Mitochondrial Probe Methyltriphenylphosphonium (TPMP) Inhibits the Krebs Cycle Enzyme 2-Oxoglutarate Dehydrogenase

. 2016 ; 11 (8) : e0161413. [epub] 20160818

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid27537184

Methyltriphenylphosphonium (TPMP) salts have been widely used to measure the mitochondrial membrane potential and the triphenylphosphonium (TPP+) moiety has been attached to many bioactive compounds including antioxidants to target them into mitochondria thanks to their high affinity to accumulate in the mitochondrial matrix. The adverse effects of these compounds on cellular metabolism have been insufficiently studied and are still poorly understood. Micromolar concentrations of TPMP cause a progressive inhibition of cellular respiration in adherent cells without a marked effect on mitochondrial coupling. In permeabilized cells the inhibition was limited to NADH-linked respiration. We found a mixed inhibition of the Krebs cycle enzyme 2-oxoglutarate dehydrogenase complex (OGDHC) with an estimated IC50 3.93 [3.70-4.17] mM, which is pharmacologically plausible since it corresponds to micromolar extracellular concentrations. Increasing the lipophilic character of the used TPP+ compound further potentiates the inhibition of OGDHC activity. This effect of TPMP on the Krebs cycle ought to be taken into account when interpreting observations on cells and mitochondria in the presence of TPP+ derivatives. Compounds based on or similar to TPP+ derivatives may also be used to alter OGDHC activity for experimental or therapeutic purposes.

Zobrazit více v PubMed

Ross MF, Kelso GF, Blaikie FH, James AM, Cochemé HM, Filipovska A, et al. Lipophilic triphenylphosphonium cations as tools in mitochondrial bioenergetics and free radical biology. Biochem. 2005;70: 222–230. 10.1007/s10541-005-0104-5 PubMed DOI

Liberman EA, Topaly VP, Tsofina LM, Jasaitis AA, Skulachev VP. Mechanism of coupling of oxidative phosphorylation and the membrane potential of mitochondria. Nature. 1969;222: 1076–1078. 10.1038/2221076a0 PubMed DOI

Grinius LL, Jasaitis AA, Kadziauskas YP, Liberman EA, Skulachev VP, Topali VP, et al. Conversion of biomembrane-produced energy into electric form. I. Submitochondrial particles. Biochim Biophys Acta. 1970;216: 1–12. 10.1016/0005-2728(70)90156-8 PubMed DOI

Brown GC, Brand MD. Thermodynamic control of electron flux through mitochondrial cytochrome bc1 complex. Biochem J. 1985;225: 399–405. PubMed PMC

Kelso GF, Porteous CM, Coulter C V, Hughes G, Porteous WK, Ledgerwood EC, et al. Selective targeting of a redox-active ubiquinone to mitochondria within cells: Antioxidant and antiapoptotic properties. J Biol Chem. 2001;276: 4588–4596. 10.1074/jbc.M009093200 PubMed DOI

Trnka J, Blaikie FH, Logan A, Smith RAJ, Murphy MP. Antioxidant properties of MitoTEMPOL and its hydroxylamine. Free Radic Res. 2009;43: 4–12. 10.1080/10715760802582183 PubMed DOI PMC

Smith RAJ, Porteous CM, Coulter C V, Murphy MP. Selective targeting of an antioxidant to mitochondria. Eur J Biochem. 1999;263: 709–716. 10.1046/j.1432-1327.1999.00543.x PubMed DOI

Kelso GF, Maroz A, Cochemé HM, Logan A, Prime TA, Peskin A V, et al. A mitochondria-targeted macrocyclic Mn(II) superoxide dismutase mimetic. Chem Biol. 2012;19: 1237–1246. 10.1016/j.chembiol.2012.08.005 PubMed DOI

Robinson KM, Janes MS, Pehar M, Monette JS, Ross MF, Hagen TM, et al. Selective fluorescent imaging of superoxide in vivo using ethidium-based probes. Proc Natl Acad Sci U S A. 2006;103: 15038–15043. 10.1073/pnas.0601945103 PubMed DOI PMC

Cochemé HM, Logan A, Prime TA, Abakumova I, Quin C, McQuaker SJ, et al. Using the mitochondria-targeted ratiometric mass spectrometry probe MitoB to measure H2O2 in living Drosophila. Nat Protoc. 2012;7: 946–958. 10.1038/nprot.2012.035 PubMed DOI

Ross MF, Prime TA, Abakumova I, James AM, Porteous CM, Smith RAJ, et al. Rapid and extensive uptake and activation of hydrophobic triphenylphosphonium cations within cells. Biochem J. 2008;411: 633–645. 10.1042/BJ20080063 PubMed DOI

Lee I, Bender E, Arnold S, Kadenbach B. New control of mitochondrial membrane potential and ROS formation-a hypothesis. Biol Chem. 2001;382: 1629–1636. 10.1515/BC.2001.198 PubMed DOI

