Diazepam Promotes Translocation of Human Constitutive Androstane Receptor (CAR) via Direct Interaction with the Ligand-Binding Domain
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
33255185
PubMed Central
PMC7761063
DOI
10.3390/cells9122532
PII: cells9122532
Knihovny.cz E-zdroje
- Klíčová slova
- CAR, NR1I3, cytochrome P450, diazepam, drug interaction, gene regulation,
- MeSH
- buněčné linie MeSH
- diazepam farmakologie MeSH
- dospělí MeSH
- hepatocyty účinky léků MeSH
- játra účinky léků MeSH
- konstitutivní androstanový receptor MeSH
- lidé středního věku MeSH
- lidé MeSH
- ligandy MeSH
- myši MeSH
- proliferace buněk účinky léků MeSH
- proteinové domény účinky léků MeSH
- receptory cytoplazmatické a nukleární metabolismus MeSH
- reportérové geny účinky léků genetika MeSH
- transport proteinů účinky léků MeSH
- zvířata MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- diazepam MeSH
- konstitutivní androstanový receptor MeSH
- ligandy MeSH
- NR1I3 protein, human MeSH Prohlížeč
- Nr1i3 protein, mouse MeSH Prohlížeč
- receptory cytoplazmatické a nukleární MeSH
The constitutive androstane receptor (CAR) is the essential regulator of genes involved both in xenobiotic and endobiotic metabolism. Diazepam has been shown as a potent stimulator of CAR nuclear translocation and is assumed as an indirect CAR activator not interacting with the CAR cavity. In this study, we sought to determine if diazepam is a ligand directly interacting with the CAR ligand binding domain (LBD) and if it regulates its target genes in a therapeutically relevant concentration. We used different CAR constructs in translocation and luciferase reporter assays, recombinant CAR-LBD in a TR-FRET assay, and target genes induction studied in primary human hepatocytes (PHHs), HepaRG cells, and in CAR humanized mice. We also used in silico docking and CAR-LBD mutants to characterize the interaction of diazepam and its metabolites with the CAR cavity. Diazepam and its metabolites such as nordazepam, temazepam, and oxazepam are activators of CAR+Ala in translocation and two-hybrid assays and fit the CAR cavity in docking experiments. In gene reporter assays with CAR3 and in the TR-FRET assay, only diazepam significantly interacts with CAR-LBD. Diazepam also promotes up-regulation of CYP2B6 in PHHs and in HepaRG cells. However, in humanized CAR mice, diazepam significantly induces neither CYP2B6 nor Cyp2b10 genes nor does it regulate critical genes involved in glucose and lipids metabolism and liver proliferation. Thus, we demonstrate that diazepam interacts with human CAR-LBD as a weak ligand, but it does not significantly affect expression of tested CAR target genes in CAR humanized mice.
