Lipophilic triphenylphosphonium cations inhibit mitochondrial electron transport chain and induce mitochondrial proton leak
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
25927600
PubMed Central
PMC4415762
DOI
10.1371/journal.pone.0121837
PII: PONE-D-14-45139
Knihovny.cz E-zdroje
- MeSH
- buněčné linie MeSH
- elektronový transportní řetězec metabolismus MeSH
- heterocyklické sloučeniny farmakologie MeSH
- krysa rodu Rattus MeSH
- membránový potenciál mitochondrií účinky léků MeSH
- organofosforové sloučeniny farmakologie MeSH
- potkani Wistar MeSH
- spotřeba kyslíku účinky léků MeSH
- svalové mitochondrie metabolismus MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- elektronový transportní řetězec MeSH
- heterocyklické sloučeniny MeSH
- organofosforové sloučeniny MeSH
- tris(o-phenylenedioxy)cyclotriphosphazene MeSH Prohlížeč
BACKGROUND: The lipophilic positively charged moiety of triphenylphosphonium (TPP+) has been used to target a range of biologically active compounds including antioxidants, spin-traps and other probes into mitochondria. The moiety itself, while often considered biologically inert, appears to influence mitochondrial metabolism. METHODOLOGY/PRINCIPAL FINDINGS: We used the Seahorse XF flux analyzer to measure the effect of a range of alkylTPP+ on cellular respiration and further analyzed their effect on mitochondrial membrane potential and the activity of respiratory complexes. We found that the ability of alkylTPP+ to inhibit the respiratory chain and decrease the mitochondrial membrane potential increases with the length of the alkyl chain suggesting that hydrophobicity is an important determinant of toxicity. CONCLUSIONS/SIGNIFICANCE: More hydrophobic TPP+ derivatives can be expected to have a negative impact on mitochondrial membrane potential and respiratory chain activity in addition to the effect of the biologically active moiety attached to them. Using shorter linker chains or adding hydrophilic functional groups may provide a means to decrease this negative effect.
Zobrazit více v PubMed
Smith RA, Porteous CM, Coulter CV, Murphy MP. Selective targeting of an antioxidant to mitochondria. Eur J Biochem. 1999. August;263(3):709–716. 10.1046/j.1432-1327.1999.00543.x PubMed DOI
Kelso GF, Porteous CM, Coulter CV, Hughes G, Porteous WK, Ledgerwood EC, et al. Selective targeting of a redox-active ubiquinone to mitochondria within cells: antioxidant and antiapoptotic properties. J Biol Chem. 2001. February;276(7):4588–4596. 10.1074/jbc.M009093200 PubMed DOI
Filipovska A, Kelso GF, Brown SE, Beer SM, Smith RA, Murphy MP. Synthesis and characterization of a triphenylphosphonium-conjugated peroxidase mimetic. Insights into the interaction of ebselen with mitochondria. J Biol Chem. 2005. June;280(25):24113–24126. 10.1074/jbc.M501148200 PubMed DOI
Brown SE, Ross MF, Sanjuan-Pla A, Manas AB, Smith RA, Murphy MP. Targeting lipoic acid to mitochondria: synthesis and characterization of a triphenylphosphonium-conjugated alpha-lipoyl derivative. Free Radic Biol Med. 2007. June;42(12):1766–1780. 10.1016/j.freeradbiomed.2007.02.033 PubMed DOI
Trnka J, Blaikie FH, Smith RA, Murphy MP. A mitochondria-targeted nitroxide is reduced to its hydroxylamine by ubiquinol in mitochondria. Free Radic Biol Med. 2008. January;1(44):1406–1419. 10.1016/j.freeradbiomed.2007.12.036 PubMed DOI
Kelso GF, Maroz A, Cochemé HM, Logan A, Prime TA, Peskin AV, et al. A mitochondria-targeted macrocyclic Mn(II) superoxide dismutase mimetic. Chem Biol. 2012. October; 19(10): 1237–1246. 10.1016/j.chembiol.2012.08.005 PubMed DOI
Murphy MP, Echtay KS, Blaikie FH, Asin-Cayuela J, Cochemé HM, Green K, et al. Superoxide activates uncoupling proteins by generating carbon-centered radicals and initiating lipid peroxidation: studies using a mitochondria-targeted spin trap derived from alpha-phenyl-N-tert-butylnitrone. J Biol Chem. 2003. December;278(49):48534–48545. 10.1074/jbc.M308529200 PubMed DOI
Hardy M, Rockenbauer A, Vásquez-Vivar J, Felix C, Lopez M, Srinivasan S, et al. Detection, characterization, and decay kinetics of ROS and thiyl adducts of mito-DEPMPO spin trap. Chem Res Toxicol. 2007. June;20(7):1053–1060. 10.1021/tx700101d PubMed DOI PMC
