMed PMC

Roth, A. et al. Regulatory cross-talk between drug metabolism and lipid homeostasis: constitutive androstane receptor and pregnane X receptor increase Insig-1 expression. Mol. Pharmacol.73, 1282–1289 (2008). PubMed

Marschang, P. & Herz, J. Mouse models as tools for dissecting disorders of lipoprotein metabolism. Semin. Cell Dev. Biol.14, 25–35 (2003). PubMed

Tateno, C. & Kojima, Y. Characterization and applications of chimeric mice with humanized livers for preclinical drug development. Lab Anim. Res.36, 2 (2020). PubMed PMC

Hata, K. et al. Lipoprotein profile and lipid metabolism of PXB-cells((R)), human primary hepatocytes from liver-humanized mice: proposal of novel in vitro system for screening anti-lipidemic drugs. Biomed. Res.41, 33–42 (2020). PubMed

Masson, D. et al. Activation of the constitutive androstane receptor decreases HDL in wild-type and human apoA-I transgenic mice. J. Lipid Res.49, 1682–1691 (2008). PubMed

Li, J. & Dawson, P. A. Animal models to study bile acid metabolism. Biochim Biophys. Acta Mol. Basis Dis.1865, 895–911 (2019). PubMed PMC

Wagner, M. et al. CAR and PXR agonists stimulate hepatic bile acid and bilirubin detoxification and elimination pathways in mice. Hepatology42, 420–430 (2005). PubMed

Saini, S. P. et al. A novel constitutive androstane receptor-mediated and CYP3A-independent pathway of bile acid detoxification. Mol. Pharmacol.65, 292–300 (2004). PubMed

Miao, J., Fang, S., Bae, Y. & Kemper, J. K. Functional inhibitory cross-talk between constitutive androstane receptor and hepatic nuclear factor-4 in hepatic lipid/glucose metabolism is mediated by competition for binding to the DR1 motif and to the common coactivators, GRIP-1 and PGC-1alpha. J. Biol. Chem.281, 14537–14546 (2006). PubMed

Braeuning, A. & Pavek, P. beta-catenin signaling, the constitutive androstane receptor and their mutual interactions. Arch. Toxicol.94, 3983–3991 (2020). PubMed PMC

Shizu, R. et al. Interaction with YAP underlies the species differences between humans and rodents in CAR-dependent hepatocyte proliferation. Toxicol. Sci.198, 101–112 (2023). PubMed

Dong, B. et al. Activation of nuclear receptor CAR ameliorates diabetes and fatty liver disease. Proc. Natl Acad. Sci. USA106, 18831–18836 (2009). PubMed PMC

Gao, J., He, J., Zhai, Y., Wada, T. & Xie, W. The constitutive androstane receptor is an anti-obesity nuclear receptor that improves insulin sensitivity. J. Biol. Chem.284, 25984–25992 (2009). PubMed PMC

Zhou, J. et al. Hepatic fatty acid transporter Cd36 is a common target of LXR, PXR, and PPARgamma in promoting steatosis. Gastroenterology134, 556–567 (2008). PubMed

Zhou, J. et al. A novel pregnane X receptor-mediated and sterol regulatory element-binding protein-independent lipogenic pathway. J. Biol. Chem.281, 15013–15020 (2006). PubMed PMC

Moreau, A. et al. A novel pregnane X receptor and S14-mediated lipogenic pathway in human hepatocyte. Hepatology49, 2068–2079 (2009). PubMed

Bwayi, M. N. et al. Molecular basis of crosstalk in nuclear receptors: heterodimerization between PXR and CAR and the implication in gene regulation. Nucleic Acids Res.50, 3254–3275 (2022). PubMed PMC

Li, Y. et al. Design and optimization of 1H-1,2,3-Triazole-4-carboxamides as novel, potent, and selective inverse agonists and antagonists of PXR. J. Med. Chem.65, 16829–16859 (2022). PubMed PMC

Lynch, C., Zhao, J., Wang, H. & Xia, M. Identifying CAR modulators utilizing a reporter gene assay. Methods Mol. Biol.2474, 29–38 (2022). PubMed PMC

Cui, J. Y. & Klaassen, C. D. RNA-Seq reveals common and unique PXR- and CAR-target gene signatures in the mouse liver transcriptome. Biochim. Biophys. Acta1859, 1198–1217 (2016). PubMed PMC

Mehta, A. & Shapiro, M. D. Apolipoproteins in vascular biology and atherosclerotic disease. Nat. Rev. Cardiol.19, 168–179 (2022). PubMed

Tomlinson, B., Wu, Q. Y., Zhong, Y. M. & Li, Y. H. Advances in dyslipidaemia treatments: focusing on ApoC3 and ANGPTL3 inhibitors. J. Lipid Atheroscler.13, 2–20 (2024). PubMed PMC