1st Medical Faculty Charles University Katerinská 32 121 08 Prague Czech Republic
IRMB University of Montpellier INSERM 34295 Montpellier France
Zobrazit více v PubMed
Honkakoski P., Zelko I., Sueyoshi T., Negishi M. The nuclear orphan receptor CAR-retinoid X receptor heterodimer activates the phenobarbital-responsive enhancer module of the CYP2B gene. Mol. Cell Biol. 1998;18:5652–5658. doi: 10.1128/MCB.18.10.5652. PubMed DOI PMC
Mackowiak B., Hodge J., Stern S., Wang H. The Roles of Xenobiotic Receptors: Beyond Chemical Disposition. Drug Metab. Dispos. 2018;46:1361–1371. doi: 10.1124/dmd.118.081042. PubMed DOI PMC
Chen K., Zhong J., Hu L., Li R., Du Q., Cai J., Li Y., Gao Y., Cui X., Yang X., et al. The Role of Xenobiotic Receptors on Hepatic Glycolipid Metabolism. Curr. Drug. Metab. 2019;20:29–35. doi: 10.2174/1389200219666180918152241. PubMed DOI
Mutoh S., Sobhany M., Moore R., Perera L., Pedersen L., Sueyoshi T., Negishi M. Phenobarbital indirectly activates the constitutive active androstane receptor (CAR) by inhibition of epidermal growth factor receptor signaling. Sci. Signal. 2013;6:ra31. doi: 10.1126/scisignal.2003705. PubMed DOI PMC
Mackowiak B., Wang H. Mechanisms of xenobiotic receptor activation: Direct vs. indirect. Biochim. Biophys. Acta. 2016;1859:1130–1140. doi: 10.1016/j.bbagrm.2016.02.006. PubMed DOI PMC
Kawamoto T., Sueyoshi T., Zelko I., Moore R., Washburn K., Negishi M. Phenobarbital-responsive nuclear translocation of the receptor CAR in induction of the CYP2B gene. Mol. Cell. Biol. 1999;19:6318–6322. doi: 10.1128/MCB.19.9.6318. PubMed DOI PMC
Li H., Chen T., Cottrell J., Wang H. Nuclear translocation of adenoviral-enhanced yellow fluorescent protein-tagged-human constitutive androstane receptor (hCAR): A novel tool for screening hCAR activators in human primary hepatocytes. Drug Metab. Dispos. 2009;37:1098–1106. doi: 10.1124/dmd.108.026005. PubMed DOI PMC
Parkinson A., Leonard N., Draper A., Ogilvie B.W. On the mechanism of hepatocarcinogenesis of benzodiazepines: Evidence that diazepam and oxazepam are CYP2B inducers in rats, and both CYP2B and CYP4A inducers in mice. Drug. Metab. Rev. 2006;38:235–259. doi: 10.1080/03602530600570081. PubMed DOI
Ono S., Hatanaka T., Miyazawa S., Tsutsui M., Aoyama T., Gonzalez F.J., Satoh T. Human liver microsomal diazepam metabolism using cDNA-expressed cytochrome P450s: Role of CYP2B6, 2C19 and the 3A subfamily. Xenobiotica. 1996;26:1155–1166. doi: 10.3109/00498259609046742. PubMed DOI
Goodwin B., Hodgson E., D’Costa D.J., Robertson G.R., Liddle C. Transcriptional regulation of the human CYP3A4 gene by the constitutive androstane receptor. Mol. Pharmacol. 2002;62:359–365. doi: 10.1124/mol.62.2.359. PubMed DOI
Gerbal-Chaloin S., Pascussi J.M., Pichard-Garcia L., Daujat M., Waechter F., Fabre J.M., Carrere N., Maurel P. Induction of CYP2C genes in human hepatocytes in primary culture. Drug. Metab. Dispos. 2001;29:242–251. PubMed
Yang T.J., Krausz K.W., Shou M., Yang S.K., Buters J.T., Gonzalez F.J., Gelboin H.V. Inhibitory monoclonal antibody to human cytochrome P450 2B6. Biochem. Pharmacol. 1998;55:1633–1640. doi: 10.1016/S0006-2952(98)00018-5. PubMed DOI