Xu Y, Kalyanaraman B. Synthesis and ESR studies of a novel cyclic nitrone spin trap attached to a phosphonium group-a suitable trap for mitochondria-generated ROS? Free Radic Res. 2007. January;41(1):1–7. 10.1080/10715760600911147 PubMed DOI
Quin C, Trnka J, Hay A, Murphy MP, Hartley RC. Synthesis of a mitochondria-targeted spin trap using a novel Parham-type cyclization. Tetrahedron. 2009. September;65(39):8154–8160. 10.1016/j.tet.2009.07.081 PubMed DOI PMC
Robinson KM, Janes MS, Pehar M, Monette JS, Ross MF, Hagen TM, et al. Selective fluorescent imaging of superoxide in vivo using ethidium-based probes. Proc Natl Acad Sci USA. 2006. October;103(41):15038–15043. 10.1073/pnas.0601945103 PubMed DOI PMC
Cochemé HM, Quin C, McQuaker SJ, Cabreiro F, Logan A, Prime TA, et al. Measurement of H2O2 within living Drosophila during aging using a ratiometric mass spectrometry probe targeted to the mitochondrial matrix. Cell Metab. 2011. March;13(3):340–350. 10.1016/j.cmet.2011.02.003 PubMed DOI PMC
Grinius LL, Jasaitis AA, Kadziauskas YP, Liberman EA, Skulachev VP, Topali VP, et al. Conversion of biomembrane-produced energy into electric form. I. Submitochondrial particles. Biochim Biophys Acta. 1970. August;216(1):1–12. 10.1016/0005-2728(70)90153-2 PubMed DOI
Bakeeva LE, Grinius LL, Jasaitis AA, Kuliene VV, Levitsky DO, Liberman EA, et al. Conversion of biomembrane-produced energy into electric form. II. Intact mitochondria. Biochim Biophys Acta. 1970 August;216(1):13–21. PubMed
Ross MF, Kelso GF, Blaikie FH, James AM, Cochemé HM, Filipovska A, et al. Lipophilic triphenylphosphonium cations as tools in mitochondrial bioenergetics and free radical biology. Biochemistry (Mosc). 2005. February;70(2):222–230. 10.1007/s10541-005-0104-5 PubMed DOI
Ross MF, Prime TA, Abakumova I, James AM, Porteous CM, Smith RA, et al. Rapid and extensive uptake and activation of hydrophobic triphenylphosphonium cations within cells. Biochem J. 2008. May;411(3):633–645. 10.1042/BJ20080063 PubMed DOI
Trnka J. Mitochondria-targeted antioxidants and spin traps [PhD Thesis]. University of Cambridge; 2008.
Trnka J, Blaikie FH, Logan A, Smith RA, Murphy MP. Antioxidant properties of MitoTEMPOL and its hydroxylamine. Free Radic Res. 2009. January;43(1):4–12. 10.1080/10715760802582183 PubMed DOI PMC
James AM, Cochemé HM, Smith RA, Murphy MP. Interactions of mitochondria-targeted and untargeted ubiquinones with the mitochondrial respiratory chain and reactive oxygen species. Implications for the use of exogenous ubiquinones as therapies and experimental tools. J Biol Chem. 2005. March;280(22):21295–21312. 10.1074/jbc.M501527200 PubMed DOI
Leo S, Szabadkai G, Rizzuto R. The mitochondrial antioxidants MitoE(2) and MitoQ(10) increase mitochondrial Ca(2+) load upon cell stimulation by inhibiting Ca(2+) efflux from the organelle. Ann N Y Acad Sci. 2008. December;1147:264–274. 10.1196/annals.1427.019 PubMed DOI PMC
Cunniff B, Benson K, Stumpff J, Newick K, Held P, Taatjes D, et al. Mitochondrial-targeted nitroxides disrupt mitochondrial architecture and inhibit expression of peroxiredoxin 3 and FOXM1 in malignant mesothelioma cells. J Cell Physiol. 2013. April;228(4):835–845. 10.1002/jcp.24232 PubMed DOI PMC
Trendeleva TA, Rogov AG, Cherepanov DA, Sukhanova EI, Il'yasova TM, Severina II, et al. Interaction of tetraphenylphosphonium and dodecyltriphenylphosphonium with lipid membranes and mitochondria. Biochemistry Mosc. 2012. September;77(9):1021–1028. 10.1134/S000629791209009X PubMed DOI
O'Malley Y, Fink BD, Ross NC, Prisinzano TE, Sivitz WI. Reactive oxygen and targeted antioxidant administration in endothelial cell mitochondria. J Biol Chem. 2006. December;281(52):39766–39775. 10.1074/jbc.M608268200 PubMed DOI
Wingrove DE, Gunter TE. Kinetics of mitochondrial calcium transport. II. A kinetic description of the sodium-dependent calcium efflux mechanism of liver mitochondria and inhibition by ruthenium red and by tetraphenylphosphonium. J Biol Chem. 1986. November;261(32):15166–15171. PubMed
Brand MD. Measurement of mitochondrial protonmotive force In: Brown GC, Cooper CE, editors. Bioenergetics - A practical approach. IRL PRESS; 1995. p. 39–62.
