Functional electrical stimulation-assisted cycle ergometry in the critically ill: protocol for a randomized controlled trial

. 2019 Dec 16 ; 20 (1) : 724. [epub] 20191216

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu protokol klinické studie, časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31842936

Grantová podpora
AZV 16-28663A Agentura Pro Zdravotnický Výzkum České Republiky

Odkazy

PubMed 31842936
PubMed Central PMC6915865
DOI 10.1186/s13063-019-3745-1
PII: 10.1186/s13063-019-3745-1
Knihovny.cz E-zdroje

BACKGROUND: Intensive care unit (ICU)-acquired weakness is the most important cause of failed functional outcome in survivors of critical care. Most damage occurs during the first week when patients are not cooperative enough with conventional rehabilitation. Functional electrical stimulation-assisted cycle ergometry (FES-CE) applied within 48 h of ICU admission may improve muscle function and long-term outcome. METHODS: An assessor-blinded, pragmatic, single-centre randomized controlled trial will be performed. Adults (n = 150) mechanically ventilated for < 48 h from four ICUs who are estimated to need > 7 days of critical care will be randomized (1:1) to receive either standard of care or FES-CE-based intensified rehabilitation, which will continue until ICU discharge. PRIMARY OUTCOME: quality of life measured by 36-Item Short Form Health Survey score at 6 months. SECONDARY OUTCOMES: functional performance at ICU discharge, muscle mass (vastus ultrasound, N-balance) and function (Medical Research Council score, insulin sensitivity). In a subgroup (n = 30) we will assess insulin sensitivity and perform skeletal muscle biopsies to look at mitochondrial function, fibre typing and regulatory protein expression. TRIAL REGISTRATION: ClinicalTrials.gov, NCT02864745. Registered on 12 August 2016.

Zobrazit více v PubMed

Fan E, Dowdy DW, Colantuoni E, Mendez-Tellez PA, Sevransky JE, Shanholtz C, et al. Physical complications in acute lung injury survivors: a two-year longitudinal prospective study. Crit Care Med. 2014;42:849–859. doi: 10.1097/CCM.0000000000000040. PubMed DOI PMC

Herridge MS, Tansey CM, Matte A, Tomlinson G, Diaz-Granados N, Cooper A, et al. Functional disability 5 years after acute respiratory distress syndrome. N Engl J Med. 2011;364:1293–1304. doi: 10.1056/NEJMoa1011802. PubMed DOI

Herridge MS, Moss M, Hough CL, Hopkins RO, Rice TW, Bienvenu OJ, et al. Recovery and outcomes after the acute respiratory distress syndrome (ARDS) in patients and their family caregivers. Intensive Care Med. 2016;42:725–738. doi: 10.1007/s00134-016-4321-8. PubMed DOI

Kress JP, Hall JB. ICU-acquired weakness and recovery from critical illness. N Engl J Med. 2014;370:1626–1635. doi: 10.1056/NEJMra1209390. PubMed DOI

Sacanella E, Perez-Castejon JM, Nicolas JM, Masanes F, Navarro M, Castro P, et al. Functional status and quality of life 12 months after discharge from a medical ICU in healthy elderly patients: a prospective observational study. Crit Care. 2011;15:R105. doi: 10.1186/cc10121. PubMed DOI PMC

Herridge MS. Mobile, awake and critically ill. CMAJ. 2008;178:725–726. doi: 10.1503/cmaj.080178. PubMed DOI PMC

Needham DM. Mobilizing patients in the intensive care unit: improving neuromuscular weakness and physical function. JAMA. 2008;300:1685–1690. doi: 10.1001/jama.300.14.1685. PubMed DOI

Minhas MA, Velasquez AG, Kaul A, Salinas PD, Celi LA. Effect of protocolized sedation on clinical outcomes in mechanically ventilated intensive care unit patients: a systematic review and meta-analysis of randomized controlled trials. Mayo Clin Proc. 2015;90:613–623. doi: 10.1016/j.mayocp.2015.02.016. PubMed DOI PMC

Saunders CB. Preventing secondary complications in trauma patients with implementation of a multidisciplinary mobilization team. J Trauma Nurs. 2015;22:170–174. doi: 10.1097/JTN.0000000000000127. PubMed DOI