Severin FF, Severina II, Antonenko YN, Rokitskaya TI, Cherepanov DA, Mokhova EN, et al. Penetrating cation/fatty acid anion pair as a mitochondria-targeted protonophore. Proc Natl Acad Sci U S A. 2010;107: 663–668. 10.1073/pnas.0910216107 PubMed DOI PMC

Plecitá-Hlavatá L, Ježek J, Ježek P. Pro-oxidant mitochondrial matrix-targeted ubiquinone MitoQ10 acts as anti-oxidant at retarded electron transport or proton pumping within Complex I. Int J Biochem Cell Biol. 2009;41: 1697–1707. 10.1016/j.biocel.2009.02.015 PubMed DOI

Antonenko YN, Khailova LS, Knorre DA, Markova O V., Rokitskaya TI, Ilyasova TM, et al. Penetrating Cations Enhance Uncoupling Activity of Anionic Protonophores in Mitochondria. PLoS One. 2013;8: e61902 10.1371/journal.pone.0061902 PubMed DOI PMC

Trnka J, Elkalaf M, Anděl M. Lipophilic Triphenylphosphonium Cations Inhibit Mitochondrial Electron Transport Chain and Induce Mitochondrial Proton Leak. PLoS One. 2015;10: e0121837 10.1371/journal.pone.0121837 PubMed DOI PMC

Reily C, Mitchell T, Chacko BK, Benavides GA, Murphy MP, Darley-Usmar VM. Mitochondrially targeted compounds and their impact on cellular bioenergetics. Redox Biol. Elsevier; 2013;1: 86–93. 10.1016/j.redox.2012.11.009 PubMed DOI PMC

Wu M, Neilson A, Swift AL, Moran R, Tamagnine J, Parslow D, et al. Multiparameter metabolic analysis reveals a close link between attenuated mitochondrial bioenergetic function and enhanced glycolysis dependency in human tumor cells. Am J Physiol Cell Physiol. 2007;292: 125–136. 10.1152/ajpcell.00247.2006 PubMed DOI

Salabei JK, Gibb AA, Hill BG. Comprehensive measurement of respiratory activity in permeabilized cells using extracellular flux analysis. Nat Protoc. Nature Publishing Group; 2014;9: 421–438. 10.1038/nprot.2014.018 PubMed DOI PMC

Brand MD. Measurement of mitochondrial protonomotive force Bioenergetics—A practical approach. New York: Oxford University Press Inc; 1995. pp. 39–62.

Ojovan SM, Knorre DA, Markova O V, Smirnova EA, Bakeeva LE, Severin FF. Accumulation of dodecyltriphenylphosphonium in mitochondria induces their swelling and ROS-dependent growth inhibition in yeast. J Bioenerg Biomembr. 2011;43: 175–180. 10.1007/s10863-011-9345-8 PubMed DOI

Spinazzi M, Casarin A, Pertegato V, Salviati L, Angelini C. Assessment of mitochondrial respiratory chain enzymatic activities on tissues and cultured cells. Nat Protoc. 2012;7: 1235–1246. 10.1038/nprot.2012.058 PubMed DOI

Elkalaf M, Anděl M, Trnka J. Low glucose but not galactose enhances oxidative mitochondrial metabolism in C2C12 myoblasts and myotubes. PLoS One. 2013;8: e70772 10.1371/journal.pone.0070772 PubMed DOI PMC

Chen RF, Plaut GW. Activation and Inhibition of Dpn-Linked Isocitrate Dehydrogenase of Heart By Certain Nucleotides. Biochemistry. 1963;2: 1023–1032. 10.1021/bi00905a020 PubMed DOI

Goncalves S, Paupe V, Dassa E, Briere JJ, Favier J, Gimenez-Roqueplo AP, et al. Rapid determination of tricarboxylic acid cycle enzyme activities in biological samples. BMC Biochem. 2010;11: 5 10.1186/1471-2091-11-5 PubMed DOI PMC

Fricke W, Pahlich E. Malate: A possible source of error in the NAD glutamate dehydrogenase assay. J Exp Bot. 1992;43: 1515–1518. 10.1093/jxb/43.11.1515 DOI

Janssen A, Trijbels F, Sengers R, Smeitink J, Heuvel L, Wintjes L, et al. Spectrophotometric Assay for Complex I of the Respiratory Chain in Tissue Samples and Cultured Fibroblasts. Clin Chem. 2007;53: 729–734. PubMed

Luo C, Long J, Liu J. An improved spectrophotometric method for a more specific and accurate assay of mitochondrial complex III activity. Clin Chim Acta. 2008;395: 38–41. 10.1016/j.cca.2008.04.025 PubMed DOI

Trounce IA, Kim YL, Jun AS, Wallace DC. Assessment of mitochondrial oxidative phosphorylation in patient muscle biopsies, lymphoblasts, and transmitochondrial cell lines. Methods Enzymol. 1996;264: 484–509. S0076-6879(96)64044-0 [pii] PubMed

