Mitochondrial function in skeletal muscle of patients with protracted critical illness and ICU-acquired weakness
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
26699134
PubMed Central
PMC4699339
DOI
10.1186/s13054-015-1160-x
PII: 10.1186/s13054-015-1160-x
Knihovny.cz E-zdroje
- MeSH
- adenosintrifosfát metabolismus fyziologie MeSH
- biogeneze organel MeSH
- čtyřhlavý sval stehenní metabolismus MeSH
- energetický metabolismus fyziologie MeSH
- glycerolfosfátdehydrogenasa metabolismus MeSH
- jednotky intenzivní péče MeSH
- kohortové studie MeSH
- kosterní svaly metabolismus MeSH
- kritický stav MeSH
- lidé středního věku MeSH
- lidé MeSH
- mitochondrie metabolismus patologie MeSH
- oxidační stres fyziologie MeSH
- pilotní projekty MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- svalová slabost etiologie MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- adenosintrifosfát MeSH
- glycerolfosfátdehydrogenasa MeSH
BACKGROUND: Mitochondrial damage occurs in the acute phase of critical illness, followed by activation of mitochondrial biogenesis in survivors. It has been hypothesized that bioenergetics failure of skeletal muscle may contribute to the development of ICU-acquired weakness. The aim of the present study was to determine whether mitochondrial dysfunction persists until protracted phase of critical illness. METHODS: In this single-centre controlled-cohort ex vivo proof-of-concept pilot study, we obtained vastus lateralis biopsies from ventilated patients with ICU-acquired weakness (n = 8) and from age and sex-matched metabolically healthy controls (n = 8). Mitochondrial functional indices were measured in cytosolic context by high-resolution respirometry in tissue homogenates, activities of respiratory complexes by spectrophotometry and individual functional capacities were correlated with concentrations of electron transport chain key subunits from respiratory complexes II, III, IV and V measured by western blot. RESULTS: The ability of aerobic ATP synthesis (OXPHOS) was reduced to ~54% in ICU patients (p<0.01), in correlation with the depletion of complexes III (~38% of control, p = 0.02) and IV (~26% of controls, p<0.01) and without signs of mitochondrial uncoupling. When mitochondrial functional indices were adjusted to citrate synthase activity, OXPHOS and the activity of complexes I and IV were not different, whilst the activities of complexes II and III were increased in ICU patients 3-fold (p<0.01) respectively 2-fold (p<0.01). CONCLUSIONS: Compared to healthy controls, in ICU patients we have demonstrated a ~50% reduction of the ability of skeletal muscle to synthetize ATP in mitochondria. We found a depletion of complex III and IV concentrations and relative increases in functional capacities of complex II and glycerol-3-phosphate dehydrogenase/complex III.
Department of Internal Medicine 2 Kralovske Vinohrady University Hospital Prague Czech Republic
Department of Orthopaedic Surgery Kralovske Vinohrady University Hospital Prague Czech Republic
Zobrazit více v PubMed
Takasu O, Gaut JP, Watanabe E, To K, Fagley RE, Sato B, et al. Mechanisms of cardiac and renal dysfunction in patients dying of sepsis. Am J Respir Crit Care Med. 2013;187:509–17. doi: 10.1164/rccm.201211-1983OC. PubMed DOI PMC
Brealey D, Brand M, Hargreaves I, Heales S, Land J, Smolenski R, et al. Association between mitochondrial dysfunction and severity and outcome of septic shock. Lancet. 2002;360:219–23. doi: 10.1016/S0140-6736(02)09459-X. PubMed DOI
Fredriksson K, Hammarqvist F, Strigård K, Hultenby K, Ljungqvist O, Wernerman J, Rooyackers O. Derangements in mitochondrial metabolism in intercostal and leg muscle of critically ill patients with sepsis-induced multiple organ failure. Am J Physiol Endocrinol Metab. 2006;291:E1044–50. doi: 10.1152/ajpendo.00218.2006. PubMed DOI
Carré JE, Orban J-C, Re L, Felsmann K, Iffert W, Bauer M, et al. Survival in critical illness is associated with early activation of mitochondrial biogenesis. Am J Respir Crit Care Med. 2010;182:745–51. doi: 10.1164/rccm.201003-0326OC. PubMed DOI PMC