Hanekom Susan D, Louw Quinette, Coetzee Andre. The way in which a physiotherapy service is structured can improve patient outcome from a surgical intensive care: a controlled clinical trial. Critical Care. 2012;16(6):R230. doi: 10.1186/cc11894. PubMed DOI PMC

Schaller SJ, Anstey M, Blobner M, Edrich T, Grabitz SD, Gradwohl-Matis I, et al. Early, goal-directed mobilisation in the surgical intensive care unit: a randomised controlled trial. Lancet. 2016;388:1377–1388. doi: 10.1016/S0140-6736(16)31637-3. PubMed DOI

Kayambu G, Boots R, Paratz J. Early physical rehabilitation in intensive care patients with sepsis syndromes: a pilot randomised controlled trial. Intensive Care Med. 2015;41:865–874. doi: 10.1007/s00134-015-3763-8. PubMed DOI

Sommers J, Engelbert RHH, Dettling-Ihnenfeldt D, Gosselink R, Spronk PE, Nollet F, et al. Physiotherapy in the intensive care unit: an evidence-based, expert driven, practical statement and rehabilitation recommendations. Clin Rehabil. 2015;29:1051–1063. doi: 10.1177/0269215514567156. PubMed DOI PMC

Morris PE, Berry MJ, Files DC, Thompson JC, Hauser J, Flores L, et al. Standardized rehabilitation and hospital length of stay among patients with acute respiratory failure. JAMA. 2016;315:2694. doi: 10.1001/jama.2016.7201. PubMed DOI PMC

Burtin C, Clerckx B, Robbeets C, Ferdinande P, Langer D, Troosters T, et al. Early exercise in critically ill patients enhances short-term functional recovery. Crit Care Med. 2009;37:2499–2505. doi: 10.1097/CCM.0b013e3181a38937. PubMed DOI

Schweickert WD, Pohlman MC, Pohlman AS, Nigos C, Pawlik AJ, Esbrook CL, et al. Early physical and occupational therapy in mechanically ventilated, critically ill patients: a randomised controlled trial. Lancet. 2009;373:1874–1882. doi: 10.1016/S0140-6736(09)60658-9. PubMed DOI PMC

Needham DM, Korupolu R, Zanni JM, Pradhan P, Colantuoni E, Palmer JB, et al. Early physical medicine and rehabilitation for patients with acute respiratory failure: a quality improvement project. Arch Phys Med Rehabil. 2010;91:536–542. doi: 10.1016/j.apmr.2010.01.002. PubMed DOI

Eggmann S, Verra ML, Luder G, Takala J, Jakob SM. Physiological effects and safety of an early, combined endurance and resistance training in mechanically ventilated, critically ill patients. PLoS One. 2018;101:e344–e345. PubMed PMC

Wright SE, Thomas K, Watson G, Baker C, Bryant A, Chadwick TJ, et al. Intensive versus standard physical rehabilitation therapy in the critically ill (EPICC): a multicentre, parallel-group, randomised controlled trial. Thorax. 2018;73:213–221. doi: 10.1136/thoraxjnl-2016-209858. PubMed DOI PMC

Bailey P, Thomsen GE, Spuhler VJ, Blair R, Jewkes J, Bezdjian L, et al. Early activity is feasible and safe in respiratory failure patients. Crit Care Med. 2007;35:139–145. doi: 10.1097/01.CCM.0000251130.69568.87. PubMed DOI

Denehy L, Skinner EH, Edbrooke L, Haines K, Warrillow S, Hawthorne G, et al. Exercise rehabilitation for patients with critical illness: a randomized controlled trial with 12 months of follow-up. Crit Care. 2013;17:R156. doi: 10.1186/cc12835. PubMed DOI PMC

Sricharoenchai T, Parker AM, Zanni JM, Nelliot A, Dinglas VD, Needham DM. Safety of physical therapy interventions in critically ill patients: a single-center prospective evaluation of 1110 intensive care unit admissions. J Crit Care. 2014;29:395–400. doi: 10.1016/j.jcrc.2013.12.012. PubMed DOI

Levine S, Nguyen T, Taylor N, Friscia ME, Budak MT, Rothenberg P, et al. Rapid disuse atrophy of diaphragm fibers in mechanically ventilated humans. N Engl J Med. 2008;358:1327–1335. doi: 10.1056/NEJMoa070447. PubMed DOI