Cooperstein SJ, Lazarow A. A microspectrophotometric method for the determination of cytochrome oxidase. J Biol Chem. 1951;189: 665–670. PubMed

Sauer SW, Okun JG, Schwab M a., Crnic LR, Hoffmann GF, Goodman SI, et al. Bioenergetics in glutaryl-coenzyme A dehydrogenase deficiency: A role for glutaryl-coenzyme A. J Biol Chem. 2005;280: 21830–21836. 10.1074/jbc.M502845200 PubMed DOI

Tůma P, Málková K, Samcová E, Štulík K. Rapid monitoring of arrays of amino acids in clinical samples using capillary electrophoresis with contactless conductivity detection. J Sep Sci. 2010;33: 2394–2401. 10.1002/jssc.201000137 PubMed DOI

Tůma P, Samcová E, Štulík K. Determination of the spectrum of low molecular mass organic acids in urine by capillary electrophoresis with contactless conductivity and ultraviolet photometric detection-An efficient tool for monitoring of inborn metabolic disorders. Anal Chim Acta. 2011;685: 84–90. 10.1016/j.aca.2010.11.007 PubMed DOI

Scaduto RC, Grotyohann LW. Measurement of mitochondrial membrane potential using fluorescent rhodamine derivatives. Biophys J. Elsevier; 1999;76: 469–477. 10.1016/S0006-3495(99)77214-0 PubMed DOI PMC

Floryk D, Houštěk J. Tetramethyl rhodamine methyl ester (TMRM) is suitable for cytofluorometric measurements of mitochondrial membrane potential in cells treated with digitonin. Biosci Rep. 1999;19: 27–34. PubMed

Nicholls DG. Fluorescence measurement of mitochondrial membrane potential changes in cultured cells. Methods Mol Biol. 2012;810: 119–133. 10.1007/978-1-61779-382-0_8 PubMed DOI

Rasmussen UF, Rasmussen HN. Human quadriceps muscle mitochondria: a functional characterization. Mol Cell Biochem. 2000;208: 37–44. PubMed

Johnson G, Roussel D, Dumas J-F, Douay O, Malthièry Y, Simard G, et al. Influence of intensity of food restriction on skeletal muscle mitochondrial energy metabolism in rats. Am J Physiol Endocrinol Metab. 2006;291: E460–E467. 10.1152/ajpendo.00258.2005 PubMed DOI

Heckert LL, Butler MH, Reimers JM, Albe KR, Wright BE. Purification and characterization of the 2-oxoglutarate dehydrogenase complex from Dictyostelium discoideum. J Gen Microbiol. 1989;135: 155–61. Available: http://www.ncbi.nlm.nih.gov/pubmed/2778429 PubMed

Smith RAJ, Hartley RC, Cochemé HM, Murphy MP. Mitochondrial pharmacology. Trends Pharmacol Sci. 2012;33: 341–352. 10.1016/j.tips.2012.03.010 PubMed DOI

Asin-Cayuela J, Manas AB, James AM, Smith RAJ, Murphy MP. Fine-tuning the hydrophobicity of a mitochondria-targeted antioxidant. FEBS Lett. 2004;571: 9–16. 10.1016/j.febslet.2004.06.045 PubMed DOI

O’Malley Y, Fink BD, Ross NC, Prisinzano TE, Sivitz WI. Reactive oxygen and targeted antioxidant administration in endothelial cell mitochondria. J Biol Chem. 2006;281: 39766–39775. 10.1074/jbc.M608268200 PubMed DOI

Leo S, Szabadkai G, Rizzuto R. The mitochondrial antioxidants MitoE2 and MitoQ10 increase mitochondrial Ca2+ load upon cell stimulation by inhibiting Ca2+ efflux from the organelle. Ann N Y Acad Sci. 2008;1147: 264–274. 10.1196/annals.1427.019 PubMed DOI PMC

Trendeleva TA, Rogov AG, Cherepanov DA, Sukhanova EI, Il’yasova TM, Severina II, et al. Interaction of tetraphenylphosphonium and dodecyltriphenylphosphonium with lipid membranes and mitochondria. Biochem. 2012;77: 1021–1028. 10.1134/S000629791209009X PubMed DOI

Murphy MP. Selective targeting of bioactive compounds to mitochondria. Trends Biotechnol. 1997;15: 326–330. 10.1016/S0167-7799(97)01068-8 PubMed DOI

Sheu KF, Blass JP. The alpha-ketoglutarate dehydrogenase complex. Ann N Y Acad Sci. 1999;893: 61–78. PubMed

Qi F, Pradhan RK, Dash RK, Beard DA. Detailed kinetics and regulation of mammalian 2-oxoglutarate dehydrogenase. BMC Biochem. BioMed Central Ltd; 2011;12: 53 10.1186/1471-2091-12-53 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...