Dempsey, J. L. et al. Pharmacological activation of PXR and CAR downregulates distinct bile acid-metabolizing intestinal bacteria and alters bile acid homeostasis. Toxicol. Sci.168, 40–60 (2019). PubMed PMC

Smutny, T. et al. U0126, a mitogen-activated protein kinase kinase 1 and 2 (MEK1 and 2) inhibitor, selectively up-regulates main isoforms of CYP3A subfamily via a pregnane X receptor (PXR) in HepG2 cells. Arch. Toxicol.88, 2243–2259 (2014). PubMed

Hyrsova, L. et al. The pregnane X receptor down-regulates organic cation transporter 1 (SLC22A1) in human hepatocytes by competing for (“squelching”) SRC-1 coactivator. Br. J. Pharm.173, 1703–1715 (2016). PubMed PMC

Burk, O. et al. Identification of approved drugs as potent inhibitors of pregnane X receptor activation with differential receptor interaction profiles. Arch. Toxicol.92, 1435–1451 (2018). PubMed

Carazo, A. & Pavek, P. The use of the LanthaScreen TR-FRET CAR coactivator assay in the characterization of constitutive androstane receptor (CAR) inverse agonists. Sensors15, 9265–9276 (2015). PubMed PMC

Burk, O. et al. Antimalarial artemisinin drugs induce cytochrome P450 and MDR1 expression by activation of xenosensors pregnane X receptor and constitutive androstane receptor. Mol. Pharmacol.67, 1954–1965 (2005). PubMed

Mustonen, E. K. et al. Target hopping from protein kinases to PXR: identification of small-molecule protein kinase inhibitors as selective modulators of pregnane X receptor from TuKIC library. Cells11, 1299 (2022). PubMed PMC

Mathas, M. et al. Evolutionary history and functional characterization of the amphibian xenosensor CAR. Mol. Endocrinol.26, 14–26 (2012). PubMed PMC

Koppen, A. et al. Nuclear receptor-coregulator interaction profiling identifies TRIP3 as a novel peroxisome proliferator-activated receptor gamma cofactor. Mol. Cell Proteom.8, 2212–2226 (2009). PubMed PMC

Beekmann, K. et al. The effect of glucuronidation on isoflavone induced estrogen receptor (ER)alpha and ERbeta mediated coregulator interactions. J. Steroid Biochem. Mol. Biol.154, 245–253 (2015). PubMed

Smutny, T., Bernhauerova, V., Smutna, L., Tebbens, J. D. & Pavek, P. Expression dynamics of pregnane X receptor-controlled genes in 3D primary human hepatocyte spheroids. Arch. Toxicol.96, 195–210 (2022). PubMed

Skoda, J. et al. Diazepam promotes translocation of human constitutive androstane receptor (CAR) via direct interaction with the ligand-binding domain. Cells9, 2532 (2020). PubMed PMC

Pavek, P. et al. Gene expression profiling of 1alpha,25(OH)(2) D(3) treatment in 2D/3D human hepatocyte models reveals CYP3A4 induction but minor changes in other xenobiotic-metabolizing genes. Mol. Nutr. Food Res.66, e2200070 (2022). PubMed

Lastuvkova, H. et al. Carvedilol impairs bile acid homeostasis in mice: implication for nonalcoholic steatohepatitis. Toxicol. Sci.196, 200–217 (2023). PubMed PMC

Yu, G., Wang, L. G., Han, Y. & He, Q. Y. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS16, 284–287 (2012). PubMed PMC

Halgren, T. A. et al. Glide: a new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. J. Med. Chem.47, 1750–1759 (2004). PubMed

Friesner, R. A. et al. Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J. Med. Chem.47, 1739–1749 (2004). PubMed

Cohen, A. et al. Total serum cholesterol by isotope dilution/mass spectrometry: a candidate definitive method. Clin. Chem.26, 854–860 (1980). PubMed

Lenicek, M. et al. Improved HPLC analysis of serum 7alpha-hydroxycholest-4-en-3-one, a marker of bile acid malabsorption. Clin. Chem.54, 1087–1088 (2008). PubMed

Leníček, M., Vecka, M., Žížalová, K. & Vítek, L. Comparison of simple extraction procedures in liquid chromatography mass spectrometry based determination of serum 7α-hydroxy-4-cholesten-3-one, a surrogate marker of bile acid synthesis. J. Chromatogr. B1033-1034, 317–320 (2016). PubMed

Wolrab, D. et al. LipidQuant 1.0: automated data processing in lipid class separation-mass spectrometry quantitative workflows. Bioinformatics37, 4591–4592 (2021). PubMed

Mohamed, A., Molendijk, J. & Hill, M. M. lipidr: a software tool for data mining and analysis of lipidomics datasets. J. Proteome Res.19, 2890–2897 (2020). PubMed

Uher, M., Micuda, S., Kacerovsky, M. & Hroch, M. An alternative approach to validation of liquid chromatography-mass spectrometry methods for the quantification of endogenous compounds. J. Chromatogr. A1705, 464173 (2023). PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...