Hermans G, De Jonghe B, Bruyninckx F, Van den Berghe G. Clinical review: Critical illness polyneuropathy and myopathy. Crit Care. 2008;12:238. doi: 10.1186/cc7100. PubMed DOI PMC

Gruther W, Benesch T, Zorn C, Paternostro-Sluga T, Quittan M, Fialka-Moser V, et al. Muscle wasting in intensive care patients: ultrasound observation of the M. quadriceps femoris muscle layer. J Rehabil Med. 2008;40:185–189. doi: 10.2340/16501977-0139. PubMed DOI

Puthucheary ZA, Rawal J, McPhail M, Connolly B, Ratnayake G, Chan P, et al. Acute skeletal muscle wasting in critical illness. JAMA. 2013;310:1591–1600. doi: 10.1001/jama.2013.278481. PubMed DOI

Topp R, Ditmyer M, King K, Doherty K, Hornyak J., 3rd The effect of bed rest and potential of prehabilitation on patients in the intensive care unit. AACN Clin Issues. 2002;13:263–276. doi: 10.1097/00044067-200205000-00011. PubMed DOI

Machado ADS, Pires-Neto RC, Carvalho MTX, Soares JC, Cardoso DM, de Albuquerque IM. Effects that passive cycling exercise have on muscle strength, duration of mechanical ventilation, and length of hospital stay in critically ill patients: a randomized clinical trial. J Bras Pneumol. 2017;43:134–139. doi: 10.1590/s1806-37562016000000170. PubMed DOI PMC

Fossat G, Baudin F, Courtes L, Bobet S, Dupont A, Bretagnol A, et al. Effect of in-bed leg cycling and electrical stimulation of the quadriceps on global muscle strength in critically ill adults: a randomized clinical trial. JAMA. 2018;320:368–378. doi: 10.1001/jama.2018.9592. PubMed DOI PMC

França E, Ribeiro L, Lamenha G, Magalhães I, Figueiredo T, Costa M, et al. Oxidative stress and immune system analysis after cycle ergometer use in critical patients. Clinics. 2017;72:143–149. doi: 10.6061/clinics/2017(03)03. PubMed DOI PMC

Zanotti E, Felicetti G, Maini M, Fracchia C. Peripheral muscle strength training in bed-bound patients with COPD receiving mechanical ventilation: effect of electrical stimulation. Chest. 2003;124:292–296. doi: 10.1378/chest.124.1.292. PubMed DOI

Gerovasili V, Stefanidis K, Vitzilaios K, Karatzanos E, Politis P, Koroneos A, et al. Electrical muscle stimulation preserves the muscle mass of critically ill patients: a randomized study. Crit Care. 2009;13:R161. doi: 10.1186/cc8123. PubMed DOI PMC

Routsi Christina, Gerovasili Vasiliki, Vasileiadis Ioannis, Karatzanos Eleftherios, Pitsolis Theodore, Tripodaki Elli Sophia, Markaki Vasiliki, Zervakis Dimitrios, Nanas Serafim. Electrical muscle stimulation prevents critical illness polyneuromyopathy: a randomized parallel intervention trial. Critical Care. 2010;14(2):R74. doi: 10.1186/cc8987. PubMed DOI PMC

Abu-Khaber HA, Abouelela AMZ, Abdelkarim EM. Effect of electrical muscle stimulation on prevention of ICU acquired muscle weakness and facilitating weaning from mechanical ventilation. Alexandria J Med. 2013;49:309–315. doi: 10.1016/j.ajme.2013.03.011. DOI

Kho ME, Truong AD, Zanni JM, Ciesla ND, Brower RG, Palmer JB, et al. Neuromuscular electrical stimulation in mechanically ventilated patients: a randomized, sham-controlled pilot trial with blinded outcome assessment. J Crit Care. 2014;30:32–39. doi: 10.1016/j.jcrc.2014.09.014. PubMed DOI PMC

Goll M, Wollersheim T, Haas K, Moergeli R, Malleike J, Nehls F, et al. Randomised controlled trial using daily electrical muscle stimulation (EMS) in critically ill patients to prevent intensive care unit (ICU) acquired weakness (ICUAW) Intensive Care Med Exp. 2015;3:1–2. doi: 10.1186/2197-425X-3-S1-A809. DOI