Garrabou G, Morén C, López S, Tobías E, Cardellach F, Miró O, Casademont J. The effects of sepsis on mitochondria. J Infect Dis. 2012;205:392–400. doi: 10.1093/infdis/jir764. PubMed DOI
Vanhorebeek I, De Vos R, Mesotten D, Wouters PJ, De Wolf-Peeters C, Van den Berghe G. Protection of hepatocyte mitochondrial ultrastructure and function by strict blood glucose control with insulin in critically ill patients. Lancet. 2005;365:53–9. doi: 10.1016/S0140-6736(04)17665-4. PubMed DOI
Japiassú AM, Santiago AP, d’Avila JC, Garcia-Souza LF, Galina A, Castro Faria-Neto HC, et al. Bioenergetic failure of human peripheral blood monocytes in patients with septic shock is mediated by reduced F1Fo adenosine-5'-triphosphate synthase activity. Crit Care Med. 2011;39:1056–63. doi: 10.1097/CCM.0b013e31820eda5c. PubMed DOI
Ziak J, Krajcova A, Jiroutkova K, Nemcova V, Dzupa V, Duska F, et al. Assessing the function of mitochondria in cytosolic context in human skeletal muscle: Adopting high-resolution respirometry to homogenate of needle biopsy tissue samples. Mitochondrion. 2015;21:106–12. doi: 10.1016/j.mito.2015.02.002. PubMed DOI
Edwards RHT. Muscle fatigue. Postgrad Med J. 1975;51:137–143. doi: 10.1136/pgmj.51.593.137. PubMed DOI
Hayot M, Michaud A, Koechlin C, Caron MA, Leblanc P, Préfaut C, Maltais F. Skeletal muscle microbiopsy: a validation study of a minimally invasive technique. Eur Respir J. 2005;25:431–40. doi: 10.1183/09031936.05.00053404. PubMed DOI
Pecinová A, Drahota Z, Nůsková H, Pecina P, Houštěk J. Evaluation of basic mitochondrial functions using rat tissue homogenates. Mitochondrion. 2011;11:722–8. doi: 10.1016/j.mito.2011.05.006. PubMed DOI
Larsen S, Kraunsøe R, Gram M, Gnaiger E, Helge JW, Dela F. The best approach: Homogenization or manual permeabilization of human skeletal muscle fibers for respirometry? Anal Biochem. 2014;446:64–8. doi: 10.1016/j.ab.2013.10.023. PubMed DOI
Schuh RA, Jackson KC, Khairallah RJ, Ward CW, Spangenburg EE. Measuring mitochondrial respiration in intact single muscle fibers. AJP. 2012;302:R712–9. PubMed PMC
Trnka J, Elkalaf M, Andel M. Lipophilic triphenylphosphonium cations inhibit mitochondrial electron transport chain and induce mitochondrial proton leak. PLoS ONE. 2015;10:e0121837–14. doi: 10.1371/journal.pone.0121837. PubMed DOI PMC
Němcová-Fürstová V, James RF, Kovář J. Inhibitory effect of unsaturated fatty acids on saturated fatty acid-induced apoptosis in human pancreatic cells: activation of caspases and ER stress induction. Cell Physiol Biochem. 2011;27(5):525–38. doi: 10.1159/000329954. PubMed DOI
Hepple RT, Baker DJ, Kaczor JJ, Krause DJ. Long-term caloric restriction abrogates the age-related decline in skeletal muscle aerobic function. FASEB J. 2005;19(10):1320–2. PubMed
Crane JD, Abadi A, Hettinga BP, Ogborn DI, MacNeil LG, Steinberg GR, et al. Elevated mitochondrial oxidative stress impairs metabolic adaptations to exercise in skeletal muscle. PLoS One. 2013;8(12):e81879. doi: 10.1371/journal.pone.0081879. PubMed DOI PMC
M, Jung B, Liang F, Azuelos I, Hussain S, Goldberg P, et al. Mitochondrial dysfunction and lipid accumulation in the human diaphragm during mechanical ventilation. Am J Respir Crit Care Med. 2012;186:1140–9. PubMed
Larsen S, Nielsen J, Hansen CN, Nielsen LB, Wibrand F, Stride N, et al. Biomarkers of mitochondrial content in skeletal muscle of healthy young human subjects. J Physiol. 2012;590(Pt 14):3349–60. doi: 10.1113/jphysiol.2012.230185. PubMed DOI PMC
Wibom R, Hultman E, Johansson M, Matherei K, Constantin-Teodosiu D, Schantz PG. Adaptation of mitochondrial ATP production in human skeletal muscle to endurance training and detraining. J Appl Physiol. 1992;73:2004–10. PubMed
Chepelev NL, Bennitz JD, Wright JS, Smith JC, Willmore WG. Oxidative modification of citrate synthase by peroxyl radicals and protection with novel antioxidants. J Enzyme Inhib Med Chem. 2009;24(6):1319–31. doi: 10.3109/14756360902852586. PubMed DOI
Levy RJ, Deutschman CS. Cytochrome c oxidase dysfunction in sepsis. Crit Care Med. 2007;35:S468–75. doi: 10.1097/01.CCM.0000278604.93569.27. PubMed DOI