Maglich J.M., Parks D.J., Moore L.B., Collins J.L., Goodwin B., Billin A.N., Stoltz C.A., Kliewer S.A., Lambert M.H., Willson T.M., et al. Identification of a novel human constitutive androstane receptor (CAR) agonist and its use in the identification of CAR target genes. J. Biol. Chem. 2003;278:17277–17283. doi: 10.1074/jbc.M300138200. PubMed DOI
Keminer O., Windshugel B., Essmann F., Lee S.M.L., Schiergens T.S., Schwab M., Burk O. Identification of novel agonists by high-throughput screening and molecular modelling of human constitutive androstane receptor isoform 3. Arch. Toxicol. 2019;93:2247–2264. doi: 10.1007/s00204-019-02495-6. PubMed DOI
Lynch C., Zhao J., Huang R., Xiao J., Li L., Heyward S., Xia M., Wang H. Quantitative high-throughput identification of drugs as modulators of human constitutive androstane receptor. Sci. Rep. 2015;5:10405. doi: 10.1038/srep10405. PubMed DOI PMC
Hedrich W.D., Hassan H.E., Wang H. Insights into CYP2B6-mediated drug-drug interactions. Acta Pharm. Sin. B. 2016;6:413–425. doi: 10.1016/j.apsb.2016.07.016. PubMed DOI PMC
Lake B.G. Human relevance of rodent liver tumour formation by constitutive androstane receptor (CAR) activators. Toxicol. Res. 2018;7:697–717. doi: 10.1039/C8TX00008E. PubMed DOI PMC
Chen T., Tompkins L.M., Li L., Li H., Kim G., Zheng Y., Wang H. A single amino acid controls the functional switch of human constitutive androstane receptor (CAR) 1 to the xenobiotic-sensitive splicing variant CAR3. J. Pharmacol. Exp. Ther. 2010;332:106–115. doi: 10.1124/jpet.109.159210. PubMed DOI PMC
Omiecinski C.J., Coslo D.M., Chen T., Laurenzana E.M., Peffer R.C. Multi-species analyses of direct activators of the constitutive androstane receptor. Toxicol. Sci. 2011;123:550–562. doi: 10.1093/toxsci/kfr191. PubMed DOI PMC
Scheer N., Ross J., Rode A., Zevnik B., Niehaves S., Faust N., Wolf C.R. A novel panel of mouse models to evaluate the role of human pregnane X receptor and constitutive androstane receptor in drug response. J. Clin. Investig. 2008;118:3228–3239. doi: 10.1172/JCI35483. PubMed DOI PMC
Kanno Y., Suzuki M., Miyazaki Y., Matsuzaki M., Nakahama T., Kurose K., Sawada J.I., Inouye Y. Difference in nucleocytoplasmic shuttling sequences of rat and human constitutive active/androstane receptor. Biochim. Biophys. Acta. 2007;1773:934–944. doi: 10.1016/j.bbamcr.2007.03.020. PubMed DOI
Xu R.X., Lambert M.H., Wisely B.B., Warren E.N., Weinert E.E., Waitt G.M., Williams J.D., Collins J.L., Moore L.B., Willson T.M., et al. A structural basis for constitutive activity in the human CAR/RXRalpha heterodimer. Mol. Cell. 2004;16:919–928. doi: 10.1016/j.molcel.2004.11.042. PubMed DOI
Morris G.M., Huey R., Lindstrom W., Sanner M.F., Belew R.K., Goodsell D.S., Olson A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 2009;30:2785–2791. doi: 10.1002/jcc.21256. PubMed DOI PMC
Trott O., Olson A.J. Software News and Update AutoDock Vina: Improving the Speed and Accuracy of Docking with a New Scoring Function, Efficient Optimization, and Multithreading. J. Comput. Chem. 2010;31:455–461. PubMed PMC
Pettersen E.F., Goddard T.D., Huang C.C., Couch G.S., Greenblatt D.M., Meng E.C., Ferrin T.E. UCSF Chimera--a visualization system for exploratory research and analysis. J. Comput. Chem. 2004;25:1605–1612. doi: 10.1002/jcc.20084. PubMed DOI
Laskowski R.A., Swindells M.B. LigPlot+: Multiple ligand-protein interaction diagrams for drug discovery. J. Chem. Inf. Model. 2011;51:2778–2786. doi: 10.1021/ci200227u. PubMed DOI