Fischer A, Spiegl M, Altmann K, Winkler A, Salamon A, Themessl-Huber M, et al. Muscle mass, strength and functional outcomes in critically ill patients after cardiothoracic surgery: does neuromuscular electrical stimulation help? The Catastim 2 randomized controlled trial. Crit Care. 2016;20:1–13. doi: 10.1186/s13054-016-1199-3. PubMed DOI PMC

Fontes Cerqueira TC, de Cerqueira Neto ML, de AP CL, Oliveira GU, da Silva Júnior WM, Carvalho VO, et al. Ambulation capacity and functional outcome in patients undergoing neuromuscular electrical stimulation after cardiac valve surgery: a randomised clinical trial. Medicine (Baltimore) 2018;97:e13012. doi: 10.1097/MD.0000000000013012. PubMed DOI PMC

Koçan Kurtoğlu D, Taştekin N, Birtane M, Tabakoğlu E, Süt N. Effectiveness of neuromuscular electrical stimulation on auxiliary respiratory muscles in patients with chronic obstructive pulmonary disease treated in the intensive care unit. Turk J Phys Med Rehab. 2015;61:12–17. doi: 10.5152/tftrd.2015.04378. DOI

Doucet BM, Lam A, Griffin L. Neuromuscular electrical stimulation for skeletal muscle function. Yale J Biol Med. 2012;85:201–215. PubMed PMC

Bauman WA, Spungen AM, Adkins RH, Kemp BJ. Metabolic and endocrine changes in persons aging with spinal cord injury. Assist Technol. 1999;11:88–96. doi: 10.1080/10400435.1999.10131993. PubMed DOI

Kjaer M, Pollack SF, Mohr T, Weiss H, Gleim GW, Bach FW, et al. Regulation of glucose turnover and hormonal responses during electrical cycling in tetraplegic humans. Am J Physiol. 1996;271:R191–R199. PubMed

Gorgey AS, Dolbow DR, Dolbow JD, Khalil RK, Gater DR. The effects of electrical stimulation on body composition and metabolic profile after spinal cord injury—part II. J Spinal Cord Med. 2015;38:23–37. doi: 10.1179/2045772314Y.0000000244. PubMed DOI PMC

Parry SM, Berney S, Warrillow S, El-Ansary D, Bryant AL, Hart N, et al. Functional electrical stimulation with cycling in the critically ill: a pilot case-matched control study. J Crit Care. 2014;29:695.e1–695.e7. doi: 10.1016/j.jcrc.2014.03.017. PubMed DOI

Gojda J, Waldauf P, Hruskova N, Blahutova B, Krajcova A, Urban T, et al. Lactate production without hypoxia in skeletal muscle during electrical cycling: crossover study of femoral venous–arterial differences in healthy volunteers. PLoS One. 2019;14:e0200228. doi: 10.1371/journal.pone.0200228. PubMed DOI PMC

Hettinga DM, Andrews BJ. Oxygen consumption during functional electrical stimulation-assisted exercise in persons with spinal cord injury: implications for fitness and health. Sports Med. 2008;38:825–838. doi: 10.2165/00007256-200838100-00003. PubMed DOI

Farrell PA. Protein metabolism and age: influence of insulin and resistance exercise. Int J Sport Nutr Exerc Metab. 2001;11(Suppl):S150–S163. doi: 10.1123/ijsnem.11.s1.s150. PubMed DOI

Weber-Carstens S, Schneider J, Wollersheim T, Assmann A, Bierbrauer J, Marg A, et al. Critical illness myopathy and GLUT4: significance of insulin and muscle contraction. Am J Respir Crit Care Med. 2013;187:387–396. doi: 10.1164/rccm.201209-1649OC. PubMed DOI

Clifton GL, Robertson CS, Grossman RG, Hodge S, Foltz R, Garza C. The metabolic response to severe head injury. J Neurosurg. 1984;60:687–696. doi: 10.3171/jns.1984.60.4.0687. PubMed DOI