Barrientos A, Fontanesi F, Diiaz F. Evaluation of the Mitochondrial Respiratory Chain and Oxidative Phosphorylation System Using Polarography and Spectrophotometric Enzyme Assays. Hoboken, NJ, USA: John Wiley & Sons, Inc; 2001. PubMed PMC
Cree MG, Wolfe RR. Postburn trauma insulin resistance and fat metabolism. Am J Physiol Endocrinol Metab. 2008;294:E1–9. doi: 10.1152/ajpendo.00562.2007. PubMed DOI
Bakalar B, Duska F, Pachl J, Fric M, Otahal M, Pazout J, Andel M. Parenterally administered dipeptide alanyl-glutamine prevents worsening of insulin sensitivity in multiple-trauma patients. Crit Care Med. 2006;34(2):381–7. doi: 10.1097/01.CCM.0000196829.30741.D4. PubMed DOI
Weber-Carstens S, Schneider J, Wollersheim T, Assmann A, Bierbrauer J, Marg A, et al. Critical illness myopathy and GLUT4. Am J Respir Crit Care Med. 2013;187:387–96. doi: 10.1164/rccm.201209-1649OC. PubMed DOI
Vary TC. Sepsis-induced alterations in pyruvate dehydrogenase complex activity in rat skeletal muscle: effects on plasma lactate. Shock. 1996;6:89–94. doi: 10.1097/00024382-199608000-00002. PubMed DOI
Duska F, Fric M, Waldauf P, Pazout J, Andel M, Mokrejs P, Tůma P, Pachl J. Frequent intravenous pulses of growth hormone together with glutamine supplementation in prolonged critical illness after multiple trauma: Effects on nitrogen balance, insulin resistance, and substrate oxidation. Crit Care Med. 2008;36(6):1707–13. doi: 10.1097/CCM.0b013e318174d499. PubMed DOI
Lee JS. Saturated, but not n-6 polyunsaturated, fatty acids induce insulin resistance: role of intramuscular accumulation of lipid metabolites. J Appl Physiol. 2006;100:1467–74. doi: 10.1152/japplphysiol.01438.2005. PubMed DOI
Watford M. Functional glycerol kinase activity and the possibility of a major role for glyceroneogenesis in mammalian skeletal muscle. Nutr Rev. 2000;58:145–8. doi: 10.1111/j.1753-4887.2000.tb01849.x. PubMed DOI
Mráček T, Drahota Z, Houštěk J. The function and the role of the mitochondrial glycerol-3-phosphate dehydrogenase in mammalian tissues. BBA - Bioenergetics. 2013;1827:401–10. doi: 10.1016/j.bbabio.2012.11.014. PubMed DOI
Lukyanova LD. Mitochondrial Signaling in Hypoxia. OJEMD. 2013;03:20–32. doi: 10.4236/ojemd.2013.32A004. DOI
Chouchani ET, Pell VR, Gaude E, Aksentijević D, Sundier SY, Robb EL, et al. Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS. Nature. 2014;515:431–5. doi: 10.1038/nature13909. PubMed DOI PMC
O'Neill L. Succinate strikes. Nature. 2014;515:1–2. doi: 10.1038/nature13941. PubMed DOI
Tannahill GM, Curtis AM, Adamik J, Palsson-McDermott EM, McGettrick AF, Goel G, et al. Succinate is an inflammatory signal that induces IL-1β through HIF-1α. Nature. 2014;496:238–42. doi: 10.1038/nature11986. PubMed DOI PMC
Quinlan CL, Perevoshchikova IV, Hey-Mogensen M, Orr AL, Brand MD. Sites of reactive oxygen species generation by mitochondria oxidizing different substrates. Redox Biol. 2013;1:304–12. doi: 10.1016/j.redox.2013.04.005. PubMed DOI PMC
Chouchani ET, Methner C, Nadtochiy SM, Logan A, Pell VR, Ding S, et al. Cardioprotection by S-nitrosation of a cysteine switch on mitochondrial complex I. Nat Med. 2013;19:753–9. doi: 10.1038/nm.3212. PubMed DOI PMC
Peruchi BB, Petronilho F, Rojas HA, Constantino L, Mina F, Vuolo F, et al. Skeletal muscle electron transport chain dysfunction after sepsis in rats. J Surg Res. 2011;167:e333–8. doi: 10.1016/j.jss.2010.11.893. PubMed DOI
Holloszy JO, Coyle EF. Adaptations of skeletal muscle to endurance exercise and their metabolic consequences. J Appl Physiol Respir Environ Exerc Physiol. 1984;56(4):831–8. PubMed
Berg HE, Dudley GA, Hather B, Tesch PA. Work capacity and metabolic and morphologic characteristics of the human quadriceps muscle in response to unloading. Clin Physiol. 1993;13(4):337–47. doi: 10.1111/j.1475-097X.1993.tb00334.x. PubMed DOI
Hikida RS, Gollnick PD, Dudley GA, Convertino VA, Buchanan P. Structural and metabolic characteristics of human skeletal muscle following 30 days of simulated microgravity. Aviat Space Environ Med. 1989;60(7):664–70. PubMed