Pro-oxidant mitochondrial matrix-targeted ubiquinone MitoQ10 acts as anti-oxidant at retarded electron transport or proton pumping within Complex I
Jazyk angličtina Země Nizozemsko Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
19433311
DOI
10.1016/j.biocel.2009.02.015
PII: S1357-2725(09)00085-5
Knihovny.cz E-zdroje
- MeSH
- antioxidancia metabolismus MeSH
- buněčné dýchání účinky léků MeSH
- glukosa farmakologie MeSH
- jaterní mitochondrie účinky léků metabolismus MeSH
- krysa rodu Rattus MeSH
- lidé MeSH
- mitochondrie účinky léků metabolismus MeSH
- nádorové buněčné linie MeSH
- oxidativní fosforylace účinky léků MeSH
- peroxid vodíku metabolismus MeSH
- protonové pumpy metabolismus MeSH
- reaktivní formy kyslíku metabolismus MeSH
- respirační komplex I metabolismus MeSH
- respirační komplex II metabolismus MeSH
- respirační komplex III metabolismus MeSH
- rotenon farmakologie MeSH
- spotřeba kyslíku účinky léků MeSH
- superoxidy metabolismus MeSH
- transport elektronů účinky léků MeSH
- ubichinon analogy a deriváty metabolismus MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antioxidancia MeSH
- coenzyme Q10 MeSH Prohlížeč
- glukosa MeSH
- peroxid vodíku MeSH
- protonové pumpy MeSH
- reaktivní formy kyslíku MeSH
- respirační komplex I MeSH
- respirační komplex II MeSH
- respirační komplex III MeSH
- rotenon MeSH
- superoxidy MeSH
- ubichinon MeSH
Oxidative stress of mitochondrial origin, i.e. elevated mitochondrial superoxide production, belongs to major factors determining aging and oxidative-stress-related diseases. Antioxidants, such as the mitochondria-targeted coenzyme Q, MitoQ(10), may prevent or cure these pathological conditions. To elucidate pro- and anti-oxidant action of MitoQ(10), we studied its effects on HepG2 cell respiration, mitochondrial network morphology, and rates of superoxide release (above that neutralized by superoxide dismutase) to the mitochondrial matrix (J(m)). MitoSOX Red fluorescence confocal microscopy monitoring of J(m) rates showed pro-oxidant effects of 3.5-fold increased J(m) with MitoQ(10). MitoQ(10) induced fission of the mitochondrial network which was recovered after 24h. In rotenone-inhibited HepG2 cells (i.e., already under oxidative stress) MitoQ(10) sharply decreased rotenone-induced J(m), but not together with the Complex II inhibitor thenoyltrifluoroacetone. Respiration of HepG2 cells and isolated rat liver mitochondria with MitoQ(10) increased independently of rotenone. The increase was prevented by thenoyltrifluoroacetone. These results suggest that MitoQ(10) accepts electrons prior to the rotenone-bound Q-site, and the Complex II reverse mode oxidizes MitoQ(10)H(2) to regenerate MitoQ(10). Consequently, MitoQ(10) has a pro-oxidant role in intact cells, whereas it serves as an antioxidant when Complex I-derived superoxide generation is already elevated due to electron flow retardation. Moreover, unlike mitochondrial uncoupling, MitoQ(10) exerted its antioxidant role when Complex I proton pumping was retarded by a hydrophobic amiloride, 5-(N-ethyl-N-isopropyl) amiloride. Consequently, MitoQ(10) may be useful in the treatment of diseases originating from impairment of respiratory chain Complex I due to oxidatively damaged mitochondrial DNA, when its targeted delivery to pathogenic tissues is ensured.
Citace poskytuje Crossref.org
Potential of Mitochondria-Targeted Antioxidants to Prevent Oxidative Stress in Pancreatic β-cells