Finfer S, Chittock DR, Su SY-S, Blair D, Foster D, Dhingra V, et al. Intensive versus conventional glucose control in critically ill patients. N Engl J Med. 2009;360:1283–1297. doi: 10.1056/NEJMoa0810625. PubMed DOI

Dirks ML, Hansen D, Van Assche A, Dendale P, Van Loon LJC. Neuromuscular electrical stimulation prevents muscle wasting in critically ill comatose patients. Clin Sci (Lond) 2015;128:357–365. doi: 10.1042/CS20140447. PubMed DOI

Brealey D, Brand M, Hargreaves I, Heales S, Land J, Smolenski R, et al. Association between mitochondrial dysfunction and severity and outcome of septic shock. Lancet. 2002;360:219–223. doi: 10.1016/S0140-6736(02)09459-X. PubMed DOI

Carre JE, Orban J-C, Re L, Felsmann K, Iffert W, Bauer M, et al. Survival in critical illness is associated with early activation of mitochondrial biogenesis. Am J Respir Crit Care Med. 2010;182:745–751. doi: 10.1164/rccm.201003-0326OC. PubMed DOI PMC

Jiroutkova K, Krajcova A, Ziak J, Fric M, Gojda J, Dzupa V, et al. Mitochondrial function in an in vitro model of skeletal muscle of patients with protracted critical illness and intensive care unit-acquired weakness. JPEN J Parenter Enteral Nutr. United States. 2017;41:1213–1221. PubMed

Jiroutkova K, Krajcova A, Ziak J, Fric M, Waldauf P, Dzupa V, et al. Mitochondrial function in skeletal muscle of patients with protracted critical illness and ICU-acquired weakness. Crit Care. 2015;19:448. doi: 10.1186/s13054-015-1160-x. PubMed DOI PMC

Wyrwich KW, Tierney WM, Babu AN, Kroenke K, Wolinsky FD. A comparison of clinically important differences in health-related quality of life for patients with chronic lung disease, asthma, or heart disease. Health Serv Res. 2005;40:577–591. doi: 10.1111/j.1475-6773.2005.0l374.x. PubMed DOI PMC

Parry Selina M, Berney Sue, Koopman René, Bryant Adam, El-Ansary Doa, Puthucheary Zudin, Hart Nicholas, Warrillow Stephen, Denehy Linda. Early rehabilitation in critical care (eRiCC): functional electrical stimulation with cycling protocol for a randomised controlled trial. BMJ Open. 2012;2(5):e001891. doi: 10.1136/bmjopen-2012-001891. PubMed DOI PMC

Ely EW, Margolin R, Francis J, May L, Truman B, Dittus R, et al. Evaluation of delirium in critically ill patients: validation of the Confusion Assessment Method for the Intensive Care Unit (CAM-ICU) Crit Care Med. 2001;29:1370–1379. doi: 10.1097/00003246-200107000-00012. PubMed DOI

Ziak Jakub, Krajcova Adela, Jiroutkova Katerina, Nemcova Vlasta, Dzupa Valer, Duska Frantisek. Assessing the function of mitochondria in cytosolic context in human skeletal muscle: Adopting high-resolution respirometry to homogenate of needle biopsy tissue samples. Mitochondrion. 2015;21:106–112. doi: 10.1016/j.mito.2015.02.002. PubMed DOI

Krajcova Adela, Ziak Jakub, Jiroutkova Katerina, Patkova Jana, Elkalaf Moustafa, Dzupa Valer, Trnka Jan, Duska Frantisek. Normalizing Glutamine Concentration Causes Mitochondrial Uncoupling in an In Vitro Model of Human Skeletal Muscle. Journal of Parenteral and Enteral Nutrition. 2013;39(2):180–189. doi: 10.1177/0148607113513801. PubMed DOI

Duška František, Fric Michal, Waldauf Petr, Pažout Jaroslav, Anděl Michal, Mokrejš Pavel, Tůma Petr, Pachl Jan. Frequent intravenous pulses of growth hormone together with glutamine supplementation in prolonged critical illness after multiple trauma: Effects on nitrogen balance, insulin resistance, and substrate oxidation*. Critical Care Medicine. 2008;36(6):1707–1713. doi: 10.1097/CCM.0b013e318174d499. PubMed DOI

Zobrazit více v PubMed

ClinicalTrials.gov
NCT02864745

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...