Patkova J, Anděl M, Trnka J. Palmitate-induced cell death and mitochondrial respiratory dysfunction in myoblasts are not prevented by mitochondria-targeted antioxidants. Cell Physiol Biochem. 2014. May;33(5):1439–1451. 10.1159/000358709 PubMed DOI
Severin FF, Severina II, Antonenko YN, Rokitskaya TI, Cherepanov DA, Mokhova EN, et al. Penetrating cation/fatty acid anion pair as a mitochondria-targeted protonophore. Proc Natl Acad Sci USA. 2010. January;107(2):663–668. 10.1073/pnas.0910216107 PubMed DOI PMC
Antonenko YN, Khailova LS, Knorre DA, Markova OV, Rokitskaya TI, Ilyasova TM, et al. Penetrating cations enhance uncoupling activity of anionic protonophores in mitochondria. PLoS ONE. 2013;8(4):e61902. PubMed PMC
Plecita-Hlavata L, Jezek J, Jezek P. Pro-oxidant mitochondrial matrix-targeted ubiquinone MitoQ10 acts as anti-oxidant at retarded electron transport or proton pumping within Complex I. Int J Biochem Cell Biol. 2009. Aug-Sep;41 (8–9): 1697–1707. 10.1016/j.biocel.2009.02.015 PubMed DOI
Reily C, Mitchell T, Chacko BK, Benavides G, Murphy MP, Darley-Usmar V. Mitochondrially targeted compounds and their impact on cellular bioenergetics. Redox Biol. 2013;1(1):86–93. 10.1016/j.redox.2012.11.009 PubMed DOI PMC
Spinazzi M, Casarin A, Pertegato V, Salviati L, Angelini C. Assessment of mitochondrial respiratory chain enzymatic activities on tissues and cultured cells. Nat protoc. 2012. May;7(6):1235–1246. 10.1038/nprot.2012.058 PubMed DOI
Wu M, Neilson A, Swift AL, Moran R, Tamagnine J, Parslow D, et al. Multiparameter metabolic analysis reveals a close link between attenuated mitochondrial bioenergetic function and enhanced glycolysis dependency in human tumor cells. Am J Physiol Cell Physiol. 2007. January;292(1):125–136. 10.1152/ajpcell.00247.2006 PubMed DOI
Janssen A, Trijbels F, Sengers R, Smeitink J, Heuvel L, Wintjes L, et al. Spectrophotometric Assay for Complex I of the Respiratory Chain in Tissue Samples and Cultured Fibroblasts. Clinical Chemistry. 2007;53(4):729–734. 10.1373/clinchem.2006.078873 PubMed DOI
Luo C, Long J, Liu J. An improved spectrophotometric method for a more specific and accurate assay of mitochondrial complex III activity. Clinica Chimica Acta. 2008;395:38–41. 10.1016/j.cca.2008.04.025 PubMed DOI
Cooperstein SJ, Lazarow A. A microspectrophotometric method for the determination of cytochrome oxidase. The Journal of Biological Chemistry. 1951;189(2):665–670. PubMed
Scaduto RC, Grotyohann LW. Measurement of mitochondrial membrane potential using fluorescent rhodamine derivatives. Biophys J. 1999. January;76(1 Pt 1):469–477. 10.1016/S0006-3495(99)77214-0 PubMed DOI PMC
Floryk D, Houstěk J. Tetramethyl rhodamine methyl ester (TMRM) is suitable for cytofluorometric measurements of mitochondrial membrane potential in cells treated with digitonin. Biosci Rep. 1999. February;19(1):27–34. 10.1023/A:1020193906974 PubMed DOI
Nicholls DG. Fluorescence measurement of mitochondrial membrane potential changes in cultured cells. Methods Mol Biol. 2012;810:119–133. 10.1007/978-1-61779-382-0_8 PubMed DOI
Murphy PM. Selective targeting of bioactive compounds to mitochondria. Trends Biotechnol. 1997. August;15(8):326–330. 10.1016/S0167-7799(97)01068-8 PubMed DOI
Cerletti P, Strom R, Giordano MG. Reactivation of succinic dehydrogenase by phospholipids. Biochem Biophys Res Commun. 1965. January;18:259–263. 10.1016/0006-291X(65)90750-3 PubMed DOI
Fry M, Green DE. Cardiolipin requirement by cytochrome oxidase and the catalytic role of phospholipid. Biochem Biophys Res Commun. 1980. April;93(4):1238–1246. 10.1016/0006-291X(80)90622-1 PubMed DOI
Fry M, Green DE. Cardiolipin requirement for electron transfer in complex I and III of the mitochondrial respiratory chain. J Biol Chem. 1981. February;256(4):1874–1880. PubMed
Cell-Tak coating interferes with DNA-based normalization of metabolic flux data