Carazo A., Pavek P. The Use of the LanthaScreen TR-FRET CAR Coactivator Assay in the Characterization of Constitutive Androstane Receptor (CAR) Inverse Agonists. Sensors. 2015;15:9265–9276. doi: 10.3390/s150409265. PubMed DOI PMC
Pichard L., Raulet E., Fabre G., Ferrini J.B., Ourlin J.C., Maurel P. Human hepatocyte culture. Methods Mol. Biol. 2006;320:283–293. doi: 10.1385/1-59259-998-2:283. PubMed DOI
Li L., Chen T., Stanton J.D., Sueyoshi T., Negishi M., Wang H. The peripheral benzodiazepine receptor ligand 1-(2-chlorophenyl-methylpropyl)-3-isoquinoline-carboxamide is a novel antagonist of human constitutive androstane receptor. Mol. Pharmacol. 2008;74:443–453. doi: 10.1124/mol.108.046656. PubMed DOI PMC
Vrzal R., Kubesova K., Pavek P., Dvorak Z. Benzodiazepines medazepam and midazolam are activators of pregnane X receptor and weak inducers of CYP3A4: Investigation in primary cultures of human hepatocytes and hepatocarcinoma cell lines. Toxicol. Lett. 2010;193:183–188. doi: 10.1016/j.toxlet.2010.01.004. PubMed DOI
Haines C., Elcombe B.M., Chatham L.R., Vardy A., Higgins L.G., Elcombe C.R., Lake B.G. Comparison of the effects of sodium phenobarbital in wild type and humanized constitutive androstane receptor (CAR)/pregnane X receptor (PXR) mice and in cultured mouse, rat and human hepatocytes. Toxicology. 2018;396–397:23–32. doi: 10.1016/j.tox.2018.02.001. PubMed DOI
Ross J., Plummer S.M., Rode A., Scheer N., Bower C.C., Vogel O., Henderson C.J., Wolf C.R., Elcombe C.R. Human constitutive androstane receptor (CAR) and pregnane X receptor (PXR) support the hypertrophic but not the hyperplastic response to the murine nongenotoxic hepatocarcinogens phenobarbital and chlordane in vivo. Toxicol. Sci. 2010;116:452–466. doi: 10.1093/toxsci/kfq118. PubMed DOI
Hasegawa M., Kapelyukh Y., Tahara H., Seibler J., Rode A., Krueger S., Lee D.N., Wolf C.R., Scheer N. Quantitative prediction of human pregnane X receptor and cytochrome P450 3A4 mediated drug-drug interaction in a novel multiple humanized mouse line. Mol. Pharmacol. 2011;80:518–528. doi: 10.1124/mol.111.071845. PubMed DOI
Biswas L., Farhan F., Reilly J., Bartholomew C., Shu X. TSPO Ligands Promote Cholesterol Efflux and Suppress Oxidative Stress and Inflammation in Choroidal Endothelial Cells. Int. J. Mol. Sci. 2018;19:3740. doi: 10.3390/ijms19123740. PubMed DOI PMC
Tschuor C., Kachaylo E., Limani P., Raptis D.A., Linecker M., Tian Y., Herrmann U., Grabliauskaite K., Weber A., Columbano A., et al. Constitutive androstane receptor (Car)-driven regeneration protects liver from failure following tissue loss. J. Hepatol. 2016;65:66–74. doi: 10.1016/j.jhep.2016.02.040. PubMed DOI
Kaplan S.A., Jack M.L., Alexander K., Weinfeld R.E. Pharmacokinetic profile of diazepam in man following single intravenous and oral and chronic oral administrations. J. Pharm. Sci. 1973;62:1789–1796. doi: 10.1002/jps.2600621111. PubMed DOI
Matsuda Y., Konno Y., Hashimoto T., Nagai M., Taguchi T., Satsukawa M., Yamashita S. Quantitative assessment of intestinal first-pass metabolism of oral drugs using portal-vein cannulated rats. Pharm. Res. 2015;32:604–616. doi: 10.1007/s11095-014-1489-x. PubMed DOI
Carvedilol impairs bile acid homeostasis in mice: implication for nonalcoholic steatohepatitis